第08章 电化学基础

合集下载

电化学基础知识汇总

电化学基础知识汇总

出平均值
=;
(2.5.32)
② 由电动势与温度的关系,,求导得;
③ 利用电池的奈斯特方程
(2.5.33)
(3)由标准电动势求标准吉布 斯自由能改变量和平衡常数
(2.5.34)
(2.5.35)
式中为所有参加反应的组分都处于标准
态时的电动势,z为电极反应中电子的计
量系数。
(4)可逆电池的热效应QR和 化学反应的热效应Qp
离子的许多热力学性质,例如偏摩尔热
容Cp,+和Cp,-都无法进行单独地实验测定。
为此,人为地规定水溶液中氢离子(称 水合氢离子)的热力学性质,然后以此 为基础可以得到其它水合离子的热力学 性质。
一、规定及其推论
水溶液中氢离子的标准态是指101325Pa下,m(H+) = 1 mol·kg-1且γ(H+)=1 的假想状态。按照规定,任意 温度下标准态的H+(aq)的摩尔生成吉布斯函数、摩 尔生成焓、摩尔熵和摩尔热容均等于0:
(2)物质量的基本单元
在电解质溶液一章中,物质量的基本单 元一般规定为,单位电荷对应的物质的 量。对于任意离子,记作1mol H+,;对 于对于任意电解质,记作;对于参与氧 化或还原反应的任意物质M,记作,式中 z是M得失的电子数。
物质量的基本单元不同,某些公式的书 写方式不同。例如,对CaCl2溶液,摩尔 电导率的加和公式为。若把CaCl2、Ca2+、 Cl-分别定为基本单元,则加和公式即成 为,显然改变了原公式的形式。
2.5 电化学
电化学的主要内容包括电解质溶液理论、可逆 电池热力学和电极过程动力学。电解质溶液理 论主要研究电解质溶液的导电性质。为了描述 电解质溶液的导电性质,引入了离子的电迁移 率、迁移数、电导率,摩尔电导率等重要概念。 为了描述电解质溶液的热力学性质,引入了电 解质溶液的平均活度、平均活度系数、离子强 度,德拜-休克尔极限公式等重要概念。

《电化学基础》课件

《电化学基础》课件

电化学反应速率
总结词
电化学反应速率描述了电化学反应的快 慢程度,是衡量反应速度的重要参数。
VS
详细描述
电化学反应速率与参与反应的物质的浓度 、温度、催化剂等条件有关。在一定条件 下,反应速率可由实验测定,对于一些特 定的电化学反应,也可以通过理论计算来 预测其反应速率。
反应速率常数
总结词
反应速率常数是描述电化学反应速率的重要参数,它反映了电化学反应的内在性质。
详细描述
反应速率常数与参与反应的物质的性质、温度等条件有关。在一定条件下,反应速率常数可以通过实验测定,也 可以通过理论计算得到。反应速率常数越大,表示该反应的速率越快。
反应机理
总结词
电化学反应机理是描述电化学反应过程中各步骤的详细过程和相互关系的模型。
详细描述
电化学反应机理可以帮助人们深入理解电化学反应的本质和过程,从而更好地控制和优化电化学反应 。不同的电化学反应可能有不同的反应机理,同一电化学反应也可能存在多种可能的反应机理。 Nhomakorabea05
电化学研究方法
实验研究方法
01
重要手段
02
实验研究是电化学研究的重要手段,通过实验可以观察和测量电化学 反应的过程和现象,探究反应机理和反应动力学。
03
实验研究方法包括控制电流、电位、电场等电学参数,以及观察和测 量电流、电位、电导等电化学参数。
04
实验研究需要精密的实验设备和仪器,以及严格的操作规范和实验条 件控制。
01
02
03
电池种类
介绍不同类型电池的制造 过程,如锂离子电池、铅 酸电池、镍镉电池等。
电池材料
阐述电池制造过程中涉及 的主要材料,如正负极材 料、电解液、隔膜等。

