数字信号处理实验九

合集下载

数字信号处理综合实验

数字信号处理综合实验

数字信号处理综合实验一、实验目的本实验旨在通过数字信号处理技术的综合应用,加深对数字信号处理原理和方法的理解,提高学生的实际操作能力和问题解决能力。

二、实验原理数字信号处理是利用数字计算机对摹拟信号进行采样、量化和编码,然后进行数字运算和处理的技术。

本实验主要涉及以下几个方面的内容:1. 信号采集与预处理:通过摹拟信号采集电路将摹拟信号转换为数字信号,然后进行预处理,如滤波、降噪等。

2. 数字滤波器设计:设计和实现数字滤波器,包括FIR滤波器和IIR滤波器,可以对信号进行滤波处理,提取感兴趣的频率成份。

3. 时域和频域分析:对采集到的信号进行时域和频域分析,如时域波形显示、功率谱密度估计等,可以了解信号的时域和频域特性。

4. 信号重构与恢复:通过信号重构算法对采集到的信号进行恢复,如插值、外推等,可以还原信号的原始特征。

三、实验内容根据实验原理,本实验的具体内容包括以下几个部份:1. 信号采集与预处理a. 使用摹拟信号采集电路将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

b. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

2. 数字滤波器设计a. 设计并实现FIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

b. 设计并实现IIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

3. 时域和频域分析a. 对采集到的信号进行时域分析,绘制信号的时域波形图,并计算信号的均值、方差等统计指标。

b. 对采集到的信号进行频域分析,绘制信号的功率谱密度图,并计算信号的频域特性。

4. 信号重构与恢复a. 使用插值算法对采集到的信号进行重构,恢复信号的原始特征。

b. 使用外推算法对采集到的信号进行恢复,还原信号的原始特征。

四、实验步骤1. 搭建信号采集电路,将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

2. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

数字信号处理实验报告

数字信号处理实验报告

《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。

二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。

如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。

为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。

取模|)(|k jw e X 可绘出幅频特性曲线。

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(⾃⼰的实验报告)数字信号处理实验报告西南交通⼤学信息科学与技术学院姓名:伍先春学号:20092487班级:⾃动化1班指导⽼师:张翠芳实验⼀序列的傅⽴叶变换实验⽬的进⼀步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅⽴叶变换(FFT )的应⽤。

实验步骤1. 复习DFS 和DFT 的定义,性质和应⽤;2. 熟悉MATLAB 语⾔的命令窗⼝、编程窗⼝和图形窗⼝的使⽤;利⽤提供的程序例⼦编写实验⽤程序;按实验内容上机实验,并进⾏实验结果分析;写出完整的实验报告,并将程序附在后⾯。

实验内容1. 周期⽅波序列的频谱试画出下⾯四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。

2. 有限长序列x(n)的DFT(1)取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2)将(1)中的x(n)以补零的⽅式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3)取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。

利⽤FFT进⾏谱分析已知:模拟信号以t=0.01n(n=0:N-1)进⾏采样,求N 点DFT 的幅值谱。

请分别画出N=45; N=50;N=55;N=60时的幅值曲线。

数字信号处理实验⼀1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=??-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验⼆⽤双线性变换法设计IIR 数字滤波器⼀、实验⽬的1.熟悉⽤双线性变换法设计IIR 数字滤波器的原理与⽅法; 2.掌握数字滤波器的计算机仿真⽅法;3.通过观察对实际⼼电图的滤波作⽤,获得数字滤波器的感性知识。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告黎美琪通信一、实验名称:(快速傅里叶变换)的探究二、实验目的.学习理解的基本实现原理(注:算法主要有基时间抽取法和基频域抽取法,此实验讨论的是基频率抽取算法,课本上主要讲解的是基时间抽取算法).编写代码实现基频率抽取算法三、实验条件机四、实验过程(一)基础知识储备.基频率抽取( )算法基本原理:输入[]前后分解,输出[]奇偶分解。

设序列的点数为^,为整数(公式中的、定义不一样,打印后统一改正)将输入的[]按照的顺序分成前后两段:对输出的[]进行奇偶分解()、()和()之间可以用下图所示的蝶形运算符表示:的一次分解流图:的二次分解流图:最后完整的分解流图(^一共分解了三次):的运算过程规律。

)^点的共进行级运算,每级由个蝶形运算组成。

同一级中,每个蝶形的两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数据结点又同在一条水平线上,也就是说计算完一个蝶形后,所得输出数据可立即存入原输入数据所占用的存储单元。

