安徽省马鞍山市2019-2020学年第一学期期末八年级数学试题
2021-2022学年度第一学期期末质量检测八年级数学试卷

2021-2022学年度第一学期期末质量检测八年级数学试卷注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题卡上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题卡相应位置上) 1. 若一个数的平方等于4,则这个数等于 ················································ 【 ▲ 】A .±2B .2C .±16D .162. 若分式15x 有意义,则实数x 的取值范围是 ········································ 【 ▲ 】A .x <5B .x =5C .x >5D .x ≠5 3. 在平面直角坐标系中,点P (-3,2)在 ············································ 【 ▲ 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.·········································································· 【 ▲ 】 A .2和3之间B .3和4之间C .4和5之间D .5和6之间5. 如图,在△ABC 中,AB =AC ,AD 是边BC 上的中线,若AB =5,BC =6,则AD 的长为 ···························································································· 【 ▲ 】 A .3B .7C .4D .116. 如图,已知∠ABC =∠DCB ,添加以下条件,不能判定....△ABC ≌△DCB 的是【 ▲ 】 A .AB =DC B .BE =CE C .AC =DB D .∠A =∠D7. 下列四组线段a ,b ,c ,能组成直角三角形的是 ···································· 【 ▲ 】A .a =1,b =2,c =3B .a =1,b,cC .a =2,b =3,c =4D .a =4,b =5,c =6 8. 某一次函数的图像与x 轴交于正半轴,则这个函数表达式可能是 ·············· 【 ▲ 】 A .y =2xB .y =x +1C .y =-x -1D .y =x -1二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上).9. 等腰三角形的一个内角是100°,则它的底角的度数为 ▲ .(第5题图) C D AB (第6题图) A D B CE学校 班级 考号 姓名……………………………………………密………………………………………封……………………………线……………………………………10.如图,△ABC ≌△ADC ,∠BCA =40°,∠B =80°,则∠BAD 的度数为 ▲ .11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316 000米.将数据316 000用四舍五入法精确到万位,并用科学记数法表示为 ▲ .12.如图,在△ABC 中,∠ACB =90°,点D 为AB 中点,若AB =4,则CD = ▲ . 13.在平面直角坐标系中,过点P (5,6)作P A ⊥x 轴,垂足为点A ,则P A 的长为 ▲ . 14.将一次函数y =2x 图像向上平移1个单位所得的直线函数表达式为 ▲ . 15.关于x 的分式方程21x ax =1的解为负数,则a 的取值范围为 ▲ . 16.如图,在△ABC 中,AB =AC ,点P 为边AC 上一动点,过点P 作PD ⊥BC ,垂足为点D ,延长DP 交BA 的延长线于点E ,若AC =10,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为 ▲ .(不需写出x 的取值范围)三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分) (138; (2)求x 的值:(x +2)2-9=0.18.(本题满分4分)解方程:1242x x x =2.19.(本题满分5分)先化简再求值:,11112-÷⎪⎭⎫⎝⎛-+a a a 其中a =2.CDA B(第12题图) (第16题图)CD EABP(第10题图)CDAB20.(本题满分5分)如图是8×8的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为(2,-3),点B 坐标为(4,-1). (1)试在图中画出这个直角坐标系;(2)标出点C (1,1),连接AB 、AC ,画出△ABC关于y 轴对称的△A 1B 1C 1.21.(本题满分6分)如图,点D 、B 、C 在一直线上,△ABC 和△ADE 都是等边三角形.试找出图中的一对全等三角形,并证明.22.(本题满分8分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100 kg ,超过300 kg 时,所有这种水果的批发单价均为3元/kg .图中折线表示批发单价y (元/kg )与质量x (kg )的函数关系. (1)求图中线段AB 所在直线的函数表达式;(2)小李需要一次性批发这种水果280 kg ,需要花费多少元?23.(本题满分8分)甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50 km ,乙车选择没有高架的路线,全程共44 km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?AB(第20题图)(第22题图)kg )(第21题图)DE AB24.(本题满分7分)如图,Rt △ABC 中,∠ACB =90°.(1)尺规作图(保留作图痕迹,不写作法与证明):① 作∠B 的平分线BD 交边AC 于点D ; ② 过点D 作DE ⊥AB 于点E ;(2)在(1)所画图中,若CD =3,AC =8,则AB 长为 ▲ .25.(本题满分9分)如图,在四边形ABCD 中,∠ABC =90°,过点B 作BE ⊥CD ,垂足为点E ,过点A 作AF ⊥BE ,垂足为点F ,且BE =AF . (1)求证:△ABF ≌△BCE ;(2)连接BD ,且BD 平分∠ABE 交AF 于点G .求证:△BCD 是等腰三角形.26.