第八章拉曼光谱

合集下载

第八讲分子振动光谱之拉曼Raman.PPT

第八讲分子振动光谱之拉曼Raman.PPT
4)对于极化率很低的硅酸盐矿物,拉曼效应很弱, 因而限制了拉曼光谱在此类矿物上的应用。
(五)拉曼光谱图常规分析方法
➢ 凡不引起分子偶极矩改变的振动是非红外活
性的振动,不能形成振动吸收,使红外光谱 的应用受到一定程度的限制。
➢ 但是这些红外非活性的振动信息可以通过拉
曼光谱来获得。故拉曼光谱常作为红外光谱 分析的补充技术,俗称“姐妹光谱”。
拉曼散射是与入射光电场E所引起的分子极化的
诱导偶极矩有关。
拉曼散射的发生必须在有相应极化率α的变化
时才能实现,这是和红外光谱所不同的。 在红外光谱中检测不出的谱线,可以在拉曼光
谱中得到,使得两种光谱成相互补充的谱线。
在激光拉曼光谱中有一个重要参数即退偏振
比ρ(也可称为去偏振度)。 退偏振比ρ对确定分子的对称性很有用。 退偏振比ρ定义为:
的跃迁能级有关的频率是ν1,那么分子从低能级 跃到高能级从入射光中得到的能量为hν1,而散 射光子的能量要降低到hν0-hν1,频率降低为ν0ν1。
(2)分子处于振动的激发态上,并且在与光
子相碰时可以把hν1的能量传给光子,形成一条能 量为hν0+hν1和频率为ν0+ν1的谱线。
➢通常把低于入射光频的散射线ν0-ν1称为斯托克斯
此外,络合物中金属-配位体键的振动频率一 般都在100~700 cm-1以范围内,用红外光谱研究比 较困难。然而这些键的振动常具有拉曼活性,且在 上述范围内的拉曼谱带易于观测,因此适合于对络 合物的组成、结构和稳定性等方面进行研究。
图 各种碳材料的拉曼光谱
傅里叶变换拉曼光谱是陶瓷工业中快速而有效的 测量技术。陶瓷工业中常用原料如高岭土、多水高岭 土、地开石和珍珠陶土,它们都有各自的特征谱带, 而且拉曼光谱比红外光谱更具特征性。

第八章 拉曼光谱法

第八章  拉曼光谱法
ν = 1302
K
μ
ν 为cm-1 K为键的力常数 μ为原子的折合质量
6、拉曼光谱参数
② 强度I
⎛ dα ⎞ I = K (ν 0 − ν ) ⎜ ⎟ ⎝ dr ⎠
4
K为常数 I0为光源强度 ν0为入射光频率 α为键的极化度 r为分子键处于任意位置时的核间距
当样品分子不产生吸收时,I与激发波长的4次方成反 比,因此选择较短波长的激光时灵敏度高。 拉曼散射强度与样品分子的浓度成正比。
ν s Stokes位移
ν 0 入射光波数
2、激光拉曼光谱法的特点
① 拉曼散射光的强度大,测量速度快。 ② 激光的方向性强,光束发散角小,可聚焦在很小 的面积上,能对极微量的样品进行测定。 ③ 可调谐激光器能够根据被测物质的特点,选择合 适的激光输出波长进行激发。 ④ 测量范围宽,几十个波数到4000波数。 ⑤ 能在可见区研究分子的振动能级,对样品池、单 色仪和检测器等光学元件材料的要求低,操作方 便。 ⑥ 拉曼光谱最适于研究同种原子的极性键的振动, 还可确定分子振动的对称情况。
第八章
激光拉曼光谱法
Chapter 8 Laser Raman Spectrometry
2008.4.23
主要内容
拉曼效应和拉曼光谱简介 拉曼光谱法 拉曼光谱仪 拉曼光谱的样品处理及其旋转技术 荧光干扰及其消除 拉曼光谱的应用 拉曼光谱的新发展
一、拉曼效应和拉曼光谱
光通过介质会发生散射现象。颗粒大小与光的波长差不 多时,有Tyndall效应。 当散射的粒子为分子大小时,发生Rayleigh散射。光的 传播方向改变但不改变光的波长。 Rayleigh散射强度与入射光波长的4次方成反比,晴天 时天空呈现蔚蓝色的原因。 1928年,印度物理学家C.V. Raman首先发现:在瑞利散 射光的两侧,有一系列其它频率的散射光,强度只有瑞 利光的10-6~10-9,这种光命名为拉曼光,拉曼散射效应。 随后以拉曼散射效应为基础建立了拉曼光谱分析法。

