七年级数学上册《从不同的方向看立体图形和立体图形的展开图》人教版

合集下载

人教版七年级上册数学作业课件 第四章 第2课时 从不同的方向看立体图形和立体图形的展开图 (3)

人教版七年级上册数学作业课件 第四章 第2课时 从不同的方向看立体图形和立体图形的展开图 (3)

16.如图是一个长方体的展开图,每个面都标上了字 母,将展开图折叠时要求标字母的面应在外面,请 按要求填空:
(1)如果 A 面在长方体的底部,那么在上面的面 是 F面 ; (2)如果 F 面在前面,左面是 B,那么上面的面是 C面 ; (3)从右面看是 C 面,D 面在后面,那么在上面 的面是 A 面 .
14.如图是由若干个大小相同的小正方体堆砌而成 的几何体,那么从正面、左面、上面看到的图形中, 面积最小的是( B ) A.正面 B.左面 C.上面 D.都一样大
15.如图,5 个边长相等的小正方形拼成一个平面图 形,小丽手中还有一个同样的小正方形,她想将它 与图中的平面图形拼接在一起,从而可以构成一个 正方体的平面展开图,则小丽总共能有 4 种拼接 方法.
知识点二 立体图形的展开图 7.(2020-2021·北京期末)下列几何体的展开图中, 能围成圆柱的是( D )
8.一个几何体的侧面展开图如图所示,则该几何体 的底面是( B )
9.(2020·大庆中考)将正方体的表面沿某些棱剪开, 展成如图所示的平面图形,则原正方体中与数字 5 所在面相对的面上标的数字为( B ) A.1 B.2 C.3 D.4
17.如图是一个正方体纸盒的展开图,如果这个正方 体纸盒相对 2 个面上的式子的值相等,求 a,x,y 的值. 解:依题意,得 a=3, 5-x=2x-1,2y=y+1, ∴x=2,y=1. 故 a,x,y 的值分别为 3,2,1.
ห้องสมุดไป่ตู้
18.如图是由若干个相同的小正方体组成的一个几 何体从三个方向看得到的平面图形,则小正方体的 个数是 5 .
10.(2020·绵阳中考)下列四个图形中,不能作为正 方体的展开图的是( D )
11.将下面 4 个图用纸复印下来,然后沿所画线折起 来,把折成的立体图形的名称写在图下边的横线上:

人教版七年级上册数学第四章知识点总结与复习课件

人教版七年级上册数学第四章知识点总结与复习课件

应用格式:
C是线段AB的中点,
AC =BC =1/2AB AB =2AC =2BC
A
C
B
5.有关线段的基本事实 两点之间线段最短
三、角 1.角的定义 (1)有公共端点的两条射线组成的图形,叫做角 (2)角也可以看做由一条射线绕着它的端点旋转所形成的 图形
2.角的度量 度、分、秒的互化 1°=60′,1′=60″ 1″=(1/60)′,1′=(1/60)°
A'
D
C
F
N
M
B'
A
E
B
解:由折纸过程可知, EM平分∠BEB' , EN平分∠AEA'.
所以有∠MEB'=1/2∠BEB',∠NEA'=1/2∠AEA'. 因 ∠BEB'+∠AEA'=180°,
所以有∠NEM=∠NEA'+∠MEB' =1/2∠AEA'+1/2∠BEB' =1/2(∠AEA'+∠BEB') =90°.
M A N C
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠COM=1/2∠BOC=1/2×140°=70°,
∠CON=1/2∠AOC=1/2×50°=25°,
∴∠MON=∠COM-∠CON=70°-25°=45°;
(2)当∠AOC=α时, ∠MON等于多少度? B
(2)∠BOC=∠AOB+∠AOC=90°+α,
人教版七年级数学上 教学课件
第四章 图形初步认识
知识点总结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、几何图形 1.立体图形与平面图形 (1)立体图形的各部分不都在同一平面内,如