电化学基础知识点总结

电化学基础知识点总结

电化学基础知识点总结电化学是研究电与化学之间相互转化和相互作用的科学。

它是物理学和化学的交叉学科,在电池、电解和电沉积等领域有着广泛的应用。

以下是电化学的基础知识点总结:1. 电化学反应:- 氧化还原反应(简称氧化反应和还原反应),是电化学最基本的反应类型,涉及原子、离子或分子的电荷变化。

- 氧化是指某物质失去电子,还原是指某物质获得电子。

2. 电池原理:- 电池是将化学能转化为电能的装置,由两个电极(阳极和阴极)和电解质组成。

阳极是发生氧化反应的地方,阴极是发生还原反应的地方。

- 在电池中,化学反应产生的电荷通过外部电路流动,从而形成电流。

3. 电解:- 电解是用电流将化合物分解成离子或原子的过程。

在电解槽中,正极是阴离子的聚集地,负极是阳离子的聚集地,而正负极之间的电解液是导电介质。

- 在电解过程中,正负电极上的反应是有差别的,称之为阳极反应和阴极反应。

4. 电解质:- 电解质是能够在溶液中或熔融态中导电的物质。

电解质可以是离子化合物,如盐和酸,也可以是离子溶剂如水。

- 强电解质能够完全离解成离子,而弱电解质只有一小部分离解成离子。

5. 电动势:- 电动势是电池或电化学系统产生电流的驱动力,通常用电压表示。

- 在标准状态下,标准电动势是指正极与负极之间的电压差。

它与化学反应的自由能变化有关,可以通过标准电动势表进行查阅。

6. 极化现象:- 极化是指在电解过程中阻碍电流通过的现象。

- 有两种类型的极化:浓差极化和活化极化。

浓差极化发生在反应物浓度在电极上发生变化的时候,活化极化发生在电化学反应速率受到限制的时候。

7. 电信号:- 在电化学中,电伏是电势大小的基本单位。

它表示单位电荷通过电路所产生的能量的大小。

- 电流是电荷通过导体的速率,单位是安培。

- 除了电伏和电流之外,还有许多其他电信号,例如电阻、电导率和电容。

8. 电化学测量方法:- 常用的电化学测量方法有电压法、电位法、电流法和电导法。

电化学基础知识点总结

电化学基础知识点总结

电化学基础知识点总结电化学是研究电子与离子在电解质溶液中的相互转移和相互作用的科学。

它涉及电荷的移动和化学反应的同时发生。

在电化学中,我们主要关注两个方面的过程:电化学反应和电化学细胞。

1. 电化学反应电化学反应是指在外加电势的作用下,电子和离子之间发生的氧化还原反应。

电化学反应包括两个基本过程:氧化和还原。

氧化是指物质失去电子或氢离子,而还原则是指物质获得电子或氢离子。

在电化学反应中,常常涉及到电极反应和电解质的离子浓度变化。

2. 电化学细胞电化学细胞是一种将化学能转化为电能的装置。

它包括两个半电池:一个作为阳极,用于氧化反应;另一个作为阴极,用于还原反应。

两个半电池通过电解质溶液或电解质桥相连,并且在外部连接一个电路,使电子能够在阳极和阴极之间流动。

这个电路就是外部电路,而电解质溶液或电解质桥则是内部电路。

电化学细胞产生的电势差可以用来驱动电子在电路中进行功的转化。

3. 电化学基础概念在电化学中,有一些基本概念需要了解。

(1)电极:电极是电化学反应发生的场所。

它包括两种类型:阳极和阴极。

阳极是发生氧化反应的地方,电子从阳极流出;而阴极是发生还原反应的地方,电子流入阴极。

(2)电位:电位是指在标准状态下,电解质溶液中某个电极的电势相对于标准氢电极的差异。

标准氢电极的电势被定义为0V,其他电极相对于标准氢电极具有正负的电势。

(3)电解质:电解质是能够在溶液中分解出离子的物质。

电解质可以分为强电解质和弱电解质,具体取决于它们在溶液中的离解程度。

(4)电导率:电导率是指电解质溶液中离子传导电流的能力。