拉曼光谱

拉曼光谱

拉曼光谱实验报告一、实验目的1. 了解拉曼光谱的基本原理、主要部件的功能;2. 了解拉曼光谱对所观察与分析样品的要求;3. 了解拉曼光谱所观察材料的微观组织结构和实际应用;4. 初步掌握制样技术和观察记录方法二、实验仪器原理1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。

在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。

靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。

瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。

小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。

拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。

分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。

与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。

激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。

拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。

拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。

用虚的上能级概念可以说明了拉曼效应:设散射物分子原来处于基电子态,当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。

第八章拉曼光谱

第八章拉曼光谱

拉曼位移的大小与入射光的频 率无关,只与分子的能级结构有关, 其范围为25-4000cm-1,因此入 射光的能量应大于分子振动跃迁所 需能量,小于电子能级跃迁的能量。
红外吸收要服从一定的选择定则,即分 子振动时只有伴随分子偶极矩发生变化的振 动才能产生红外吸收。
同样,在拉曼光谱中,分子振动要产生 位移也要服从一定的选择定则,也就是说, 只有伴随分子极化度发生变化的分子振动模 式才能具有拉曼活性,产生拉曼散射。
Almega激光拉曼光谱仪(美国)
1.光谱范围: 检测器绝对光谱范围 400nm~nm, 532nm;
同时具有大容量样品仓和 显微镜,自动化程度高, 采样方式灵活;共聚焦设 计拉曼显微镜可获得不同 深度样品的真实信息;可 提供丰富的Raman标准谱库。
激光拉曼散射光谱 Raman Spectroscopy
激光拉曼散射光谱 Raman Spectroscopy
拉曼光谱是一种散射光谱。在20世纪30年代, 拉曼散射光谱曾是研究分子结构的主要手段。后来 随着实验内容的深入,由于拉曼效应太弱,所以随 着红外谱的迅速发展,拉曼光谱的地位随之下降。
自1960年激光问世,并将这种新型光源引入 拉曼光谱后,拉曼光谱出现了新的局面,已广泛 应用于有机、无机、高分子、生物、环保等各个 领域.成为重要的分析工具。
极化度是指分子改变其电子云分布的难易
程度,因此只有分子极化度发生变化的振动 才能与入射光的电场E相互作用,产生诱导 偶极矩μ:
μ=aE
与红外吸收光谱相 似,拉曼散射谱线的强 度与诱导偶极矩成正比。
在多数的吸收光谱中,只具有二个基本参数:
★频率
★强度
但在激光拉曼光谱中还有—个重要的参数 即
★退偏振比(也可称为去偏振度)。

拉曼光谱

拉曼光谱
短波一侧为反斯托克斯线;
4.斯托克斯线强度比反斯托克斯线强;
拉曼光谱仪
拉曼光谱仪的基本结构
1.光源 它的功能是提供单色性好、功率大并且最好能多波长工作的入射光。 2.外光路 外光路部分包括聚光、集光、样品架、滤光和偏振等部件。 3.色散系统 色散系统使拉曼散射光按波长在空间分开,通常使用单色仪。 4.接收系统 拉曼散射信号的接收类型分单通道和多通道接收两种。光电倍增管 接收就是单通道接收。 5.信息处理与显示 为了提取拉曼散射信息,常用的电子学处理方法是直流放大、选频 和光子计数,然后用记录仪或计算机接口软件画出图谱。
拉曼光谱图
拉曼光谱的横坐标为拉曼位移,以波数 表示纵坐标为拉曼光强。由于拉曼位移与 激发光无关,一般仅用Stokes位移部分。对 发荧光的分子,有时用反Stokes位移。
拉曼光谱的信息
拉曼频率 的确认 物质的组成
parallel
拉曼偏振
perpendicular
晶体对称性和取 向
拉曼峰宽晶体质量好 坏 Nhomakorabea拉曼峰强 度
物质总量
拉曼光谱的特征
1. 对不同物质Raman 位移不同; 2.对同一物质 (
v v s v0 , v s 和 v0分别为斯托克斯
位移和入射光波数) 与入射光频率无关;是表征分子振-转能级 的特征物理量;是定性与结构分析的依据;
3.拉曼线对称地发布在瑞利线两侧,长波一侧为斯托克斯线,
拉曼光谱法优势
对样品无接触,无损伤;样品无需 制备 适合黑色和含水样品,试样量少
光谱成像快速、简便,分辨率高
一次可同时覆盖50-4000cm-1波数的 区间 仪器稳固,维护成本低,使用简单
拉曼光谱法的不足
拉曼散射信号弱