(本题满分14分)如图,已知一次函数y =x -2的图像与y 轴交于点A ,一次函数y =4x +b 的图像与y 轴交于点B ,且与x 轴以及一次函数y =x -2的图像分别交于点C 、D ,点D 的坐标为(-2,m ).(1)关于x 、y 的方程组⎩⎨⎧=--=-.4,2b x y x y 的解为 ▲ ;(2)关于x 的不等式x -2≥4x +b 的解集为 ▲ ; (3)求四边形OADC 的面积;(4)在x 轴上是否存在点E ,使得以点C ,D ,E 为顶点的三角形是直角三角形?若存在,求出点ECDEFGAB(第25题图)(第24题图)CAB (第26题图)八年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)9.40° 10.120° 11.3.2×105 12.2 13.6 14.y =2x +1 15.a >1且a ≠2 16.y =20-x 三、解答题 17.(本题满分6分,每小题3分)解:(1)原式=4-(-2) ········································································· 2分=6. ················································································ 3分 4给12给1分.(2)x +2=±3. ··················································································· 1分x +2=3或x +2=-3. x =1或-5. ·················································································· 3分 说明:x =1给1分;x =-5给1分. 18.(本题满分4分)解:x -2=4(x -2) ················································································· 1分x =2 ························································································· 2分检验:当x =2时,2(x -2)=0,x =2是增根. ············································ 3分 ∴原方程无解. ···················································································· 4分 19.(本题满分5分)解:原式=1(1)1(1)(1)a aa a a ··························································· 2分=(1)(1)1a a a a a ··································································· 3分=-a +1. ·············································································· 4分当a =2时,原式=-2+1=-1. ···························································· 5分 20.(本题满分5分)解:如图所示. ···················································································· 2分(2)如图所示. ················································································· 5分 说明:1.x 轴给1分;y 轴给1分;点C 给1分;△A 1B 1C 1给2分. 2.字母没有标记不扣分. 21.(本题满分6分)解:△ABE ≌△ACD . ············································································ 2分 证明:∵△ABC 、△ADE 都是等边三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°.∴∠BAC +∠BAD =∠DAE +∠BAD ,即∠CAD =∠BAE . ···························· 3分在△ABE 和△CAD ,AB AC BAE CAD AE AD =﹐=﹐=﹐······················································· 4分∴△ABE ≌△ACD . ··············································································· 6分 说明:AB =AC 给1分;AD =AE 给1分. 22.(本题满分8分)解:(1)设线段AB 所在直线的函数表达式为y =kx +b (k ≠0). 把点(100,5),(300,3)分别代入,得 51003300k b k b ﹐﹒== 2分解得0.016k b ﹐﹒==4分∴线段AB 所在直线的函数表达式为y =-0.01x +6. 5分(2)在y =-0.01x +6中,当x =280时,y =3.2. 6分 ∴需要花费的费用为280×3.2=896(元). 8分 23.(本题满分8分)解:设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20) km/h .根据题意,得 1.2×5020x =44x. ·························································· 3分解得x =55. ························································································ 5分 经检验,x =55是所列方程的解. ····························································· 6分 x +20=75. ························································································· 7分 答:甲车行驶的平均速度为75 km/h ,乙车行驶的平均速度为55 km/h . ··········· 8分 24.