人教版七年级数学上册6.1.1 第2课时 从不同方向看立体图形及立体图形的展开图 课件

人教版七年级数学上册6.1.1  第2课时  从不同方向看立体图形及立体图形的展开图 课件

探究新知
从上面看
从左面看
从前面看
从前面看
从左面看
从上面看
巩固练习
说出下面三个平面图形分别是物体从哪里看到的?
从前面看 从上面看
从左面看
巩固练习
分别画出圆柱体、圆锥及球体的从前面、左面、上面 看到的图形.
巩固练习
从前面看 从左面看 从上面看
探究新知
学生活动三 【一起探究】 立体图形的展开图 将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?
第六章 几何图形初步
6.1 几何图形 6.1.1 立体图形与平面图形 第2课时 从不同方向看立体图形及立体
图形的展开图
学习目标
1.初步体会从不同的方向观察同一个物体可能 会看到不同 的平面图形,能识别简单物体从前面看、从左面看、从上 面看的平面图形. 2. 知道一些简单的立体图形的展开图. 3.在平面图形和立体图形互相转换的过程中,初步建立空 间观念.
上左 下右 隔隔 一一 行列
探究新知
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
红 蓝

巩固练习
下列图形中,不是正方体表面展开图的是 ( C )
A.
B.
C.
D.
巩固练习
友情提示: 沿着棱剪,展开后是 一个平面图形.
探究新知
正方体的展开图
1
2
34
5
6
7
8
9
10
11
探究新知
思考:1.这些正方体展开图可以分为几种? 2.观察上面的11种正方体的展开图有没有什么规律?哪几号 展开图可以分为一类,为什么?

人教版七年级数学上册第四章 4.1.2从不同方向看立体图形与立体图形的展开图4

人教版七年级数学上册第四章 4.1.2从不同方向看立体图形与立体图形的展开图4

【想一想错在哪?】一个长和宽分别为4和3的长方形,绕其一 边所在直线旋转得到的圆柱的体积是多少(保留π)?
提示:绕长或宽所在直线旋转得到的圆柱不同.
R版七年级上
4.1
第四章 几何图形 初步
几何图形
第2课时 从不同方向看立体图形
1.【2019•孝感】下列立体图形中,左视图是圆的是( D )
【总结提升】点、线、面、体的关系 1.点是构成图形的基本元素,几何图形都是由点、线、面、体 组成的. 2.圆柱、圆锥、球与棱柱、棱锥是不同的两类几何体.圆柱、圆 锥、球有一个共同的特点,它们都有一个曲面;棱柱、棱锥也 有一个共同点,它们全部由多边形围成.
知识点 2 面动成体 【例2】(2012·泸州中考)将左图所示的梯形绕直线l旋转一周 得到的立体图形是( )
【解析】不同的走法分别是:A→B→C→G;A→B→F→G; A→D→C→G;A→D→H→G;A→E→F→G;A→E→H→G. 答案:6
6.将下列几何体分类,并说明理由.
【解析】答案不唯一,如 (1)按平面分:正方体,长方体,三棱锥. (2)按曲面分:圆柱,球,圆锥. 理由是:正方体的面是六个正方形组成,长方体的面是六个长 方形组成,三棱锥的面是四个三角形组成,都是平面图形;而 圆柱和圆锥的侧面都是曲面,球的整个面是曲面.
个直角三角形,若绕直角边所在直线旋转一周,则形成圆锥; 若绕斜边所在直线旋转一周,则形成底相同的两个圆锥的组合 体.所以把一个平面图形旋转成几何体时,一定要明确绕哪条直 线旋转,否则可能得到不同的结果.
题组一:点、线、面、体 1.下面四个几何体中,含有曲面的几何体个数是( )
A.1 B.2
C.3
D.4
【解析】选B.球、圆锥有曲面,而正方体、棱柱不含曲面.

