2012高考全国新课标数学理数(答案详解)
2012天津市高考数学试卷及答案(理数)

2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第I卷(选择题)和第n (非选择题)两部分,共150分,考试用时120分钟。
第I卷1至2页,第n卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分.参考公式:•如果事件A, B互斥,那么P(A B) =P(A) P(B) •如果事件A, B相互独立,那么P(AB)二P(A)P(B)•棱柱的体积公式V =Sh 其中S表示棱柱的底面面积, h 表示棱柱的高。
4 3 -球的体积公式V R33其中R表示球的半径、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(1) i是虚数单位,复数=3+i(A) 2 + i (B) 2 -i(C) -2 + i ( D) -2 -i(2 )设R,则“ =0 ”是“ f(x) COS(x •「)(x • R)为偶函数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分与不必要条件(3)阅读右边的程序框图,运行相应的程序,当输入x的值为-25时,输出x的值为(A) -1 (B) 1(C) 3 ( D) 9(4)函数f (x) = 2x x3 - 2在区间(0,1)内的零点个数是(A) 0 ( B) 1(C) 2 ( D) 32 1 5(5)在(2x --)的二项展开式中,x的系数为x(A) 10 ( B) -(C) 40 (D) -40(6)在ABC中,内角A,B, C所对的边分别是a,b,c,(B )仁'2(D )(8)设 m, n R ,若直线(m 1)x (n 1)y -2 = 0与圆(x - 1)2 (y -1)2 = 1 相切,则 m + n 的取值范围是(A ) [1 - .3,1、3](D )(-二,2 -2、. 2] [2 2 . 2,二)第口卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2012年湖北省高考数学试卷(理科)答案及解析

2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2012•湖北)方程x2+6x+13=0的一个根是()A.﹣3+2iB.3+2iC.﹣2+3iD.2+3i2.(2012•湖北)命题“∃x0∈C R Q,∈Q"的否定是()A.∃x0∉C R Q,∈QB.∃x0∈C R Q,∉QC.∀x0∉C R Q,∈QD.∀x0∈C R Q,∉Q3.(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为()A.B.C.D.4.(2012•湖北)已知某几何体的三视图如图所示,则该集合体的体积为()A.B.3πC.D.6π5.(2012•湖北)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0B.1C.11D.126.(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=() A.B.C.D.7.(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数".现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f (x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.9.(2012•湖北)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4B.5C.6D.710.(2012•湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据x=3.14159….。
2012新课标全国卷理科数学解析版

2012 年新课标全国卷理科数学试卷详解(合用地域:豫 晋疆宁吉黑蒙冀滇)第 I 卷(共 60分)一、选择题:本大题共 12 小题,每题 5 分,共 60 分.每题有且只有一个选项是切合题目要求的.1.已知会合A={1, 2,3,4,5},B={( x ,y ) | xA ,yA ,xyA } ,则 B 中包含元素的个数为()A . 3B .6C . 8D .10【分析】由会合 B 可知,xy ,所以B={(2, 1),( 3, 2),( 4, 3),( 5, 4),( 3, 1),( 4,2),( 5, 3),(4, 1),(5, 2),( 5, 1) } , B 的元素 10 个,所以选择D 。
【评论】 此题主要观察复数的运算,属简单题。
2.将2 名教师,4 名学生疏成2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2 名学生构成,不一样的安排方案共有()A .12种B .10 种C .9 种D .8 种【分析】先安排甲组,共有C 12 C 4212 种,再安排乙组,将节余的1 名教师和2 名学生安排到乙组即可,共有 1 种,依据乘法原理得不一样的安排方案共有 12 种,应选择 A 。
【评论】 此题主要考会合的基础知识,子集的含意。
3.下边是对于复数 z2的四个命题:1ip 1 : | z | 2 ; p 2 : z 2 2i ; p 3 : z 的共轭复数为 1 i ; p 4 : z 的虚部为1 。
此中的真命题为( )A . p 2 , p 3B . p 1 , p 2C . p 2 , p 4D . p 3 , p 4【分析】由于 z2 i ( 2( 1 i)1 i ,所以 | z |2 , z 2( 1 i )2 2i ,1 1 i )( 1 i )z 的共轭复数为 1 i , z 的虚部为 1,所以 p 2 , p 4 为真命题,应选择C 。
【评论】 此题主要观察椭圆的简单几何性质,标准方程的求解。
2012高考全国新课标数学理数(答案详解)