(本题满分7分)解:(1)①如图,BD 就是所要求作的图形. ·············································· 2分 ②如图,DE 就是所要求作的图形. ·························································· 4分(2)10. ····························································································· 7分 说明:不交待结论不扣分.CDE AB25.(本题满分9分)解:(1)证明:∵BE ⊥CD ,AF ⊥BE , ∴∠AFB =∠BEC =90°. ········································································ 1分 ∴∠ABE +∠BAF =90°. ∵∠ABC =90°,∴∠ABE +∠EBC =90°. ∴∠BAF =∠EBC . ··············································································· 3分 在△ABF 和△BCE 中, AFB BEC AF BE BAF EBC ﹐﹐﹐ ··················································································· 4分 ∴△ABF ≌△BCE . ··············································································· 5分 (2)∵∠ABC =90°, ∴∠ABD +∠DBC =90°. ······································································ 6分 ∵∠BEC =90°,∴∠DBE +∠BDE =90°. ······································································ 7分 ∵BD 平分∠ABE , ∴∠ABD =∠DBE . ∴∠DBC =∠BDE . ············································································· 8分 ∴BC =CD ,即△BCD 是等腰三角形. ·················································· 9分 说明:其它证法类似给分. 26.(本题满分14分)解:(1)24y x =﹐=﹒················································································ 2分(2)x ≤-2. ······················································································· 4分 (3)如图1,过点D 作DH ⊥AB 于H . 由(1)知D (-2,-4). ∴DH =2.在y =x -2中,当x =0时,y =-2. ∴A (0,-2).把D (-2,-4)代入y =4x +b 得-4=4×(-2)+b ,解得b =4. ∴B (0,4),直线BD 的函数表达式为y =4x +4. ∴AB =4-(-2)=6.∴S △ABD =12AB ·DH =12×6×2=6. ······················································· 6分在y =4x +4中,当y =0时,0=4x +4,解得x =-1. ∴C (-1,0). ∴OC =1. ∵B (0,4), ∴OB =4.∴S △OBC =12OB ·OC =12×4×1=2. ······················································· 8分 ∴S 四边形OADC =S △ABD -S △OBC =6-2=4. ····················································· 9分(4)如图2,当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1.∵D (-2,-4). ∴E 1(-2,0). ·················································································· 10分 当点C 为直角顶点时,x 轴上不存在点E . ················································ 11分 当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0). ∵C (-1,0),E 1(-2,0), ∴CE 2=-1-t ,E 1E 2=-2-t . ∵D (-2,-4),∴DE 1=4,CE 1=-1-(-2)=1.在Rt △DE 1E 2中,由勾股定理得22DE =21DE +2212E E =42+(-2-t )2=t 2+4t +20.在Rt △CDE 1中,由勾股定理得CD 2=12+42=17. 在Rt △CDE 2中,由勾股定理得22CE =22DE +CD 2.∴(-1-t )2= t 2+4t +20+17. 解得t =-18. ∴E 2(-18,0). ················································································ 14分 综合知,点E 坐标为(-2,0)或(-18,0).图1图2。
