20162017学年人教版高中数学必修一222《对数函数及其性质》学情分析
高中数学_对数函数的性质与图像教学设计学情分析教材分析课后反思

对数函数的性质和图像一、教材内容解析1,“对数函数的图像与性质”是普通高中课程标准实验教科书必修1(北师大版)第三章“指数函数和对数函数”一章中的重点内容。
此前,学生已对函数、定义域、值域等相关概念及函数的单调性、奇偶性、对称性等函数性质有了很深刻的了解和掌握。
同时本节课又是在刚刚学习了对数函数的概念和对数函数与指数函数互为反函数的关系后,对对数函数的进一步深入学习。
也是让学生进一步体会研究函数的方法,即“概念---图像---性质--应用”的过程。
同时,为后面函数的学习做好铺垫。
2,“对数函数”是基本初等函数之一,对数函数的知识在其他章节和其他学科中有着广泛应用。
同时,对数函数作为常用的数学模型在解决社会生活问题(统计、规划)中也有着广泛的应用。
本节课的学习为学生进一步学习、参加生产和实际生活提供了必要的数学基本技能。
同时,本节课对对数函数的性质研究不仅反映出对数函数与指数函数的关系,同时也蕴含了函数、数形结合等数学思想,也是高考的重点内容之一。
二、学生学情分析1,心理生理上:高一年级的学生已入校两个月,现处于相对稳定的时期,所以在学习情绪和学习态度上也相对稳定。
加之,新入高一不久,学生渴望知识和学习的情绪也都空前高涨,主动积极,不畏艰难。
2,知识上:从初中到现在学生已学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,已对函数的相关概念、研究函数的方法有了一定的了解和掌握,加之对数函数与指数函数的关系学生已明白,可以通过类比的方法研究学习,同时对数函数的应用不管在数学上、生活中都应用广泛。
所以,自然就激发了学生学习本节课的热情与兴趣。
三、教学目标设置a) 教学目标1,知识与技能:掌握对数函数的图像与性质,并且在掌握性质的基础上能进行必要的应用。
同时培养学生数形结合的思想及观察、分析、归纳的思维过程。
2,过程与方法:通过类比的方法画出对数函数的图像,研究对数函数的性质;同时对数函数和指数函数互为反函数,利用反函数的性质(图像关于直线y=x 对称)验证对数函数的性质,让学生体会类比、数形结合、转化等数学思想方法。
数学:2.2.2《对数函数及其性质》教案(新人教版A必修1)

2.2.2对数函数及其性质一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
2016-2017学年新人教A版必修1高中数学 对数函数及其性质教学设计及说明(精品)

一、
教材分析
<一>地位与作用 对数函数是高中数学继指数函数之后的重要初等函数之一,无论从知识角度还是从 思想方法角度对数函数都与指数函数有类似之处。与指数函数相比,对数函数所涉及的 知识更丰富、方法更灵活,能力要求也更高。而且学习对数函数是对指数函数知识和方 法的巩固、深化和提高,也为解决函数综合问题及其在实际中的应用奠定良好的基础。 <二>教学目标 【知识目标】1、理解对数函数的定义,掌握对数函数的图象和性质; 2、会求和对数函数有关的函数的定义域; 3、会利用对数函数单调性比较两个对数的大小。 【能力目标】1、通过对底的讨论,使学生对分类讨论的思想有进一步的认识,体会由 特殊到一般的数学思想; 2、通过例题、习题的解决,使学生领悟化归思想在解决问题中的作 用。 【情感目标】学生在参与中感受数学,探索数学,提高学习数学的兴趣,增强学好数学 的自信心。 <三>教学重难点 教学重点:理解对数函数的定义,掌握对数函数图像和性质。 教学难点:底数a对函数值变化的影响及对数函数性质的应用。 二、 三、 教学方法:探究与小组合作教学法。 教学用具:多媒体,三角板,坐标纸。
四、教学过程设计 在对教材及学生全面深入了解的基础上,我设计了以下五个教学环节:
教 学 问题与情境 1 师生互动 设计意图
环 节 让学生很自然地从指
回顾复习: 1、指数与对数的相互转化
数式过度到对数式。 师生共同回顾旧知识。 清楚了函数研究的 过程,为对数函数 的研究做作好铺垫 。
ab=N logaN=b;
2、回顾从初中到高中研究函数的过程。
环 活动一:
师:给出引例,提出问
节 引例1、某种细胞分裂时,由1个分裂成2 题1。 一 : 创 设 个,2个分裂成4个,…….1个这 样的细胞分裂多少次后,得到细 胞个数x?你能否用细胞个数x把 分裂次数y表示出来? 通过在指数函 数一节曾经做过的 一道习题改编入手 ,以旧代新逐层递 进,不仅可以检测 学生指数式和对数 式互化的学习情况 ,而且能激发学生 的好奇心,开拓学 生的知识面,自然 引出对数函数的概 念,从而引入课题 师:引导学生从函数的 实际出发,解释两个变 量之间的关系,把解析
高中数学_对数函数及其性质教学设计学情分析教材分析课后反思