2012年普通高等学校招生全国统一考试——全国新课标理科数学时间 120分钟 永不止步推荐第Ⅰ卷一、选择题:共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则中所含元素的个数为 ( )A 、3B 、6C 、8D 、102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 A 、12种 B 、10种 C 、9种 D 、8种 3.下面是关于复数的四个命题:的共轭复数为的虚部为其中的真命题为( )A 、,B 、,C 、,D 、,4.设、是椭圆:的左、右焦点,为直线上一点, 是底角为的等腰三角形,则的离心率为()A 、B 、C 、D 、5.已知为等比数列,,,则( ) A 、7 B 、5 C 、-5 D 、-7 6.如果执行右边的程序框图,输入正整数和实数,输出、,则( )A 、为的和B 、为的算术平均数C 、和分别是中最大的数和最小的数D 、和分别是 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某 几何体的三视图,则此几何体的体积为 () A 、 6 B 、9 C 、12 D 、188.等轴双曲线的中心在原点,焦点在轴上,与抛物 线的准线交于、两点,,则 的实轴长为( ) A 、B 、C 、4D 、89.已知,函数在单调递减,则的取值范围是( ) A 、B 、C 、D 、 10.已知函数,则的图像大致为()A B C D11.已知三棱锥的所有顶点都在球的球面上,是边长为1的正三角形,为球的直径,且,则此棱锥的体积为()A、B、C、D、12.设点在曲线上,点在曲线上,则的最小值为()A、B、C、D、第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须做答。
第22题~第24题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
2012四川省高考数学试题及答案(理数).doc

2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A、10B、10C、10D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a b a b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年湖北高考数学文科试卷带详解

2012年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则满足条件的集合C的个数为()A.1B.2 C.3 D.4【测量目标】集合的基本运算。
【考查方式】子集的应用.【参考答案】D【试题解析】求,易知。
因为,所以根据子集的定义,集合必须含有元素1,2,且可能含有元素3,4,原题即求集合的子集个数,即有个。
故选D。
2.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间的频率为()A.0。
35B.0.45 C.0。
55D.0。
65【测量目标】频数分布表的应用,频率的计算,对于頻数、频率等统计问题【考查方式】通过弄清楚样本总数与各区间上样本的个数,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率。
【参考答案】B【试题解析】由频数分布表可知:样本数据落在区间内的頻数为2+3+4=9,样本总数为,故样本数据落在区间内频率为。
故选B。
3.函数在区间上的零点的个数为()A.2 B.3 C.4D。
5【测量目标】函数零点求解与判断。
【考查方式】通过函数的零点,要求学会分类讨论的数学思想。
【参考答案】D【试题解析】由,得或;其中,由,得,故。
又因为,所以.所以零点的个数为个.故选D。
4.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数【测量目标】命题的否定。
【考查方式】求解特称命题或全称命题的否定,千万别忽视了改变量词;【参考答案】B【试题解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数"。
故选B.5.过点的直线,将圆形区域分为两部分,使得这两部分的面积之差最大,则该直线的方程为()A.B. C。
2012年辽宁高考数学试题(理数数学)