Raman(拉曼)光谱原理和图解

Raman(拉曼)光谱原理和图解

高灵敏度
在Renishaw inVia拉曼光 谱仪上测得的硅的三阶 与四阶声子模的拉曼峰。
apply innovation
高灵敏度
雷尼绍拉曼光谱仪光路结构示意图
双瑞利滤光 片
显微镜
狭缝
光栅 CCD检测器
样品
扩束器
激光
高稳定性、重复性
优势 2. 高稳定性、高重复性
稳定性、重复性标志一台仪器的质量 - 保证了数据的可靠性及重复性 - 是检测光谱微小变化的关键性能, 如材料的应力、应变引起的波数位移
数字化显微共焦系统专利技术
优势 5. 数字化显微共焦系统专利技术
受专利保护的最新的显微共焦系统技术,无需 调节针孔,并可连续调节共焦深度,大大提高 了仪器的光通量和稳定性。
数字化显微共焦系统专利技术
共焦原理 • Non-confocal
• Confocal
数字化显微共焦系统专利技术
实现共焦的两种方式
拉曼测量的是什么?
Mid IR 红外
Real States 真实能级 Virtual State 虚能级
Stokes Raman 斯托克斯拉曼
Rayleigh 瑞利散射
Anti-Stokes Raman 反斯托克斯拉曼
Fluorescence 荧光
Vibrational States 振动能级 i Ground State基级
2500
3000
3500
CO2
6000
1390
1500
2000
2500
3000
3500
CH4
4000
1287
2000
1087 1 164 2328 2609 2914 3399 3639

拉曼光谱课件

拉曼光谱课件
总结词
利用拉曼光谱分析大气中的有害物质,如二氧化氮、二氧化硫、一氧化碳等,有助于监测和治理空气 污染。
详细描述
拉曼光谱能够检测大气中不同污染物的分子振动模式,从而确定污染物的种类和浓度。这种方法具有 非接触、无损、快速和高灵敏度的特点,对于大气污染的预防和治理具有重要意义。
水体污染物的拉曼光谱分析
总结词
拉曼光谱技术可用于检测水体中的有害物质,如重金属离子、有机污染物等,为水环境 的监测和治理提供有力支持。
详细描述
通过对水体样本进行拉曼光谱扫描,可以获取水中污染物的分子振动信息,从而判断污 染物的种类和浓度。这种方法在水质监测、饮用水安全等领域具有广泛的应用前景。
土壤污染物的拉曼光谱分析
总结词
用于分离拉曼散射信号中的不 同波长成分。
光电倍增管
用于检测拉曼散射信号,转换 为电信号。
实验操作流程
显微镜观察
使用显微镜观察样品,选择测 量区域和焦点。
数据采集
采集拉曼散射信号,记录光谱 数据。
样品准备
选择适当的样品,进行表面清 洁和干燥。
光路调整
调整拉曼光谱仪、单色仪和显 微镜的光路,确保测量区域的 聚焦。
与生物学和医学交叉
拓展拉曼光谱在生物分子结构和细胞代谢过程 中的应用。
与计算科学交叉
利用计算模拟方法预测分子拉曼光谱,指导实验设计和优化。
THANK YOU
总结词
高分子化合物的拉曼光谱分析主要依赖于链振动和侧基的振动,可以提供高分子化合物的结构和序列信息。
详细描述
拉曼光谱能够检测高分子化合物中主链和侧基的振动模式,从而推断出高分子的结构和序列。通过分析拉曼光谱 ,可以确定高分子化合物的聚合度、序列长度和支链结构等信息。

第八章拉曼光谱技术 (1)