电导率高的溶液具有更好的导电性能。

4. 电化学技术和应用电化学不仅是一门基础科学,还在许多领域中有广泛的应用。

(1)电解:电解是指利用电流将化合物分解为离子的过程。

电解在电解制备金属、电镀、电解解析等方面有着重要的应用。

(3)蓄电池:蓄电池是一种将化学能转化为电能的设备。

它具有可充电性,常用于储存和提供电能。

电化学基础-PPT课件

电化学基础-PPT课件
35
3. 氢镍电池是近年开发出来的可充电电池,
它可以取代会产生镉污染的镉镍电池。氢镍
电池的总反应式是:
1/2H2+NiO(OH)
Ni(OH)2
CD
据此反应判断,下列叙述中正确的是( )
A. 电池放电时,负极周围溶液的pH不
断增大
B. 电池放电时,镍元素被氧化
C. 电池充电时,氢元素被还原
D. 电池放电时,H2是负极
Ag
电解质溶液Y是__A_g_N__O_3_溶__液_;
(2)银电极为电池的___正_____极,CuSO4溶液 Y
发生的电极反应为__A_g_+__+__e_-__=_A__g___
X电极上发生的电极反应为
__C_u___-2__e_-___=__C__u_2_+__________;
(3)外电路中的电子是从__负__(_C_u_电) 极流向
14
6. 双液原电池的工作原理(有关概念)
(1)盐桥中装有饱和的KCl溶液和琼脂制成的 胶冻,胶冻的作用是防止管中溶液流出
(2)盐桥的作用是什么?
可提供定向移动的阴阳离子,
使由它连接的两溶液保持电
中性,盐桥保障了电子通过
外电路从锌到铜的不断转移
,使锌的溶解和铜的析出过 程得以继续进行。
盐桥的作用: (1)形成闭合回路。
?思考
1、银器皿日久表面逐渐变黑色,这是由于生成硫
化银,有人设计用原电池原理加以除去,其处理方 法为:将一定浓度的食盐溶液放入一铝制容器中, 再将变黑的银器浸入溶液中,放置一段时间后,黑 色会褪去而银不会损失。 试回答:在此原电池反应中,负极发生的反应
为 Al -3e- = Al3+ ; 正极发生的反应为 Ag2S+2e- = 2Ag;+S2-

高中电化学基础教案

高中电化学基础教案

高中电化学基础教案
教学目标:
1. 了解电化学的基本概念和原理;
2. 掌握电化学电池的构成和工作原理;
3. 能够解释电解质溶液中的电解现象;
4. 掌握通过电化学方法制备金属的原理和操作方法。

教学重点:
1. 电化学基本概念;
2. 电化学电池的构成和工作原理;
3. 电解质溶液中的电解现象;
4. 通过电化学方法制备金属的原理和操作方法。

教学准备:
1. 教师准备相关的教学资料和教学实验器材;
2. 学生预习相关知识,做好课前准备;
教学过程:
1. 导入:简要介绍电化学的基本概念和重要性,引出本节课的学习内容;
2. 讲解电化学基本概念:电化学的定义、电化学反应、电化学电池的构成等;
3. 讲解电化学电池的工作原理:单质电池、电解质电池的原理和实际应用;
4. 实验操作:实验中演示电解质溶液中的电解现象,让学生亲自操作,观察实验现象;
5. 引导讨论:通过实验现象引导学生讨论电解质溶液中的电解过程;
6. 讲解金属制备原理:介绍通过电化学方法制备金属的原理和操作方法;
7. 总结:对本节课的学习内容进行总结,并布置相关作业。

教学扩展:
1. 可以组织学生进行小组讨论,进一步深化对电化学基础知识的理解;
2. 可以让学生自主设计电化学实验,培养其实验设计和分析能力;
3. 可以邀请专业人士或学者进行讲座,拓展学生对电化学领域的认识。

教学反思:
1. 强化实验教学,让学生通过实践感受电化学知识的魅力;
2. 多种教学手段结合,提高教学效果;
3. 关注学生的学习过程,及时调整教学方法,使学生能够轻松理解和掌握知识。