A.58 B.88 C.143 D.176 【命题意图】本题主要考查等差数列通项公式和前 n 项和公式,是简单题.
11( a1 +a11 ) =11a6 =88 ,故选 B. 2 7. 已知 sin α - cos α = 2,α ∈ ( 0,π ) ,则 tan α =
【解析】 a4 +a8 =2a6 =16 ∴ a6 =8 ,而 S11 = A. −1 B. −
8 2 = , 12 3
⎡ 1 3⎤ ⎣ ⎦
⎛ 1⎞ ⎛ 1⎞ ⎛ 3⎞ ⎟ =g ⎜ - ⎟ =g ⎜ ⎟ =0 ,在同一坐标系下作出两函数在 ⎝2⎠ ⎝ 2⎠ ⎝2⎠ ⎡ 1 3⎤ ⎡ 1 3⎤ - , ⎥ 上的图像,发现在 ⎢ - , ⎥ 内图像共有 6 个公共点,则函数 ⎢ ⎣ 2 2⎦ ⎣ 2 2⎦ ⎡ 1 3⎤ h ( x ) =g ( x ) -f ( x ) 在 ⎢ - , ⎥ 上的零点个数为 6,故选 B. ⎣ 2 2⎦ 12. 若 x ∈ [ 0,+∞ ) ,则下列不等式恒成立的是
2 2
C.
2 2
D. 1
【命题意图】本题主要考查同角三角函数基本关系式、特殊角的的三角函数,是中档题. 【解析 1】 sin α - cos α = 2,α ∈ ( 0,π ) ,两边平方得 1-sin 2α =2,
3π 3π ,α = , ∴ tan α =-1 ,故选 A. 2 4 【解析 2】由于形势比较特殊,可以两边取导数得 cos α + sin α =0, ∴ tan α =-1 ⎧ x-y ≤ 10 ⎪ 8. 设变量 x,y 满足 ⎨0 ≤ x +y ≤ 20 ,则 2 x +3 y 的最大值为 ⎪0 ≤ y ≤ 15 ⎩ sin 2α =-1,2α ∈ ( 0,2π ) , 2α =
2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。
在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。
(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。
在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试——全国新课标理科数学时间 120分钟 永不止步推荐第Ⅰ卷一、选择题:共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中所含元素的个数为( )A 、3B 、6C 、8D 、102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 A 、12种 B 、10种 C 、9种 D 、8种 3.下面是关于复数iz +-=12的四个命题: 2|:|1=z p i z p 2:22= z p :3的共轭复数为i +1z p :4的虚部为1- 其中的真命题为( )A 、2p ,3pB 、1p ,2pC 、2p ,4pD 、3p ,4p4.设1F 、2F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆是底角为o30的等腰三角形,则E 的离心率为 ( )A 、21B 、32 C 、43D 、54 5.已知}{n a 为等比数列,274=+a a ,865-=a a ,则=+101a a()A 、7B 、5C 、-5D 、-76.如果执行右边的程序框图,输入正整数)2(≥N N 和实数N a a a ,,,21 ,输出A 、B ,则( ) A 、B A +为N a a a ,,,21 的和 B 、2BA +为N a a a ,,,21 的算术平均数 C 、A 和B 分别是N a a a ,,,21 中最大的数和最小的数 D 、A 和B 分别是N a a a ,,,21 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某 几何体的三视图,则此几何体的体积为 ( ) A 、6 B 、9 C 、12 D 、188.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为( ) A 、2B 、22C 、4D 、89.已知0>ω,函数)4sin()(πω+=x x f在),2(ππ单调递减,则ω的取值范围是() A、]45,21[B 、]43,21[C 、]21,0( D 、]2,0(10.已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A B C D11.已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为( ) A 、62B 、63 C 、32 D 、22 12.设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为 ( ) A 、2ln 1-B 、)2ln 1(2-C 、2ln 1+D 、)2ln 1(2+第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须做答。
第22题~第24题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.已知向量a ,b 夹角为o45,且||1a =,|2|10a b -=,则||b =.14.设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则y x z 2-=得取值范围为.15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。
设三个电子元件的使用寿命(单位:小时)均服从正态分布)50,1000(2N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为.16.数列}{n a 满足12)1(1-=-++n a a n nn ,则}{n a 的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ)求A ;(Ⅱ)若2=a ,ABC ∆的面积为3,求b 、c .18.(本小题满分12分) 某花店每天以5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1. (Ⅰ)证明:BC DC ⊥1;(Ⅱ)求二面角11C BD A --的大小.20.(本小题满分12分)设抛物线C :)0(22>=p py x 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA为半径的圆F 交l 于两B 、D 点.(Ⅰ)若oBFD 90=∠,ABD ∆的面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到n 、m 距离的比值.A CB 1B 1A D 1C21.(本小题满分12分)已知函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。