第八章拉曼光谱技术 (1)
反斯托克斯线的发射方向不在入射 光的同一方向上。反斯托克斯线的 发射发生在一个以入射为轴的锥体 内。
溶液振动态寿命拉曼方法测量装臵
强泵浦激光通过拉曼散射使能级 vi 1 得到布居。
弱探测激光激发正常反斯托克斯线, 反斯托克斯线的强度将随探测光激发延时而衰减,衰减速率直接反映了振动态 v=1布居的弛豫速率.
拉曼散射是分子振动的声子对入射光散射的结果。 自发拉曼散射:声子是由热振动激发的,入射光与无规相位分布的声子相 互作用,散射光是非相干光; 受激拉曼散射:相干入射光被受激的相干声子所散射,散射光是相干光。
一级斯托克斯的受激散射情形
入射光子与介质中声子相碰撞,产生一个斯托克斯散射光子,并增添一个受激 声子。产生的斯托克斯散射光子又于介质中的声子碰撞,又增加一个受激声子 和斯托克斯散射光子,如此等等,重复进行,受激声子数就迅速地增长起来。 由于受激声子是在相干光激发下形成的,所以受激产生的散射光也是相干的。
4) 表面增强拉曼散射与分子的振动模式有关,振动模式不同,增强因子也不 同;此外,如在分子的吸收带内激发,会有更大的增强因子,最大时增强因 子可达约108
第二节
一、受激拉曼散射
受激拉曼散射
1962年Woodbury等人发现受激拉曼散射。红宝石激光通过硝基苯溶液 时,当功率增强时,一级斯托克斯拉曼散射谱线强度迅速增加,发散角减少, 谱线变窄,具有了受激发射的性质,被称为受激拉曼散射。当激发光进一步 增强时,可以得到波数为ω0±nωR的多级斯托克斯与反斯托克斯受激拉曼 散射线。n=1,2,3…,表示散射级次。
i mi(1) + mi( 2) + mi(3) + mi ij E j ijk E j Ek ijklE j Ek El
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉曼光谱应用实例
J. Raman Spectrosc. 2002; 33: 177–190
Raman spectrum of a 2 mol /1 Ga(ClO4)3 solution (Rpol, Rdepol and Riso) at 25℃ in the wavenumber range 60–870 cm-1.
Jasco显微共聚焦激光拉曼光谱仪(日本)
1.高光通量 2.偏差自动校正的光谱 3.完全的共聚焦显微系统 4.超高效率电子制冷的 CCD检测器 5.紧凑、完全一体化设计
是显微镜、激光器与光学系统完全都包括的整体设计。 广泛应用于半导体、制药、法医学、材料研究、聚合物、 包装工业、文物鉴定、矿物学、光电学、钻石、生物学、 医学研究、教育、质量与过程控制等领域。
极化度是指分子改变其电子云分布的难易
程度,因此只有分子极化度发生变化的振动 才能与入射光的电场E相曼散射谱线的强 度与诱导偶极矩成正比。
在多数的吸收光谱中,只具有二个基本参数:
★频率
★强度
但在激光拉曼光谱中还有—个重要的参数 即
★退偏振比(也可称为去偏振度)。
应用激光拉曼光谱除能获得有关组分的信息 外,更主要的是它能反映与正常生理条件(如水溶 液、温度、酸碱度等)相似的情况下的生物大分子 的结构变化信息。同时还能比较在各相中的结构 差异,这是用其他仪器难以得到的成果。
医用高分子材料
高分子材料常用于药物传递系 统。FT-Raman光谱是研究此类体 系的较好技术,因为水的干扰小。
POLYMER ENGINEERING AND SCIENCE, JANUARY 2000, Vol. 40, No. 1
Raman spectra in the spectral range 600- 800 cm -1
Macromol. Chem. Phys. 2005, 206, 59–65
斯托克斯(Stokes)线
在拉曼散射中.若光子 把一部分能量给样品分 子,得到的散射光能量 减少,在垂直方向测量 到的散射光中,可以检