《电化学基础》课件


学习储能装置和电池技术的原 理,如锂离子电池和太阳能电 池。
燃料电池和电化学传感器
燃料电池
探索燃料电池的原理与应用,如氢燃料电池和燃料电池汽车。
电化学传感器
了解电化学传感器的工作原理,以及其在环境监测和医学诊断中的应用。
《电化学基础》PPT课件
本PPT课件将介绍电化学的基础理论、动力学、电池与电解池、电化学表征技 术以及电化学的应用领域,带你深入了解这个令人着迷的领域。
电化学基础理论
1 电化学基础概念
2 电化学反应的基本
学习电化学的基础概念,
特征和实验表征方 法
包括电解质、离子和电
探索电化学反应的特征
子传输。
以及实验方法,包括溶
了解反应速率和速率常数的 定义及其在动力学研究中的 重要性。
电池和电解池
1
电池和电解池的基本概念
探索电池与电解池的原理和应用,包
奥姆定律和纳尔斯特方程
2
括电子转移和离子传输过程。
学习奥姆定律和纳尔斯特方程,揭示
电池和电解池中电流与电势之间的关
系。
3
活性质量、化学放电和电化学 效率
和计时电流法
深入了解线性扫描伏安法和循环伏安法的 原理和应用。
探索电位阶跃法和计时电流法在电化学研 究中的重要性。
电化学应用
电催化和电极催化反应
电化学合成和电化学分析 储能装置和电池技术
了解电催化和电极催化反应的 应用,如催化转化和废水处理。
探索电化学合成和电化学分析 在化学工业和实验室中的应用。
电解和电沉积过程
4
响,以及化学放电和电化学效率的计
算。
了解电解和电沉积在电化学中的应用
以及相关实验和工业过程。