【精选3份合集】2019-2020年马鞍山市八年级上学期数学期末质量跟踪监视试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.将数据0.0000025用科学记数法表示为( )A .72510-⨯B .80.2510-⨯C .72.510-⨯D .62.510-⨯【答案】D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.0000025 2.510-=⨯.故选:D .【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.2.如图,ABC AEF ∆≅∆,AB AE =,B E ∠=∠,则对于结论:①AC AF =,②FAB EAB ∠=∠,③EF BC =,④EAB FAC ∠=∠,其中正确的是( )A .①②B .①③④C .①②③④D .①③【答案】B 【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【详解】解:∵△ABC ≌△AEF ,∴AC=AF ,EF=BC ,∠EAF=∠BAC ,故①③正确;∵∠EAF=∠BAC ,∴∠FAC=∠EAB≠∠FAB ,故②错误,④正确;综上所述,结论正确的是①③④.故选:B .【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键. 3.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是( )A .3,4,5B 345C .8,15,17D .5,12,13【答案】B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、222345+=,∴能构成直角三角形;B 、222(3)(4)(5)+≠,∴不能构成直角三角形;C 、22281528917+==,∴能构成直角三角形;D 、22251213169=+=,∴能构成直角三角形.故选:B .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( )A .∠B=∠CB .AD=AEC .∠BDC=∠CEBD .BD=CE【答案】D 【分析】要使△ABD ≌△ACE ,则需对应边相等,夹角相等,可用两边夹一角,也可用两角夹一边判定全等.【详解】已知条件中AB=AC ,∠A 为公共角,A 中∠B=∠C ,满足两角夹一边,可判定其全等,A 正确;B 中AD=AE 两边夹一角,也能判定全等,B 也正确;C 中∠BDC=∠CEB ,即∠ADB=∠AEC ,又∠A 为公共角,∴∠B=∠C ,所以可得三角形全等,C 对;D 中两边及一角,但角并不是夹角,不能判定其全等,D 错.故选D.【点睛】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法,是正确解题的前提;做题时要按判定全等的方法逐个验证.5.若等腰△ABC 的周长为20,AB=8,则该等腰三角形的腰长为( ).A .8B .6C .4D .8或6【答案】D【分析】AB=8可能是腰,也可能是底边,分类讨论,结合等腰三角形的两条腰相等计算出三边,并用三角形三边关系检验即可.【详解】解:若AB=8是腰,则底长为20-8-8=4,三边为4、8、8,能组成三角形,此时腰长为8;若AB=8是底,则腰长为(20-8)÷2=6,三边为6、6、8,能组成三角形,此时腰长为6;综述所述:腰长为8或6.故选:D.【点睛】本题考查等腰三角形的性质和三角形三边的关系,分类讨论是关键.6.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则图中∠β的度数是()A.75°B.65°C.55°D.45°【答案】A【分析】根据三角形的内角和定理、对顶角相等和三角形外角的性质即可得出结论.【详解】解:如下图所示∠1=180°-90°-45°=45°∴∠2=∠1=45°∴∠β=∠2+30°=75°故选A.【点睛】此题考查的是三角形的内角和定理、三角形外角的性质和对顶角的性质,掌握三角形的内角和定理、三角形外角的性质和对顶角相等是解决此题的关键.7.等腰三角形的两边长是6cm和3cm,那么它的周长是A.9cm B.12 cm C.12 cm或15 cm D.15 cm【答案】D【解析】试题分析:题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.考点:等腰三角形的性质;三角形三边关系.8.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( )A .1B .3C .5D .7【答案】C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数. 9.如图,△ABC 的两个外角的平分线相交于D ,若∠B=50°,则∠ADC=( )A .60°B .80°C .65°D .40°【答案】C 【分析】利用三角形的外角定理及内角定理推出∠ADC 与∠B 的关系,进而代入数据求出结果.【详解】设ABC 的两个外角为α、β. 则()1ADC 180αβ2∠=-+(三角形的内角和定理), 利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知αβB C B A 18050230∠∠∠∠+=+++=+=,∴()1ADC 180αβ652∠=-+=. 故选:C .【点睛】本题考查三角形的内角和定理及外角定理,熟记基本定理并灵活运用是解题关键.10.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+ B .31y x =- C .31y x =-+ D .24y x =-+【解析】设一次函数关系式为y=kx+b,y随x增大而减小,则k<1;图象经过点(1,2),可得k、b之间的关系式.综合二者取值即可.【详解】设一次函数关系式为y=kx+b,∵图象经过点(1,2),∴k+b=2;∵y随x增大而减小,∴k<1.即k取负数,满足k+b=2的k、b的取值都可以.故选D.【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题.二、填空题11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.【答案】1【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第1块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:1.【点睛】本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.【答案】()66-, 【解析】作B′H ⊥x 轴于H 点,连结OB ,OB′,根据菱形的性质得到∠AOB=30°,再根据旋转的性质得∠BOB′=75°,OB′=OB=23,则∠AOB′=∠BOB′﹣∠AOB=45°,所以△OBH 为等腰直角三角形,根据等腰直角三角形性质可计算得OH=B′H=6,然后根据第四象限内点的坐标特征写出B′点的坐标.