这样,经过级运算后,原来存放输入序列数据的个存储单元中便依次存放()的个值。

(注:这种利用同一存储单元存储蝶形计算输入、输出数据的方法称为原位计算。

原位计算可节省大量内存,从而使设备成本降低。

))旋转因子的变化规律 :以点的为例,第一级蝶形,,,,;第二级蝶形,;第三级的蝶形,。

依次类推,对于级蝶形,旋转因子的指数为∙^(−),,,,,……,^()这样就可以算出每一级的旋转因子。

)蝶形运算两节点之间的“距离” :第一级蝶形每个蝶形运算量节点的“距离”为,第二级每个蝶形运算另节点的“距离”为,第三级蝶形每个蝶形运算量节点的“距离”为。

依次类推:对于等于的次方的,可以得到第级蝶形每个蝶形运算量节点的“距离”为的次方。

.旋转因子 的性质1) 周期性 2) 对称性mk N N mk N W W -=+2 )可约性为整数/,//n N W W n mk n N mk N =.频率抽取()基算法和时间抽取()基算法比较:两种算法是等价的,其相同之处:()与两种算法均为原位运算。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

最新数字信号处理实验报告

最新数字信号处理实验报告

最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。

通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。

二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。

- 利用傅里叶变换(FFT)分析信号的频谱特性。

- 观察并记录信号的时域和频域特性。

2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。

- 通过编程实现上述滤波器,并测试其性能。

- 分析滤波器对信号的影响,并调整参数以优化性能。

3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。

- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。

- 比较重构信号与原始信号的差异,评估处理效果。

三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。

- 生成一系列不同频率和幅度的模拟信号。

- 通过数据采集卡将模拟信号转换为数字信号。

2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。

- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。

3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。

- 利用IFFT对处理后的信号进行重构。

- 通过对比原始信号和重构信号,评估滤波器的性能。

五、实验结果与分析- 展示信号在时域和频域的分析结果。

- 描述滤波器设计参数及其对信号处理的影响。

- 分析重构信号的质量,包括信噪比、失真度等指标。

六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。

- 讨论实验中遇到的问题及其解决方案。

- 提出对实验方法和过程的改进建议。

七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。

数字信号处理实验指导书(需印刷)

数字信号处理实验指导书(需印刷)

实验一 常见离散信号的MATLAB 产生和图形显示1、实验目的:(1)熟悉MATLAB 应用环境,常用窗口的功能和使用方法。

(2)加深对常用离散时间信号的理解。

(3)掌握简单的绘图命令。

(4)掌握线性卷积的计算机编程方法。

2、实验原理:(1)单位抽样序列⎩⎨⎧=01)(n δ0≠=n n如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n k n(2)单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n(3)矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N n(4)正弦序列)sin()(ϕ+=wn A n x(5)复正弦序列jwnen x =)((6)指数序列na n x =)((7)线性时不变系统的响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(3、实验内容及步骤:(1)复习常用离散时间信号的有关内容。

(2)编制程序产生上述6种序列(长度可输入确定,对(4) (5) (6)中的参数可自行选择),并绘出其图形。

(3)已知系统的单位脉冲响应),(9.0)(n u n h n=输入信号)()(10n R n x =,试用卷积法求解系统的输出)(n y ,并绘出n n x ~)(、n n h ~)(及n n y ~)(图形。

4、实验用MATLAB 函数介绍(1)数字信号处理中常用到的绘图指令(只给出函数名,具体调用格式参看help)figure(); plot(); stem(); axis(); grid on; title(); xlabel(); ylabel(); text(); hold on; subplot()(2)离散时间信号产生可能涉及的函数zeros(); ones(); exp(); sin(); cos(); abs(); angle(); real(); imag(); (3)卷积计算可能涉及的函数conv(); length()注:实验过程中也可以使用自己编制的自定义函数,如impseq()、stepseq()等。

数字信号处理实验报告

数字信号处理实验报告

长春理工大学电工电子实验教学中心学生实验报告2014 —— 2015 学年第一学期实验课程数字信号处理实验实验地点东1教学楼414实验室学院电子信息工程学院专业通信工程学号120421101姓名杨杰2、 同实验任务一一样,做出信号的时域波形,及fft 变换后的频谱图。

图二 任务二程序框图3、 这里要求引入100KHz 的正弦干扰信号,由于由1中已得到fs 为22050Hz ,根据奈奎斯特频率采样定理,采样频率必须大于等于原信号最高频率的2倍,所以必须将原信号的采样频率提高到200KHz 以上才能引入100KHz 的噪声,所以这里考虑用一阶线型插值interp1将原信号的采样频率提高到220500Hz ,这样就可以引入100KHz 噪声。