1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ).A. (2,)+∞B. (,2)-∞C. [)2,+∞D. [)3,+∞ 3. 不等式的41log 2x >解集是( ).A. (2,)+∞B. (0,2)C. 1(,)2+∞D. 1(0,)24. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 5. 函数(-1)log (3-)x y x =的定义域是 .对数函数图像及性质--学情分析1、知识能力方面:理解并掌握对数函数的图像及其性质,特别是性质的应用问题。
学生已经学习过指数函数的图像与性质,有了一定的学习基础,但是学生的基础薄弱,对初等函数的掌握还不是很深入很全面。
2、思维发展方面:学生抽象逻辑思维还不成熟,在从实例深入到理论的过程中,需要老师的引导和帮助。
他们基本上可以掌握辩证思维(一般到特殊的演绎过程、特殊到一般的归纳过程)。
3、情感发展方面:独立性自主性是学生情感发展的主要特征。
学生的意志行为越来越多,他们追求真理正义善良和美好的东西。
高层自我调控在行为控制中占主导地位,一切外控因素只有内化为自我控制时才能发挥其作用。
对数函数图像及性质-----效果分析课堂教学效果较好,各种教学手段的运用和教学方法的选择使课堂教学效果达到预期的计划。
学生通过本节课的学习,不仅掌握对数函数的定义、图像与性质,为后面学习其他函数的图像性质及其在实际问题中的应用打好基础。
而且有助于学生观察分析能力与抽象概括能力的培养,有助于学生运算技能的训练和提高,对学生进一步理解解析法和数形结合思想有很好的作用,也进一步巩固了初等函数的学习流程与研究方法。
从学生回答问题、练习等可看出新知识掌握的比较不错。
教学任务照顾到少数尖子学生,也保障了大多数种下学生的学习效果。
高中数学_对数函数及其性质教学设计学情分析教材分析课后反思