电化学基础知识点总结

电化学基础知识点总结电化学是研究电流在电解液中的运动规律以及电化学反应的学科。

以下是电化学的基础知识点总结:1.电池:电池是电化学能转化为电能的装置。

常见的电池包括原电池和干电池。

原电池是由两种不同金属和电解质构成的,可以产生电流。

干电池是一种闭合系统,可以将化学能转化为电能,并提供给外部电路使用。

2.电解质:电解质是指在溶液中能够形成离子的化合物。

电解质可以是无机物如盐和酸,也可以是有机物如醇和酸。

电解质的溶解度和电导率与温度有关,通常在较高温度下更容易溶解和导电。

3.电极:电极是电化学反应发生的地方,分为阳极和阴极。

阳极是电子流从电池内部进入电解质的地方,阴极则是电流离开电解质进入电池的地方。

电极的选择取决于具体电化学反应的需求。

4.电势:电势是电极与标准氢电极之间的电压差,用来表示电化学系统的电力水平。

标准氢电极被定义为电势为0。

电势的单位是伏特(V)。

5.动力学:动力学研究电化学过程的速率和机理。

一个重要的概念是过电势,它是电极电位与平衡电位之间的差异。

过电势与反应速率成正比。

6.法拉第定律:法拉第定律描述了电解过程中的电荷传递与物质转化之间的关系。

根据法拉第定律,电流的大小与产生的产物的数量之间存在一定的关系。

7.电解:电解是指通过外加电压将离子溶解在电解液中进行电荷转移的过程。

阳极上的离子发生氧化反应,阴极上的离子发生还原反应。

8.电容:电容是指储存电荷的能力。

它是一个由两个导体之间的电介质隔开的装置。

电容的单位是法拉(F)。

9.电化学平衡:当电化学反应的正向和反向反应速率相等时,电化学平衡就达到了。

在电化学平衡时,没有电流通过电解池。

10.腐蚀:腐蚀是一种电化学过程,金属在与环境中的反应中失去电子。

腐蚀可以通过涂层和阴极保护等方法进行控制。

11.电解池:电解池是研究电化学过程的实验装置。

它由两个电极和一个电解液组成,电流在其中流动。

12.远离平衡条件:当电解电池的电流大于理论上的最大电流时,系统就远离了平衡条件。

2024版第08章电分析化学导论

生物医学应用
生物组织和体液中的电解质成分与生理状态密切相关。通过 测量生物样本的电导率,可获取有关生物体内部环境的信息。 例如,在临床上可利用血液电导率的测量来辅助诊断某些疾 病。
极谱分析法与伏安分
05
析法
极谱分析法基本原理及操作
基本原理
极谱分析是一种基于电解过程中电极电位与电流关系的 分析方法。在极谱分析中,待测物质在滴汞电极上发生 还原反应,产生极谱电流,通过测量电流与电位的关系, 可以确定待测物质的浓度。
伏安分析法应用举例
伏安分析法可用于测定无机物、有机物和生物样品等物 质的含量。例如,在药物分析中,可以利用伏安分析法 测定药物中的有效成分含量;在生物分析中,可以利用 伏安分析法测定生物样品中的代谢物含量。
现代电分析化学技术
06
进展
生物传感器在电分析中应用
01
生物传感器基本原理
利用生物活性物质(如酶、抗体、细胞等)与待测物质之间的特异性相
互作用,将生物化学反应转化为可测量的电信号。
02
生物传感器在电分析中的应用实例
如葡萄糖生物传感器用于糖尿病患者ቤተ መጻሕፍቲ ባይዱ血糖监测,乳酸生物传感器用于
运动医学中的乳酸测定等。
03
生物传感器的发展趋势
提高选择性、灵敏度和稳定性,实现多组分同时测定和在线实时监测。
微流控芯片技术在电分析中应用
微流控芯片技术基本原理
要点二
库仑分析法应用举例
环境水样中重金属离子的测定、食品中添加剂的测定等。
电导分析法
04
电导率测量原理及方法
电导率定义
01
电导率是物质导电能力的量度,其大小与物质中载流子的浓度
和迁移率有关。
测量原理

高中电化学教案

高中电化学教案
主题: 电化学基础
一、教学目标:
1. 了解电化学的基本概念和原理。

2. 掌握电化学相关的基本术语和符号。

3. 理解电化学反应的基本过程和机理。

4. 掌握如何进行电化学实验。

二、教学内容:
1. 电化学的概念和意义
2. 电化学的基本原理
3. 电化学反应的种类和特点
4. 电解和电沉积反应
5. 电化学实验方法和技巧
三、教学过程:
1. 导入:介绍电化学的概念和意义,引出学生对电化学的兴趣。

2. 理论讲解:讲解电化学的基本原理和基本术语,让学生了解电化学的基本知识。

3. 实验演示:进行电化学实验演示,让学生观察实验过程并对电化学反应有更直观的理解。

4. 讨论分享:引导学生进行小组讨论,分享对电化学的理解和感悟。

5. 练习巩固:布置一些练习题,让学生进行巩固和检验学习成果。

6. 总结提高:对本节课的重点内容进行总结,鼓励学生在课后进行进一步学习。

四、教学资源:
1. 课件和电子书籍
2. 实验器材和化学药品
3. 练习题和教学辅助材料
五、教学评估:
1. 学生参与度和课堂表现
2. 练习题和作业的完成情况
3. 实验报告的质量和准确性
六、教学反思:
1. 总结本节课的教学效果和不足之处,为下节课的教学改进提供参考。

2. 关注学生的学习情况和反馈意见,及时调整教学方法和内容。

注: 教案仅供参考,具体教学内容和方法可根据教学实际情况进行调整和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴ E (H+/H2)= -0.28V
2HOAc+2e ⇌2OAc- + H2(g) EӨ =-0.28V
8.3.3 沉淀对电极电势的影响
例 298K时,在Fe3+、Fe2+的混合溶液中加入NaOH时有Fe(OH)3、Fe(OH)2
沉淀生成,假设无其它反应发生,当沉淀反应达到平衡时,保持C(OH-) =1. 0mol· -1 ,求E(Fe3+/Fe2+)为多少? L
荷过剩,CuSO4溶液中则由于Cu2+的沉积而负电荷过剩。
从而阻止电子从锌极流向铜极,电池反应便会停止,直至 无电流产生。 3:当有盐桥存在时,随着反应的进行,盐桥中的负离子进 入ZnSO4溶液中,正离子进入CuSO4溶液中,以保持溶液的
电中性,使电流连续产生。
原电池的构造是这样的,如何表示原电池呢?