人教版七年级数学上册第4章4.1几何图形4.1.1立体图形与平面图形第2课时折叠展开与从不同的方向观察几何体备

人教版七年级数学上册第4章4.1几何图形4.1.1立体图形与平面图形第2课时折叠展开与从不同的方向观察几何体备

4.1 几何图形4.1.1立体图形与平面图形第3课时立体图形的展开图置疑导入归纳导入复习导入类比导入图4-1-73生活中,我们经常见到正方体形状的物体.将他们完全展开后形状是怎样的?下面我们先来将你面前的正方体盒子沿棱剪开,看看能得到一个什么样的平面图形?[说明与建议] 说明:利用常见的正方体是怎样制作的这一问题作为切入点,激发学生的兴趣,并通过动手操作让学生深刻认识正方体的面、棱之间的关系,调动学生的积极性.建议:让学生思考并动手操作,将正方体沿棱展开,再给出本节课的课题并板书:立体图形的展开图.活动内容:回答下列问题.问题1:同学们,在我们日常生活中,随处都可以见到五花八门的包装盒,你能说出几种你所见到过的包装盒的名字吗?你能说出下面几种包装盒的几何图形的名字吗?图4-1-74问题2:像上面的这几种包装盒,你知道将其拆开后会展开成什么样的平面图形吗?问题3:如果给你一些展开的包装盒的纸板,你能不能把它们恢复成完整的包装盒呢?[说明与建议] 说明:利用学生感兴趣的生活中常见的实物,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也让学生进一步体会了展开与折叠的两个互逆的过程,这也为新课的学习做好铺垫.建议:问题1是从学生生活中常见到的实物——几个不同形状的包装盒出发提问,首先由学生回答完成;问题2、3学生思考交流后由代表尝试回答,根据学生回答的情况教师适当引导,从而引出新课.教材母题——教材第119页练习第3题下列图形中可以作为一个正方体的展开图的是( )图4-1-75【模型建立】正方体的表面展开后有11种图形:对的面.正方体相对的面展开前与展开后都不可能相邻,更不可能有公共边和公共顶点.注意:若展开图中出现以下图案,就不能围成正方体.图4-1-76【变式变形】1.[长春中考] 下列图形中,是正方体表面展开图的是(C)图4-1-77图4-1-782.[汕尾中考] 如图4-1-78所示是一个正方体的展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是(D)A.我B.中C.国D.梦3.[鸡西中考] 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图4-1-79),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的表面展开图可能是(C)图4-1-79 图4-1-804.[德州中考] 如图4-1-81所示给定的是纸盒的外表面,图4-1-82能由它折叠而成的是(B)图4-1-81 图4-1-824-1-27[命题角度1] 圆柱、圆锥、棱柱、棱锥的表面展开图圆柱、圆锥、棱柱、棱锥的表面展开图如下:注意:同一个立体图形按照不同的方式展开得到的平面图形是不一样的.例下面四个图形是多面体的展开图,其中是四棱锥的展开图的是(C)图4-1-83[命题角度2] 正方体的表面展开图正方体的表面展开后有11种图形:注意:若展开图中出现以下图案,就不能围成正方体:图4-1-84例[温州中考] 下列个图中,经过折叠能围成一个正方体的是(A)图4-1-85[命题角度3] 正方体的表面展开图中各正方形的对应关系正方体相对的面在正方体的表面展开图中其中间应当间隔1个正方形,反过来要在正方体中成为相对的面,这两个正方形无论怎样折叠都不会有相邻的边和顶点.图4-1-86例[贵阳中考] 一个正方体的表面展开图如图4-1-86所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与写有“成”字的面相对的面上的字是(B)A.中B.功C.考D.祝P118练习1.如图,右面三幅图分别是从哪个方向看这个棱柱得到的?[答案] (1)从上面看;(2)从正面看;(3)从左面看.2.如图,把相应的立体图形与它的展开图用线连起来.[答案] 如图所示:3.下列图形中可以作为一个正方体的展开图的是( )[答案] C[当堂检测]1. 【2011•龙岩】如图可以折叠成的几何体是()A.三棱柱 B.四棱柱C.圆柱 D.圆锥2. 如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是()A B C D3.下列四个图中,是三棱锥的表面展开图的是()A B C D4. 【2011•呼和浩特】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )A B C D5. 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()AA B C D参考答案:1. A2. C3. B4. C5. C正方体的平面展开图正方体是我们最常见的一种简单的立体图形,你研究过它的平面展开图?一、图形分类正方体的平面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四情形.1. 1-4-1型:展开图有3行,中间一行有4个正方形,其余两行均1个正方形,如图1中所示.图12. 2-3-1型:展开图有3行,中间一行有3个正方形,第1行有2个正方形,第3行有1个正方形,如图2中所示.图23. 2-2-2型:展开图有3行,每一行均有2个正方形,如图3所示.图3 图44. 3-3型:展开图有2行,每一行均有3个正方形,如图4所示.二、规律探究1.排在同一条直线上的小正方形,与同一个正方形相连的两个正方形折叠后,位置关系怎样?2.正方体的平面展开图中最多只能出现几个正方形有一个公共点的情形,最多只能出现几个正方形与一个正方形相邻的情形?3.当上下、左右四个面展开成一条直线时,前后两个面不可能分布在其同侧,对吗?4.原来处于相对位置上的两个面,展开后的正方形有公共顶点和公共边吗?反之,展开图中有一个公共顶点或一条公共边的两个正方形,在折叠成正方体后,必将成为相邻的两个面吗?5.当从正方体的某顶点出发,最多只能观察到几个面?能同时看到两个相对的面吗?。

人教版七年级上第四章从不同的方向看物体及立体图形的展开与折叠(含答案)