【详解】作B′H ⊥x 轴于H 点,连结OB ,OB′,如图,∵四边形OABC 为菱形,∴∠AOC=180°﹣∠C=60°,OB 平分∠AOC ,∴∠AOB=30°,∵菱形OABC 绕原点O 顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=23,∴∠AOB′=∠BOB′﹣∠AOB=45°,∴△OB′H 为等腰直角三角形,∴OH=B′H=22OB′=6, ∴点B′的坐标为(6,﹣6),故答案为(6,﹣6).【点睛】本题考查了坐标与图形变化,旋转的性质,解直角三角形等,熟知旋转前后哪些线段或角相等是解题的关键.13.对于任意不相等的两个实数a ,b ( a > b )定义一种新运算a ※a b a b +-,如3※3232+-,那么12※4=______【答案】2 【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可. 【详解】解:12※4=1241621248+==- 故答案为:2【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.14.数0.0000046用科学记数法表示为:__________.【答案】64.610-⨯【分析】根据科学记数法的表示方法解答即可.【详解】解:0.0000046=64.610-⨯.故答案为:64.610-⨯.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.将点P 1(m ,1)向右平移3个单位后得到点P 2(2,n ),则m+n 的值为_____.【答案】1【分析】根据平移规律进行计算即可.【详解】∵点P 1(m ,1)向右平移3个单位后得到点P 2(2,n),∴m+3=2,n=1,∴m=-1,∴m+n=-1+1=1.故答案为:1.【点睛】本题考查了点的坐标平移规律,熟练掌握平移规律是解题的关键.16.如图,在△ABC 中,已知AD 是角平分线,DE⊥AC 于E ,AC=4,S △ADC =6,则点D 到AB 的距离是________.【答案】3【解析】如图,过点D 作DF ⊥AB 于点F ,∵DE⊥AC于点E,∴S△ADC=12AC⋅DE=6,即:142⨯⨯DE=6,解得DE=3.∵在△ABC中,已知AD是角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DF=DE=3,即点D到AB的距离为3.17.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为____.【答案】(232019).【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×12=2,点C到AB2221-3∴C(23,把等边△ABC先沿y轴翻折,得C’(-23+1),再向下平移1个单位得C’’(-23)故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,3+1﹣32019,所以,点C的对应点C'的坐标是(232019).故答案为:(232019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y 轴右侧是解题的关键.三、解答题18.若△ABC 的三边 a 、b 、c 满足 |a —15 | +(b —8)2 +17c -=1.试判断△ABC 的形状,并说明理由.【答案】直角三角形,理由见解析【分析】根据绝对值、平方、二次根式的非负性即可列出式子求出a 、b 、c 的值,再根据勾股定理的逆定理即可判断三角形形状.【详解】解:根据2a-15(b-8)c-170++=中,绝对值、平方、二次根式的非负性,即可得出a=15,b=8,c=17,发现22217=158+,根据勾股定理的逆定理,即可得出ABC 是直角三角形.【点睛】此题主要考查勾股定理逆定理的应用,解题的关键是根据非负性求出各边的长.19.因式分解:(1)24x - (2) 2244ax axy ay -+ 【答案】(1)x 2)(2)x -+( (2)2(2)a x y -【解析】试题分析:(1)直接利用平方差公式因式分解即可;(2)提公因式a 后再利用完全平方公式因式分解即可.试题解析:(1)()24=x 2)2x x --+(; (2)()()2222244442ax axy ay a x xy y a x y -+=-+=-. 20.水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题: (1)容器内原有水多少?(2)求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②【答案】(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.21.如图,方格图中每个小正方形的边长为1,点A 、B 、C 都是格点.(1)画出△ABC 关于直线BM 对称的△A 1B 1C 1;(2)写出AA 1的长度.【答案】(1)详见解析;(2)AA 1=1.【解析】试题分析:(1)先作出△ABC 各顶点关于直线BM 对称的点,再画出△A 1B 1C 1即可;(2)根据图形中A ,A 1的位置,即可得到AA 1的长度.试题解析:(1)如图所示,△A 1B 1C 1即为所求;(2)由图可得,AA 1=1.。
马鞍山市2019年数学八上期末教学质量检测试题

马鞍山市2019年数学八上期末教学质量检测试题一、选择题1.某机械加工车间共有52名工人,现要加工4200个A 零件,2400个B 零件.已知每人每天加工A 零件-3=个或B 零件40个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( ) A.(,)M x y B.4200240052x x =- C.420024004060(52)x x =- D.42006024004052x x⨯⨯=-2.如果a b =+222a b a b a a b⎛⎫+-⋅ ⎪-⎝⎭的值为( )A B .C .D .3.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克4.脐橙是宁都县“兴国富民”的一项支柱产业.全县脐橙种植面积达14.3万亩,产量9万吨,有几个3万亩连片脐橙基地,30个千亩连片基地.种植面积14.3万用科学记数法表示为( )A .14.3×104B .1.43×104C .1.43×105D .0.143×1065.下列从左到右的变形中,属于因式分解的是( )A.()()2224x x x +-=-B.2222()a ab b a b -+=-C.()11am bm m a b +-=+-D.()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭ 6.下列算式正确的是( )A .5510x x x +=B .()()7344a b a b a b -÷-=-C .()5525x x -=-D .()()5510x x x --=-7.如图所示,AB ,CD ,AE 和CE 均为笔直的公路,已知AB ∥CD ,AE 与AB 的夹角∠BAE 为32°,若线段CF 与EF 的长度相等,则CD 与CE 的夹角∠DCE 为( )A .58°B .32°C .16°D .15°8.如图,直线l 是一条河,P ,Q 是两个村庄。