做出提高采样频率后的信号的时域波形和频谱图,确认信号并没有发生变化。

接着生成100KHz 的正弦信号,根据2中做出的信号的时域波形的幅度,这里取噪声的幅值为0.5。

将提高采样频率后的信号与噪声叠加。

对加噪后的信号做出时域波形和频谱图,观察波形的变化。

4、 这里要求设计数字滤波器,根据对加噪前的频谱以及加噪后的频谱的观察,可以采用低通滤波器,这里用巴特沃斯低通滤波器即可满足要求,所以考虑设计相对较为简单的巴特沃斯低通滤波器进行滤波。

滤波前首先要确定设计指标,观察频谱这里暂取。

然后开始设计巴特沃斯低通滤波器,这里我把设计的程序打包成一个函数方便调用,函数的框图如图三(巴特沃斯低通滤波器开始读入signal ,fs 截取音频信号为1s 做音频信号时域波形 对signal 做fft 做音频信号频谱 提高信号的采样频率 生成100KHz 噪声 将信号与噪声叠加对加噪后的信号做时域波形和频谱图根据原信号频谱图确定低通滤波器设计指标巴特沃斯低通滤波器设计 计算出滤波器系统函数分子分母系数 做滤波系统幅频特性曲线 对加噪后信号滤波 原信号及滤波后信号的时域及频谱比较结束图三巴特沃斯低通滤波器函数,,k = 1,Nk = 1,Nk = 1,NRSS=RS/FSk = 1,N开始NY结束Mod(N,2) = 1输出BZ,AZYk = length(B)+1,N+1NLength(B)< N+1参量输入函数)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、实验内容
1.对周期方波信号进行滤波。
(1)生成一个基频为10Hz的周期方波信号x(t)。
(2)设计一数字滤波器,滤去该周期信号中40Hz以外的频率成分,观察滤波前后信号时域波形及频谱。
(3)若该信号x(t)淹没在噪声中(随机噪声用randn((1,N)生成),试用filter函数滤去噪声。
滤波前的时域波形
ylabel('幅度')
HC1=filter(b,a,HC);
figure
plot(f,abs(HC1));
title('滤除噪声之后')
xlabel('频率f')
ylabel('幅度')
2.若原始落信号由5Hz、15Hz、30Hz三个幅度相等的正弦信号构成。分别设计一个FIR和IIR数字滤波器滤除5Hz和30Hz频率成分。
X=fft(x0);
figure
plot(abs(X));
title('原始信号频谱');
[N,Wn] = buttord([0.11,0.15],[0.05,0.4],1,40)
[b,a] = butter(N,Wn);
x1=filter(b,a,x);
figure
plot(x1);axis([0,200,-0.5,0.5])
[p,q] = butter(M,Rp,Wn,'stop');
figure
freqz(p,q,256,1000)
z=filter(p,q,y);
figure
stem(z)
figure
plot(f,abs(fftshift(fft(z,512))));
低通滤波器频谱
通过低通滤波器的心电图频谱
带阻滤波器频谱
x0=cos(2*pi*5*k*0.01)+cos(2*pi*15*k*0.01)+cos(2*pi*30*k*0.01);
x=cos(2*pi*5*t)+cos(2*pi*15*t)+cos(2*pi*30*t);
figure
plot(x);axis([0,1000,-3,3])
title('原始信号时域波形');
滤波后的频谱
N=512;
f=(-N/2)*Fs/N:Fs/N:(N/2-1)*Fs/N;
fy=fftshift(fft(y,N))/N;
figure
plot(f,abs(fy))
title('滤波后信号的频谱')
xlabel('频率')
ylabel('函数值fx')
figure
freqz(b,a);
提示:心电信号通常均分布在200Hz范围内。
在实验中,以x(n)作为输入序列,滤除其中的干扰成分。{x(n)}={-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0}
title('滤波后时域波形');
figure
freqz(b,a,256,1000)
m=freqz(b,a,256,1000);
title('iir带通滤波器');
%axis([0,500,-80,0]);
grid on
y=X.*m';
figureplot(abs(y));
title('滤波后频谱');
思考题
直接运行程序,结果输出滤波器幅频特性曲线图,把有噪声的心电图采集信号波形图和经过三级二阶滤波器滤波后的心电图信号波形图进行对比,总结滤波效果。
x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,...
0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,...
fx=fftshift(fft(x,N))/N;