人教版七年级上第四章从不同的方向看物体及立体图形的展开与折叠(含答案)
A.5B.4C.3D.2
7.某数学兴趣小组的同学探究用相同的小立方块搭成几何体的三视图及其变化规律,下面是他们画出的左视图与俯视图.由此可知,搭这个几何体时,最多需要的小立方块的个数是().
A.8B.9C.10D.11
二、解答题
8.图1是由7个小正方体(每个小正方体的棱长都是1)所堆成的几何体.请画出这个儿何体从正面、左面、上面三个方向看到的形状图;
14.24.
【详解】试题分析:长方体的左视图是一个矩形,因为它的面积为6,一边长为2,所以另一边长为3,从而得出长方体的高为3,因此长方体的体积等于2×4×3=24.故答案为24.
考点:由三视图判断几何体.
15.有
【分析】根据正方体展开图的性质即可求解.
【详解】解:由正方体的展开图可知,“☆”与“有”相对,“几”与“真”相对,“何”与“趣”相对.
10.如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米.
(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图;
(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体(直接填空).
11.如图,在 中, , , ,点 是 的中点,动点 从点 出发,以每秒 个单位长度的速度沿 运动.到点 停止.若设点 运动的时间是 秒( ).
人教版七年级上第四章
从不同的方向看物体及立体图形的展开与折叠
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,根据三视图,这个立体图形的名称是()
A.长方体B.球体C.圆柱D.圆锥
2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()

从不同方向看立体图形与立体图形的展开图 课件(共20张PPT) 人教版七年级数学上册

从不同方向看立体图形与立体图形的展开图 课件(共20张PPT)  人教版七年级数学上册
C
同学们,这节课我们学习了从不同方向看立体图形与立体图形的展开图,认识了多种立体图形的展开图,并且从展开图的角度进一步了解了立体图形与平面图形的转化关系.
教材习题:完成课本158-159页习题2,4,6,7,8,9,11题.实践性作业:在家里找一个物品放置在桌面上,请你分别画出从前面看、从左面看、从上面看该物体得到的图形.
重点
难点
古诗导入
《题西林壁》苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.问题1:从诗中可以看出作者苏轼从不同角度对庐山进行了仔细观察,那他都从哪些角度对庐山进行了观察呢?问题2:诗中隐含着什么道理?对你有什么启发?
同学们,你们知道这些精美的包装盒是怎么制成的吗?要设计、制作一个包装盒, 除了美术设计以外,还要了解它展开后的形状,根据它来准备材料.
知识点2:立体图形的展开图(重难点)
名称
正方体
长方体
五棱柱
圆柱
圆锥
立体图形
展开图(举例)
3.正方体的展开图:“一四一”型 : “二三一”型: “阶梯”型:
注:(1)不是所有的立体图形都能展开成平面图形,如球.(2)同一个立体图形】从不同方向观察几何体
6.1 几何图形
6.1.1 立体图形与平面图形
第2课时 从不同方向看立体图形与立体图形的展开图
1. 经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能会看到不一样的结果,能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,提高学生的画图能力.2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,初步建立空间观念,发展几何直观,培养动手操作能力和语言表达能力.
图片导入
1. 分别从前面、左面、上面看长方体、球、圆柱、圆锥,各能得到什么平面图形?2.请同学们阅读课本152-153页,动手画一画分别从前面、左面、上面观察图6.1-5得到的平面图形.