2019-2020学年度八年级第一学期期末考试 八年级英语(真题再现)(安徽马鞍山)

马鞍山市2019~2020学年度第一学期期末素质测试八年级英语试题亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获!请认真审题,看清要求,仔细答题,祝你成功!听力部分(20分)I.短对话理解(共10小题;每小题1分,满分10分)你将听到十段对话,每段对话后有一个小题。
请在每小题所给的A、B、C三个选项中选出一个最佳选项。
每段对话读两遍。
1.What is Mike doing now?A. B. C.2.Where is Mr.Green going?A. B. C.3.What would Lucy like to eat after lunch?A. B. C.4.What is the weather like now?A. B. C.5.Who wanted to know how to search the Internet?A. B. C.6.What are the two speakers talking about?A.A school subject.B.An interesting movie.C.A ball game.7.What’s the relationship between the two speakers?A.Husband and wife.B.Teacher and student.C.Doctor and patient8.What does Jenny look like now?A.Tall and thin.B.Short and thin.C.Heavy and tall.9.Whose T-shirt is this?A.Bob’s.B.Mary’s.C.Mike’s.10.Why was the man late?A.The traffic was too heavy.B.It was raining.C.He missed the bus.Ⅱ.长对话理解(共5小题;每小题1分,满分5分)你将听到两段对话,每段对话后有几个小题。
2019-2020学年北师大版八年级数学第一学期期末测试题(含答案)

2019-2020学年八年级数学第一学期期末测试卷一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.22.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,94.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.86.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣29.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=.12.命题“若a2>b2,则a>b”的逆命题是,该逆命题是(填“真”或“假”)命题.13.计算:(3+)()=.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.18.解方程组:19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C (﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是分,九(2)班复赛成绩的众数是分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为km/h,放学回家的速度为km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求线段OM的长;(3)求点B的坐标.2019-2020学年八年级数学第一学期期末测试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.2【分析】根据无理数、有理数的定义逐一对每个选择支进行判断.【解答】解:是分数,属于有理数,故选项A正确;﹣,2π,2是无理数.故选:A.【点评】此题主要考查了无理数的定义,注意:带根号的开不尽方的数是无理数,无限不循环小数为无理数,含π的数是无理数.如2π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,3)故选:C.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,9【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.【点评】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.4.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.6.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【解答】解:在y=﹣2x﹣1中,∵﹣2<0,﹣1<0,∴此函数的图象经过二、三、四象限,故选:D.【点评】本题考查的是一次函数的图象,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解答此题的关键.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等),正确;C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),错误;故选:D.