figure
plot(f,abs(fx));
title('原心电图的频谱')
xlabel('频率')
ylabel('函数值fx')
[N,Wc]=buttord(150/500,250/500,3,60);
[b,a]=butter(N,Wc);
figure
Rs=0.01;
f=[0.05,0.11,0.15,0.4];
a=[0,1,0];
dev=Rs*ones(1,length(a));
[M,Wc,beta,ftype]=kaiserord(f,a,dev);
h=fir1(M,Wc,ftype,kaiser(M+1,beta));
omega=linspace(0,pi,256)
figure
stem(x)
X=fft(x);
figure
plot(abs(X))
FIR滤波器
k=0:255;
x=cos(2*pi*5*k*0.01)+cos(2*pi*15*k*0.01)+cos(2*pi*30*k*0.01);
X=fft(x);
plot(abs(X));title('原始信号频谱');
4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];
figuபைடு நூலகம்e
stem(x);
title('原心电图的时域序列')
Fs=1000; %采样频率
T=1/10; %采样长度
N=T*Fs; %采样点数
f=(-N/2)*Fs/N:Fs/N:((N/2-1))*Fs/N;
title('低通滤波器的频率特性')
滤除噪声
noise=randn(1,100);
HC=x1+noise;
f=(-N/2)*Fs/N:Fs/N:(N/2-1)*Fs/N;
HC=fftshift(fft(HC,N))/N;
figure
plot(f,abs(HC));
title('滤除噪声之前')
xlabel('频率f')
freqz(b,a,256,1000)
for i=1:3
y=filter(b,a,x);
end
figure
plot(f,abs(fftshift(fft(y,512))));
Wp =[45 55]/500; Ws =[45-5 55+5]/500;
Rp = 3; Rs = 40;
[M,Wn] = buttord(Wp,Ws,Rp,Rs)
mag=freqz(h,[1],omega);
figure
plot(omega/pi,20*log10(abs(mag)));title('fir带通滤波器');
Y=X.*mag;
figure
plot(abs(Y));title('滤波后频谱');
%IIR
k=0:255;
t=0:.001:2.55;
(1)绘制原始信号时域波形和幅度频谱。
(2)分别设计FIR和IIR数字滤波器,滤绘制其幅频特性。
(3)利用设计的滤波器对信号进行滤波,绘制输出信号的时域波形和幅度频谱。
时域波形
(1)k=0:255;
x=cos(2*pi*5*k*0.01)+cos(2*pi*15*k*0.01)+cos(2*pi*30*k*0.01);
二、实验原理
首先对待滤波的信号进行频谱分析,观察信号频率分布的规律,从而确定数字滤波器的类型(FIR滤波器、IIR滤波器、自适应滤波器、小波滤波器等)。
在加性噪声的情况下,若信号的频谱与噪声的频谱基本不重叠,可以采用频率选择滤波器(FIR滤波器、IIR滤波器)。
若信号的频谱与噪声的频谱重叠较多,可以采用自适应滤波、小波滤波等。
2.如何根据含有噪声信号的频谱特性选择滤波器的类型和设计指标?
答:根据采集到的信号获得频谱图,由时域频域的对应关系,确定需要滤除噪声的特性,然后从以下角度确定所需要的滤波器:(1)频响特性角度:IIR滤波器设计时不考虑相位特性,且通常相位都是非线性的,而FIR滤波器在满足幅频特性要求的同时,还能获得比较严格的线性相位特性,利用窗函数或者其他算法可以逼近更加任意的频响特性,因此性能优越,使用范围更广;(2)稳定性问题:IIR滤波器设计时,极点必须在单位圆之内;而FIR滤波器极点在单位圆内,因此始终稳定;(3)滤波器结构的影响:IIR滤波器一般采用递归结构,存在有输出对输入的反,而IIR滤波器阶次相对较低,运算次数少,存储单元少,FIR滤波器正好相反;(4)设计工作量:FIR无表可查,需要用到迭代法,计算量较大;而IIR滤波器相对简单,有现成的计公式和数据表格可用。
若为乘性噪声,可以根据同态滤波的原理对信号进行预处理,然后再按照加性噪声的情况处理。
在确定了数字滤波器类型后,还需要根据信号时域特性、频域特性、或时频特性确定滤波器的设计参数,设计出相应的数字滤波器。
最后,利用该数字滤波器对信号进行滤波,在时域和频域观察信号滤波的主观及客观效果。若主观及客观效果满足要求,说明分析过程和滤波方法正确有效,若不满足要求,需要重新分析和设计。
x1=square(2*pi*10*t1);
f=(-N/2)*Fs/N:Fs/N:((N/2-1))*Fs/N;
fx=fftshift(fft(x,N))/N;
相关文档
最新文档