对数函数及其性质教学设计一、教学目标1、知识与技能(1)理解对数函数的概念。
(2)掌握对数函数的图像和性质,并在探索过程中学会运用数形结合的方法研究问题。
2、过程与方法通过学习,使学生掌握对数函数及其性质,会利用函数性质进行同底对数和不同底对数的大小比较,加深对对数函数性质的理解,深化学生对对数函数图像变化规律的理解,通过对数函数的学习,渗透数形结合、分类讨论等数学思想,培养学生严谨的思维和科学正确的计算能力。
3.情感态度与价值观通过教学培养学生数学交流能力和与人合作能力,培养学生用联系的观点分析问题,解决问题,培养学生勇于提问善于探索的思维品质。
二、教学重难点1、重点:对数函数性质理解与掌握2、难点:对数函数的综合应用三、教学流程:1、背景材料 2、引出课题 3、函数图像4、函数性质5、简单应用6、归纳小结四、教学过程1、熟悉背景,引入课题让学生看材料1,2,3(幻灯片)引出对数函数定义。
引导学生讨论对数函数的结构特征,使学生加深对形式定义的理解。
知识点后辅以求解定义域练习题,巩固对函数定义的理解。
2、研究x y a log =和x y a1log =图像特征在同一个坐标系下分别画出x y 2log =和x y 21log =通过观察图像研究这两个函数性质,引导学生利用数形结合思想以及联系指数函数图像性质总结出一般情况下底数互为倒数的对数函数性质,注意理解记忆。
3、函数简单应用3.1利用对数函数性质比较大小通过具体实例引导学生总结比较对数大小的方法 (一)同底数比较大小1.当底数确定时,则可由函数的单调性直接进行判断;2.当底数不确定时,应对底数进行分类讨论。
(二)同真数比较大小 1.通过换底公式; 2.利用函数图象。
(三)底数、真数都不相同:利用“介值法”,借助1、0等中间量进行比较。
3.2解对数不等式利用单调性求解对数不等式。
在求解过程中让学生树立定义域优先原则,以及掌握分类讨论思想。
人教版高中数学必修一《对数函数及其性质》说课稿

对数函数及其性质》说课稿内容选自:人教版《普通高中课程标准实验教科书•数学(A版)》必修1“2.2.2指数函数及其性质”第一课时从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计六个方面对本节课进行说明。
一、背景分析:1、学习任务分析本节课主要学习对数函数的概念、图像和性质,求对数函数的定义域。
对数函数是学生学习高中数学新教材引进的第二个基本初等函数,是学生学习指数函数和对数的运算后学习,本节课通过实际问题,引入对数函数,学生利用学习指数的方法来探索和研究对数函数的图像,性质,体会数形结合概括归纳的数学思想和方法,发展学生的数学思维能力。
对数函数是本章一类重要函数,蕴含着很重要的数学思想。
根据课程标准我将本节课的重点确定为对数函数的概念、图像性质。
2、学情分析学生的基础较好,大多数学生的动手能力较好,因此可以通过描点,让学生动手画图像,观察图像的特征,进一步理解性质,因此我将本课的难点确定为:用数形结合的方法从具体到一般地探索、概括对数函数的性质。
二、教学目标设计:《课程标准》指出本节课的学习目标是:通过具体实例理解对数函数的概念,能借助计算机或计算器画出具体对数函数的图像,探索并理解对数函数的性质。
所以本节课的教学目标为:1、知识目标:理解指数函数的定义,掌握对数函数的图性质及其简单应用。
2、能力目标:通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。
3、情感目标:通过学习,使学生学会认识事物的特殊与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。
三、课堂结构设计:本课是概念、图像及性质的新授课,设计了以学生活动为主体,培养学生能力为中心提高课堂教学质量为目标的课堂结构。
四、教学媒体设计:根据本节课的教学任务,和学生学习的需要,教学媒体设计如下:教师利用多媒体准备的素材①对数函数的图像②例题和习题③与本节课相关的结论设计意图:利用电脑,演示作图过程及图像的变化的动态过程,例题和习题,从而使学生直接的接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。
高中数学_对数函数图像及性质教学设计学情分析教材分析课后反思