测频率为( 0
E h
)的线。
如果它是红外活性的话,E h
的测量值与激发该振动 的红外频率一致。
反斯托克斯线
相反,若光子从样品分 子中获得能量,在大于 入射光频率处接收到散 射光线,则称为反斯托 克斯线。
He-Ne激光器是激光拉曼光谱仪中较好的 光源.比较稳定,其输出激光波长为6.328A, 功率在100mW以下。Ar+ 激光器是拉曼光谱仪 中另一个常用的光源。
样 品 的 放 置 方 法
拉曼光谱在聚合物 结构研究中的应用
拉曼光谱的选择定则与 高分子构象
由于拉曼与红外 光谱具有互补性,因 而二者结合使用能够 得到更丰富的信息
纤维每伸长1%,向低频区 移动约20cm-1。由拉曼线 测量精度通常可达2cm-1, 因而拉曼测量纤维形变程 度的精确度可达±0.1%。 环氧树脂对激光是透 明的, 因此可以用激光拉 曼对 复合材料中 的聚丁二炔 纤维曲形变进 行测量。
下图为聚丁二炔纤维的共 振拉曼光谱。入射光波长 为638nm。
激光拉曼散射光谱 Raman Spectroscopy
激光拉曼散射光谱 Raman Spectroscopy
拉曼光谱是一种散射光谱。在20世纪30年代, 拉曼散射光谱曾是研究分子结构的主要手段。后来 随着实验内容的深入,由于拉曼效应太弱,所以随 着红外谱的迅速发展,拉曼光谱的地位随之下降。
自1960年激光问世,并将这种新型光源引入 拉曼光谱后,拉曼光谱出现了新的局面,已广泛 应用于有机、无机、高分子、生物、环保等各个 领域.成为重要的分析工具。
聚合物形变的拉曼光谱研究
◆ 纤维状聚合物在拉伸形变过程中,链段与链 段之间的相对位置发生了移动,从而使拉曼谱 线发生变化。
◆ 用纤维增强热塑性或热固性树脂能得到高强 度的复合材料。树脂与纤维之间的应力转移效 果.是决定复合材料机械性能的关键因素。
对环氧树脂施加 应力进行拉伸,使其 产生形变。此时外加 应力通过界面传递给 聚丁二炔单晶纤维, 使纤维产生拉伸形变。
3、互相禁止规则
少数分子的振动模式,既非拉 曼活性,也非红外活性。如乙 烯分子的扭曲振动,在红外和 拉曼光谱中均观察不到该振动 的谱带。
◆ 一般分子极性基团的 振动,导致分子永久偶 极矩的变化,故这类分 子通常是红外活性的。 非极性基团的振动易发 生分子变形,导致极化 率的改变,通常是拉曼 活性,因而对于相同原 子的非极性键振动如C -C,N—N及对称分子 骨架振动,均能获得有 用的拉曼光谱信息。
当聚丁二炔单晶纤维发生 伸长形变时,2085cm-1谱 带向低频区移动。其移动 范围为:
图为拉曼光谱测得的复合材料在外力 拉伸下聚丁二炔单晶纤维形变的分布
生物大分子的 拉曼光谱研究
生物大分子中,蛋白质、核酸、磷酯等是重 要的生命基础物质,研究它们的结构、构象等化 学问题以阐明生命的奥秘是当今极为重要的研究 课题。
拉曼散射及拉曼位移
拉曼散射
当一束频率为ν0的入射 光照射到气体、液体 或透明晶体样品上时, 绝大部分可以透过, 大约有0.1%的入射光 与样品分子之间发生 非弹性碰撞,即在碰 撞时有能量交换,这 种光散射称为拉曼散 射。
拉曼光谱为散射光谱
瑞利散射
反之,若发生弹性碰 撞,即两者之间没有 能量交换.这种光散 射称为瑞利散射。
★对于聚合物及其他分
子。拉曼散射的选样定则 的限制较小,因而可得到 更为丰富的谱带。S-S, C-C,C=C,N=N等红外 较弱的官能团,在拉曼光 谱中信号较为强烈。
拉曼散射光谱 与红外光谱
实验方法
仪器组成
激光拉曼光谱仪的基本组成有:
激光光源 样品室 单色器 检测记录系统 计算机
五大部分
拉曼光谱仪中最常用的是He-Ne气体激光 器。受激辐射时发生于Ne原子的两个能态之 间,He原子的作用是使Ne原子处于最低激发 态的粒子数与基态粒子数发生反转,这是粒子 发生受激辐射,发出激光的基本条件。
拉曼光谱仪(英国)