作答时请写清题号。
22.(本小题满分10分)选修4-1:几何证明选讲 如图,D 、E 分别为ABC ∆边AB 、CD 的中点,直线DE 交的外接圆于F 、G 两点,若AB CF //,证明: (Ⅰ)BC CD =;(Ⅱ)BCD ∆∽GBD ∆.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围. 24.(本小题满分10分)选修4-5:不等式选讲已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式3)(≥x f 的解集;(Ⅱ)若|4|)(-≤x x f 的解集包含]2,1[,求a 的取值范围.2012年普通高等学校招生全国统一考试全国新课标(答案)一、选择题: (1)【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个甲地由1名教师和2名学生:122412C C =种(3)【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)【解析】选C (7)【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯= (8)【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A-(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)【解析】选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂ 得:315,2424224πππππωπωω+≥+≤⇔≤≤ (10)【解析】选B()ln(1)()1()010,()00()(0)0x g x x x g x xg x x g x x g x g '=+-⇒=-+''⇒>⇔-<<<⇔>⇒<= 得:0x >或10x -<<均有()0f x < 排除,,A C DABC ∆的外接圆的半径3r =,点O 到面ABC的距离3d == SC 为球O 的直径⇒点S 到面ABC的距离为2d =此棱锥的体积为11233ABC V S d ∆=⨯==另:1236ABC V S R ∆<⨯=排除,,B C D (12)【解析】选A 函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒= 由图象关于y x =对称得:PQ最小值为min 2ln 2)d -二.填空题(13)【解析】b=22210(2)1044cos 451032a b a b b b b ︒-=⇔-=⇔+-=⇔=(14)【解析】2z x y =-的取值范围为 [3,3]-约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C则2[3,3]z x y =-∈-(15)【解析】使用寿命超过1000小时的概率为38三个电子元件的使用寿命均服从正态分布2(1000,50)N 得:三个电子元件的使用寿命超过1000小时的概率为12p =超过1000小时时元件1或元件2正常工作的概率2131(1)4P p =--= 那么该部件的使用寿命超过1000小时的概率为2138p p p =⨯= (16)【解析】{}n a 的前60项和为 1830可证明:14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 112341515141010151618302b a a a a S ⨯=+++=⇒=⨯+⨯= 三、解答题(17)【解析】(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C +--=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔= 2222cos 4a b c bc A b c =+-⇔+= 解得:2b c == (18)【解析】(1)当16n ≥时,16(105)80y =⨯-= 当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80 (60)0.1,(70)0.2,(80)0.7P X P X P X ======的分布列为600.1700.2800.776EX =⨯+⨯+⨯= 222160.160.240.744DX =⨯+⨯+⨯=(ii )购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4y =⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=76.476> 得:应购进17枝(19)【解析】(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H 1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合 且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则12C O =,111230C D C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒(20)【解析】(1)由对称性知:BFD ∆是等腰直角∆,斜边2BD p =点A 到准线l的距离d FA FB ===122ABD S BD d p ∆=⇔⨯⨯=⇔=圆F 的方程为22(1)8x y +-=(2)由对称性设2000(,)(0)2x A x x p >,则(0,)2pF点,A B 关于点F 对称得:22220000(,)3222x x p B x p p x p p p --⇒-=-⇔=得:3,)2pA,直线3:02p p p m y x x -=+⇔-=222233x x x py y y x p p p '=⇔=⇒==⇒=⇒切点)6p P直线:06p n y x x p -=⇔-=坐标原点到,m n 距离的比值为:326=。