对数函数及其性质一.教学目标1.知识技能:(1)理解对数函数的概念.(2)掌握对数函数的图像及性质.2.过程与方法:(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.二.教学重点、难点1、重点:(1)对数函数的定义、图象和性质;2、难点:底数a 对图象的影响.三. 教学方法在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式...”教学方法。
它很好地体现了 “学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
四、教学过程一、 创设情境,导入新课情景1.如2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用t=log573021P 估算出土文物或古遗址的年代.根据问题的实际意义可知,对于每一个碳14含量P ,通过对应关系t=log573021P ,都有唯一确定的年代t 与它对应,所以t 是P 的函数.情景 2.在研究指数函数时,曾经讨论过细胞分裂问题(1个细胞一次分裂为2个细胞),某种细胞分裂时,得到的细胞个数y 是分裂次数x的函数,这个函数可以用指数函数y=2x 表示.现在,我们来研究相反的问题,要想得到1万个,10万个,…细胞,1个细胞要经过多少次分裂?即x=_______? 思考2:x 是关于y 的函数吗?为什么?思考3:根据上面两个函数的形式,请用一般解析式表示出来。
二、形成概念、获得新知定义:一般地,我们把函数 log a y x =≠(a>0,且a 1)叫做对数函数。
其中x 是自变量,定义域为()0,+∞思考4:在函数的定义中,为什么要限定a>0,且a ≠1?思考5:为什么对数函数y=log a x(a>0,且a ≠1)的定义域是(0,+∞)?思考6:对数函数定义是“形式”定义,那么解析式满足什么特征呢?设计意图:和学生一起分析处理问题,体会函数关系,并体现学生的主体地位。
高中数学_ 对数函数及其性质教学设计学情分析教材分析课后反思

《对数函数及其性质》教学设计一、教材分析本节课选自《普通高中课程标准实验教科书数学(必修一)》(人教A版),教学内容为“2.2.2 对数函数及其性质”(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
这是必修一第二章“基本初等函数(Ⅰ)”中,继研究“指数函数及其性质”后所研究的第二个函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
教学中,一方面利用研究指数函数所获得的经验,按照研究函数的一般方法来研究对数函数,进一步体验研究函数的一般方法;另一方面,加强与指数函数的联系,在知识与知识间的联系中学习新知识,帮助学生形成良好的知识结构,发展理性思维,提高认识能力.二、教学目标结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下的教学目标:1、知识目标:理解对数函数的概念,掌握对数函数的性质,了解对数函数在生产实际中的简单应用。
2、能力目标:通过学习,使学生掌握对数函数的单调性及其判定,会进行同底数的对数和不同底数的对数的大小比较,加深对对数函数的性质的理解,深化学生对函数图像变化规律的理解。
通过对对数函数的学习,渗透数形结的数学思想,分类讨论等数学思想。
培养学生严谨的思维和科学正确的计算能力。
3、情感目标:通过教学培养学生数学交流能力和与人合作精神,培养学生用联系的观点分析问题、观察问题,从而解决分析问题的能力。
学会认识事物的特殊与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。
三、教学重点与难点教学重点:掌握对数函数的图象和性质,教学难点:底数对对数函数值变化的影响.四、学法分析本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)类比学习:与指数函数类比学习对数函数的图像与性质.(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.五、教学过程设计教学流程:创设情境,引入新课→探究新知,加深理解→讲解例题,强化应用→归纳小结,巩固双基→布置作业,提高升华(一)创设情境,引入新课由于有了之前学习指数函数的基础,学生很容易就可归纳总结出函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.可以让学生观察解析式的特点并可归纳总结出三条:1、对数符号前系数为1;2、底数是不为0的正常数;3、真数是一个自变量x 的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年人教版高中数学必修一2.2.2《对数函数及其性质》word学情分析
对数函数及其性质学情分析
在讲这节课之前,已经学习了指数函数的定义及性质,对数的运算性质及指数与对数之间的转化,基础知识部分学生已经做好了铺垫,而且学生在生物部分已经接触到半衰期、元素的衰减问题,为接收这节课的引入也有了相应准备、
在设置这节课内容时,根据学生的基础情况,也做了相应的调整,首先就是多强调小组合作,在团体的带动下,可以帮助一部分基础不好的学生理解这节课的内容;其次强调了由特殊到一般来寻找规律,并结合几何画板、flash动画验证规律,让学生更好的体会寻找规律的过程;最后反复借助数形结合,让学生体会数与形之间的结合关系,并真正借助图像理解性质,并会使用,而不就是背诵记忆使用、
为了让学生更好的接收这节课,课下我也做了大量的准备工作,为了课题的引入,找了大量的资料、图片、视频,并经过反复比较,最终确定了视频引入的方式,最终的课堂实录来瞧,也起到了预期的效果、。