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣2【分析】根据平方根、算术平方根的定义逐一判别可得.【解答】解:A.1的平方根是±1,此选项错误;B.﹣8的立方根是﹣2,此选项正确;C.=2,此选项错误;D.=2,此选项错误;故选:B.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.9.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟【分析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为(1)、(4)、(5)步时间之和.【解答】解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开7分钟,同时洗菜3分钟,准备面条及佐料2分钟,总计7分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+7+3=12分钟.故选:C.【点评】解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=2.【分析】根据二次根式的分母有理化和二次根式的性质分别计算可得.【解答】解:==,|﹣|==2,故答案为:,2.【点评】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.12.命题“若a2>b2,则a>b”的逆命题是如a>b,则a2>b2,,该逆命题是(填“真”或“假”)假命题.【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点评】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.计算:(3+)()=+1.【分析】利用多项式乘法展开,然后合并即可.【解答】解:原式=3﹣6+7﹣2=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货4吨.【分析】设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,由“2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨”,即可得出关于x,y的二元一次方程组,将方程组的两方程相加再除以3,即可求出结论.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,(①+②)÷3,得:x+y=4.故答案为:4.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是()2012.【分析】先求出直线y =kx +b 的解析式,求出直线与x 轴、y 轴的交点坐标,求出直线与x 轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x 轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A 3的坐标,进而得出各点的坐标的规律.【解答】解:∵A 1(1,1),A 2(,)在直线y =kx +b 上,∴,解得,∴直线解析式为y =x +;设直线与x 轴、y 轴的交点坐标分别为N 、M ,当x =0时,y =,当y =0时, x +=0,解得x =﹣4,∴点M 、N 的坐标分别为M (0,),N (﹣4,0),∴tan ∠MNO ===,作A 1C 1⊥x 轴与点C 1,A 2C 2⊥x 轴与点C 2,A 3C 3⊥x 轴与点C 3,∵A 1(1,1),A 2(,),∴OB 2=OB 1+B 1B 2=2×1+2×=2+3=5,tan ∠MNO ===,∵△B 2A 3B 3是等腰直角三角形,∴A 3C 3=B 2C 3,∴A 3C 3==()2,同理可求,第四个等腰直角三角形A 4C 4==()3,依此类推,点A n 的纵坐标是()n ﹣1.∴A2013=()2012故答案为:,()2012.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.【分析】先利用二次根式的除法法则和完全平方公式运算,然后把各二次根式化简为最简二次根式后合并即可.【解答】解:原式=8﹣4+1﹣(﹣)=9﹣4﹣2+=9﹣5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x﹣2x+3=8,解得:x=5,把x=5代入①得y=7,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.【分析】(1)利用勾股定理求解可得;(2)分别作出点B与点C关于x轴的对称图形,再与点A首尾顺次连接即可得.【解答】解:(1)AC==,故答案为:;(2)所画图形如下所示,其中△DEF即为所求,【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点及勾股定理.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.【分析】设我市去年外来旅游的有x万人,外出旅游的有y万人,根据去年同期外来旅游比外出旅游的人数多20万人及今年外来与外出旅游的人数与去年人数之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设我市去年外来旅游的有x万人,外出旅游的有y万人,根据题意得:,解得:.答:我市去年外来旅游的有100万人,外出旅游的有80万人,【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?【分析】(1)利用众数、中位数的定义分别计算即可;(2)利用平均数和方差的公式计算即可;(3)利用方差的意义进行判断.【解答】解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;(2)九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=(70+100+100+75+80)=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;(3)平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.【分析】(1)根据题意可以写出推理过程,从而可以解答本题;(2)根据三角形外角的性质和三角形的内角和即可得到结论..