1.灵敏度远高于其它同类拉曼谱仪,波长可任意选择 2. 仪器精度和重复性比其它同类光谱仪提高了一个数量级。 3.可一次连续扫描大范围的拉曼光谱无需接谱 4. 最新的显微共焦系统,可连续调节共焦深度,大大提高了仪 器的光通量和稳定性。 5. 拉曼或荧光信号一次直接成像,迅速获得材料的空间分布。
拉曼位移的大小与入射光的频 率无关,只与分子的能级结构有关, 其范围为25-4000cm-1,因此入 射光的能量应大于分子振动跃迁所 需能量,小于电子能级跃迁的能量。
红外吸收要服从一定的选择定则,即分 子振动时只有伴随分子偶极矩发生变化的振 动才能产生红外吸收。
同样,在拉曼光谱中,分子振动要产生 位移也要服从一定的选择定则,也就是说, 只有伴随分子极化度发生变化的分子振动模 式才能具有拉曼活性,产生拉曼散射。
其中NH伸缩振动、CH2伸缩振动及酰胺I谱带 的二向色性比较清楚的反映了这些振动的跃迁距 在样品被拉伸后向垂直于拉伸方向取向。
酰胺Ⅱ及Ⅲ谱带的二向色性显示了C-N伸缩 振动向拉伸方向取向。
聚酰胺-6的拉曼光谱的去偏振度研究结果与红外二 向色性完全一致。拉曼光谱中1081cm-1谱带 (C-N伸缩振动)及1126cm-1谱带(C-C伸缩振动)的偏 振度显示了聚合物骨架经拉伸后的取向。
拉曼光谱中,完全自由取向的分子所散
射的光也可能是偏振的,因此一般在拉曼光 谱中用退偏振比(或称去偏振度)ρ表征分子 对称性振动模式的高低。
= I
IP
ρ<3/4的谱带称为偏振谱带, 表示分子有较高的对称振动 模式;ρ=3/4的谱带称为退 偏振谱带,表示分子的对称 振动模式较低。
式中I∥和I┴——分别代 表与激光电矢量相垂直 和相平行的谱线的强度
对于一般红外及拉曼 光谱,可用以下几个 经验规则判断:
1、互相排斥规则
凡有对称中心的分子, 若有拉曼活性,则红 外是非活性的;若有 红外活性,则拉曼是 非活性的;
2、互相允许规则
凡无对称中心的分子,除属于点 群D5h, D2h和O的分子外.都有 一些既能在拉曼散射中出现,又 能在红外吸收中出现的跃迁。若 分子无任何对称性,则它的红外 和拉曼光谱就非常相似。
与红外光谱相比,拉曼 散射光谱具有下述优点
★拉曼光谱是一个散射过
程,因而任何尺寸、形状、 透明度的样品,只要能被 激光照射到.就可直接用 来测量。由于激光束的直 径较小,且可进—步聚焦, 因而极微量样品都可测量。
★玻璃的拉曼散射也较弱,
因而玻璃可作为理想的窗 口材料。
★水是极性很强的分子,
因而其红外吸收非常强烈。 但水的拉曼散射却极微弱, 因而水溶液样品可直接进 行测量,这对生物大分子 的研究非常有利。
LabRAM系列小型拉曼光谱系统(法国)
▼ 仪器设计的紧凑,功能 强大,其它技术参数:
▼ 最佳空间分辨率 XY平 面内光点直径:0.8微米 (514nm), Z轴方向(深 度):2微米
▼ 第二探测器入口及多光 栅可换性使系统波长检测范 围可扩展至紫外和近红外
1.真正的显微共焦光路 2.多激光可选 3.热电(空气)或液氮冷却多种规格CCD探测器可选 4.光谱分辨率为小型拉曼光谱系统中最高的 5.可扩展为最新的拉曼和红外共同原位检测的系统
Almega激光拉曼光谱仪(美国)
1.光谱范围: 检测器绝对光谱范围 400nm~1050nm; 2.可选激光器: 785nm, 633nm, 532nm;
同时具有大容量样品仓和 显微镜,自动化程度高, 采样方式灵活;共聚焦设 计拉曼显微镜可获得不同 深度样品的真实信息;可 提供丰富的Raman标准谱库。
激光拉曼光谱 与红外光谱比较
◆拉曼效应产生于入射光子与分子振动能级的能量 交换。在许多情况下,拉曼频率位移的程度正好相当于红 外吸收频率。因此红外测量能够得到的信息同样也出现在 拉曼光谱中,红外光谱解析中的定性三要素(即吸收频率、 强度和峰形)对拉曼光谱解析也适用。
相关文档
最新文档