=1.60V 说明:含氧酸盐在酸性介质中氧化性增强。
8.3.3 酸度对电极电势的影响
例 已知电极反应2H++2e =H2(g),EӨ =0.0V ,向体系中加入NaOAc,使得 C(HOAc)=C(NaOAc)=1. 0mol· -1 ,P(H2)=PӨ,求E(H+/H2)。 L
Ka = 1.8*10-5
确定了标准之后,如何确定其它电极电势呢?
8.3.2 标准电极电势-电极电势的定义
将待测电极与标准氢电极组成一个原电池,测得该原
电池的电动势(E),就可以知道待测电极相对于标准氢
电极的电极电势。
E(电池)= E(待测)- E(标准氢电极)
测定Cu电极的EӨ,组成如下电池:
(-)Pt|H2(g)∣H+(CӨ)‖Cu2+(CӨ)∣Cu(+) EӨ = EӨ(Cu2+/Cu) - EӨ(H+/H2) 0 ∴ EӨ(Cu2+/Cu)=0.340V
标准氢电极符号:
Pt,H2(100.0kPa,298K)|H+(1mol·L-1) 标准氢电极电极电势:θ (H+/H2)=0.0000V
标准氢电极电极反应:2H++2e- = H2 原电池的电动势(E)就是两极之间的电势差,即正极的电极电
势(E+)减去负极的电极电势(E-)。
8.3.1 标准氢电极和甘汞电极-甘汞电极
(-)Zn︱ZnSO4(c1)‖CuSO4 (c2)︱Cu(+)
8.2.1 原电池-2 原电池的符号
练习:写出下列氧化还原反应的电池符号。
2Fe2+(1.0mol·L-1)+Cl2(100kPa)→2Fe3+(0.10mol·L-1)+2Cl-(2.0mol·L-1) (-)Pt∣Fe3+ (0.1mol·L-1) ,Fe2+‖Cl- (2.0mol·L-1 )∣Cl2|Pt(+) Hg2Cl2(s)+Sn2+(1.0mol·L-1)→Sn4+(1.0mol·L-1)+2Hg(l)+2Cl-(1.0mol·L-1) (-)Pt∣Sn2+ ,Sn4+‖Cl- ∣Hg2Cl2 (s) | Hg(l) | Pt(+)
n:电池反应中转移的电子数
若反应在标准态下进行:
△GӨ = -nFEӨ
电极电势的产生-双电层理论 (了解)
电极电势的产生:
对金属与溶液间的作用进行了大量的研究,总结出扩散双
电层理论。一方面,金属表面上的金属离子受极性很大的 水分子吸引,离开金属而溶解于溶液中-溶液正电,金属负 电。另一方面,溶液中的金属离子可沉积到金属的表面上溶液正电,金属负电。
8.2.1 原电池-3 电极与电极反应
在电池中,我们把电子流出的一极叫做负极,发生氧 化反应。把电子流入的一极叫做正极,发生还原反应。
在上边的例子中,锌的一极叫做负极,铜的一极叫做
正极。电极上必须有两类物质,一类是还原物质,另 一类是氧化物质。这两种物质关系如下: 氧化型 + ne = 还原型
8.2.1 原电池-3 电极与电极反应
8.2.1 原电池-3 电极与电极反应
一个电极中,氧化态物质与其对还原态物质构成一个 氧化还原对,简称电对(电极)。电对通常记为:氧
化态/还原态。
如:Zn2+ / Zn 、Cu2+ /Cu
不只是金属与其离子可以组成电对(电极),同种金属 的不同价态的离子,非金属单质及其离子,金属及其难
溶盐都可以组成电对(电极)。
电极反应: 正极反应: Cu2++2e=Cu 负极反应: Zn-2e=Zn2+
电池反应: Cu2++Zn=Cu+Zn2+
8.2.1 原电池-1 原电池的构造
盐桥的作用?
1:盐桥是一个装满饱和KCl溶液(用琼脂固定)的U形管。 其作用是联通电路并使溶液电性中和。 2:随着电池反应的进行,ZnSO4溶液中会因Zn2+的溶解电
这样就形成了双电层。
例:将一金属Zn片插入水中水分子
与晶格中金属锌离子相互作用。部
分锌离子离开金属相进入水中。 结果:金属表面带上负电荷,溶液 相因Zn2+溶入而带正电荷。进入水 相中的Zn2+受金属表面负电荷的电
性吸引而分布在金属表面附近形成
“双电层”。
如何定量的衡量一个电极?
8.3
电极电势
一个电极的电动势如何确定?- H,S,G有一个标准值作 我们也可以借助这种思路来确定电极电势。 电极电动势的规定中,如何确定标准呢? 标准氢电极
体参加电极反应,则用相对分压(P/PӨ)表示,电极
反应中的固体、纯液体不列入方程式。 (2) 在电极反应中,若除了氧化型、还原型物质外, 还有其它物质参加电极反应,则其浓度也要列入
Nernst方程式。
8.3.3 酸度对电极电势的影响
例 已知电极反应: MnO4-+8H++5e=Mn2++4H2O EӨ(MnO4- / Mn2+)=1.51V,
计算当C(MnO4-)=C(Mn2+)=1.0mol· -1 C(H+)=10mol· -1 E (MnO4- / Mn2+)=? L L
0.0592 [C ( MnO4 ) / C ][C ( H ) / C ]8 解:E (MnO4- / Mn2+) =E Ө (MnO4- / Mn2+) + lg 5 [C ( Mn2 ) / C ] 0.0592 =1.51V+ lg 108 5
8.2.1 原电池-4 电极的类型
电 极 类 型
金属电极 I 气体电极 难溶盐电极 II 难溶氧化物电极 氧化还原电极