七年级数学上册 4.1.1第2课时从不同方向看立体图形与立体图形的展开图复习练习(新版)新人教版

七年级数学上册 4.1.1第2课时从不同方向看立体图形与立体图形的展开图复习练习(新版)新人教版

第2课时从不同方向看立体图形与立体图形的展开图1.[2017·台州]如图4-1-14所示的工件是由两个长方体构成的组合体,则从正面看到的图形是( )图4-1-142.[2017·襄阳]如图4-1-15所示的几何体是由6个大小完全一样的正方体组合而成的,它从上面看到的图形是( )图4-1-153.[2017·丽水]图4-1-16是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )图4-1-16A.从上面看到的图形与从正面看到的图形相同B.从左面看到的图形与从正面看到的图形相同C.从左面看到的图形与从上面看到的图形相同D.三个不同方向看到的平面图形都相同4.[2017·北京]图4-1-17是某个几何题的展开图,该几何体是( )图4-1-17A.三棱柱B.圆锥C.四棱柱D.圆柱5.[2017·舟山]一个立方体的表面展开图如图4-1-18所示,将其折叠成立方体后,“你”字对面的字是( )图4-1-18A.中B.考C.顺D.利6.如图4-1-19,从不同方向看一把茶壶,你认为从上面看到的图形是( )7.图4-1-20是一个正方体纸盒的外表面展开图,则这个正方体是( )8.若干个棱长为a的正方体摆放成如图4-1-21所示的几何体,回答下列问题:图4-1-21(1)有几个正方体?(2)表面积是多少?(3)当正方体的棱长为2时,它的表面积是多少?9.如图4-1-22,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为 .图4-1-22参考答案第2课时从不同方向看立体图形与立体图形的展开图【分层作业】1.A 2.A 3.B 4.A 5.C 6.A 7.C8.(1)7个(2)30a2(3)120 9.19 48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相同的小正方体的个数是
( B)
A.4个
B.5个
C.6个
D.7个
4. 下列的三幅平面图是三棱柱的表面展开图的有
(多选)
(AC )
A
B
C
5. 如图是一个立方体纸盒的展开图,使展开图沿虚 线折叠成正方体后相对面上的两个数互为相反数, 求:a= -2 ;b= -7 ;c= 1 .
2
c 7 -1 b a
课堂小结
锥、长方体、正方体的表面展开图或根据展开 图判断立体图形. (重点、难点)
导入新课
问题1 哪位同学能说说苏东坡是从哪些角度观察 庐山的吗?
问题2 请问这两张图片是同一个人吗?
思考 他们为什么会出现争执?
漫画“6”与“9”
讲授新课
一 从不同方向看几何体
合作探究
问题 如图,把茶壶放在桌面上,那么下面五幅图片 分别是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看 从上面看
试一试:下面的五幅图分别是从什么方向看的?
1
背面 2
顶部
3
左4

正面 5


排一排: 一辆汽车从小明的面前经过,小明拍摄了一组照
片.请按照汽车被摄入镜头的先后顺序给下面的照片 编号,并与同伴进行交流.
典例精析
例1 如图是由若干小正方体搭成的几何体,我们分 别从正面看、从左面看和从上面看得到的平面图形分 别是怎样的呢?请同学们尝试画一画.
红 蓝

做一做
C
1.A下列图形中B,不是正方C 体表面展开D图的是 (
2. “坚”在下,“就”在后,“胜”和“利”在哪里?
坚 持就 是
“胜”在上,“利”在前.

一个多面体的展开图中,

在同一直线上的相邻的三个线 框中,首尾两个线框是立体图
形中相对的两个面.
说一说
下面图形是一些多面体的表面展开图,你 能说出这些多面体的名字吗?
从上面看
从左面看 从正面看
从正面看
从平面图形分别是物体从哪里看到的?
从正面看
从上面看
从左面看
2.分别画出圆柱体、圆锥及球体的从正面、左面、 上面看到的图形.
从正面看
从左面看
从上面看
二 立体图形的展开图
合作探究
将一个正方体的表面沿某些棱剪开,能展成哪 些平面图形?
常见几何体的展开图:
圆锥
四棱锥 长方体
三棱柱
三棱锥 三棱柱
正方体
圆柱
4.1 几何图形
4.1.1 立体图形与平面图形
第2课时 从不同的方向看立体图 形和立体图形的展开图
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 了解立体图形与平面图形之间的联系. 2. 能画出简单立体图形从不同方向看得到的平面
图形. (重点、难点) 3. 了解研究立体图形的方法,体会一个立体图形
按照不同方式展开可得到不同的平面展开图. 4. 通过展开与折叠,了解棱柱、棱锥、圆柱、圆
友情提示: 沿着棱剪 展开后是一 个平面图形
正方体的展开图
1
2
34
5
6
7
8
9
10
11
思考:
这些正方体展开图可以分为几种? 观察上面的11种正方体的展开图有没有什么规律? 哪几号展开图可以分为一类,为什么?
相 对 两 面 不 相 连
上左
下右
隔隔

一一
行列
?

总结归纳
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
画一画
下列立体图形的平面展开图是什么?
展开
展开
当堂练习
1. 下图所示的从正面、上面看到的图形对应的是 (B)
A
B
C
D
2. 下图是一块带有圆形空洞和方形空洞的小木板,
则下列物体中既可以堵住圆形空洞,又可以堵住
方形空洞的是
( B)
3. 下图是由一些相同的小正方体构成的几何体的从
正面、左面、上面看得到的三个平面图形,这些
相关文档
最新文档