Zn2+/Zn Cl2/ClAgCl/Ag HgO/Hg Fe3+/Fe2+
Zn∣Zn2+ Cl-,Cl2∣Pt Ag∣AgCl, ClHg∣HgO∣OHFe3+,Fe2+∣Pt
=0.340V
测得的
以前学过标准焓,标准熵,标准吉布斯自由能有没有
标准电极电势呢
8.3.2 标准电极电势-标准电极电势
当待测电极中,参加反应的各物质均处于各自的标准状
态的时候(待测电100.0kPa,温度为298K),待测 电极的电极电势称为标准电极电势。符号记为Eθ (氧化 态/还原态),右上角“θ ”表示标准值。
8.2.1 原电池-2 原电池的符号
书写注意事项:
A:书写次序:负极写左边,正极写右边。 B:∣代表两相界面;‖表示盐桥。 C:若电极反应中无金属导体,需用惰性电极Pt或C;若有气体、 液体或固体参加电极反应,如Cl2(g), H2(g), I2(s), 应写在惰 性电极一侧,以 | 相隔。
D:写明电池物质及其状态,聚集状态(s、l、g)、组成(浓 度)、温度、压强等。


当T=298.15K,F=96485J·V-1·mol-1,R=8.314J·mol-1·K-1时
RT 2.303 0.0592 F
0.0592 [氧化型] EE lg z [还原型]


弄清楚E和Eθ
8.3.3 电极电势的Nernst方程-电极能斯特方程
说明: (1) Nernst方程中的浓度为相对浓度(C/CӨ),若有气
III
8.2.2 原电池的最大电功和吉布斯自由能
原电池的电动势:在原电池中,用电位计所测得的正极
和负极之间的电势差,叫做原电池的电动势。符号:E;
单位:V。
标准电动势(EӨ):在标准态下测定的原电池的电动势。
原电池的△G与E之间的关系: △G = -nFE
F:Faraday常数,96485C·mol-1
第8章 电化学基础
8.1 氧化数与氧化还原反应(自学) 8.2 原电池与电动势
8.3 电极电势
8.4 电极电势的应用
8.5 电解与金属腐蚀防护(自学)
8.2 原电池与电池电动势
8.2.1 原电池-1 原电池的构造
电子流出的极 负极
观察到:检 流计的指针 发生偏转 电子从Zn极 流向Cu极。
电子流入的极 正极
已知KspӨ (Fe(OH)3)=2.79×10-39 , KspӨ (Fe(OH)2)=4.87×10-17 EӨ(Fe3+/Fe2+)=0.771V
标准电极电势如何测量?
8.3.2 标准电极电势-标准电极电势 1:某电极的标准电极电势Eθ 的数值,就等于其 标准电极与标准氢电极组成的原电池的标准电
动势Eθ 的数值。
2:在与标准氢电极组成的原电池中,若此电极
为正极,Eθ 的符号为正;若此电极为负极,Eθ
相关文档
最新文档