【解答】解:(1)证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C,(2)证明:∵∠CFN是△ACF的一个外角(三角形外角的定义),∴∠CFN=∠β+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∵PQ∥MN(已知),∴∠CFN=∠α(两直线平行,同位角相等)∴∠α=∠β+∠C(等量代换).∵∠C=45°(已知),∴∠α=∠β+45°(等量代换).【点评】本题考查了三角形外角的性质,平行线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为5km/h,放学回家的速度为3km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?【分析】(1)根据题意和图象中的数据可以求得小亮上学的速度和放学回家的速度;(2)根据图象中的数据和题意可以求得线段BC所表示的y与x之间的函数关系;(3)由题意可知,小明从家到超市和从超市到家的时间之和是总的时间减去两次经过超市的时间间隔,从而可以解答本题.【解答】解:(1)由题意可得,小明上学的速度为:3÷0.6=5km/h,放学回家的速度为:3÷(9.6﹣0.6﹣8)=3km/h,故答案为:5,3;(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,将B(8.6,3)、C(9.6,0)代入y=kx+b,得,得,∴线段BC所表示的y与x之间的函数关系式为y=﹣3x+28.8(8.6≤x≤9.6);(3)设超市离家skm,=9.6﹣8.48,解得:s=2.1.答:超市离家2.1km.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.【分析】(1)在Rt△ABC中,利用互余得到∠BAC=62°,再根据折叠的性质得∠CAE=∠CAB =31°,然后根据互余可计算出∠AEC=59°;(2)①在Rt△ABC中,利用勾股定理即可得到BC的长;②设DE=x,则EB=BC﹣CE=8﹣x,依据勾股定理可得,Rt△BDE中DE2+BD2=BE2,再解方程即可得到DE的长.【解答】解:(1)在Rt△ABC中,∠ABC=90°,∠B=28°,∴∠BAC=90°﹣28°=62°,∵△ACE沿着AE折叠以后C点正好落在点D处,∴∠CAE=∠CAB=×62°=31°,Rt△ACE中,∠ACE=90°∴∠AEC=90°﹣31°=59°.(2)①在Rt△ABC中,AC=6,AB=10,∴BC===8.②∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点评】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,将△AOC 沿AC 折叠得到△ABC ,请解答下列问题:(1)点C 的坐标为 (5,0) ;(2)求线段OM 的长;(3)求点B 的坐标.【分析】(1)利用勾股定理求出OA 的长即可解决问题;(2)求出直线AC 的解析式,利用待定系数法即可解决问题;(3)只要证明AB =AC =5,AB ∥x 轴,即可解决问题;【解答】解:(1)∵A (﹣3,4),∴OA ==5,∴OA =OC =5,∴C (5,0),故答案为(5,0);(2)设直线AC 的解析式y =kx +b ,函数图象过点A 、C ,得,解得,∴直线AC 的解析式y =﹣x +,当x =0时,y =,即M (0,),∴OM =.(3)∵△AOC沿着AC折叠得到△ABC,∴OA=BA,OC=BC,且∠ACO=∠ACB,又∵OA=OC,∴AB=AC=OC,∴∠BAC=∠ACB,∴∠ACO=∠BAC,∴AB∥x轴,由(1)知,C(5,0),∴OC=5.∵AB=AC=OC,∴AB=5.∵A坐标为(﹣3,4),AB∥x轴,∴B坐标为(2,4).【点评】本题属于三角形综合题,考查了翻折变换,等腰三角形的性质,一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
马鞍山市2019-2020学年八年级第二学期期末学业质量监测数学试题含解析

马鞍山市2019-2020学年八年级第二学期期末学业质量监测数学试题一、选择题(每题只有一个答案正确)1.下列运算中,正确的是()A.2+3=5B.22-2=2C.(2)(3)-⨯-= 2-×3-D.6÷3=32.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.9 B.12 C.93D.183.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.一次函数图象D.反比例函数图象4.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB,AD的垂线段PE,PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.755.如图,点A,B在反比例函数1yx=(x>0)的图象上,点C、D在反比例函数kyx=(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是()A.5 B.4 C.3 D.26.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为A .1B .2C .3D .47.如图,正方形ABCD 中,M 为BC 上一点,ME AM ⊥,ME 交AD 的延长线于点E .若12AB =,5BM =,则DE 的长为( )A .18B .253C .965D .10958.若成立,则下列不等式成立的是( ) A .B .C .D .9.若式子-2x 在实数范围内有意义,则x 的取值范围是( )A .0x ≥B .0x <C .2x >D .2x ≥10.函数的图象不经过第二象限,则的取值范围是( ) A .B .C .D .二、填空题11.若正比例函数y=kx 的图象经过点(2,4),则k=_____.12.如图,在正方形ABCD 中,延长BC 至E ,使CE =CA ,则∠E 的度数是_____.13.如果216x x+-的值为负数,则 x 的取值范围是_____________.14.在Rt △ABC 中,∠B =90°,∠C =30°,AB =2,则BC 的长为______.15.如图,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O .若AB =6,AD =8,则DG 的长为_____.16.阅读下面材料:在数学课上,老师提出如下问题: 已知:如图,及边的中点. 求作:平行四边形.①连接并延长,在延长线上截取;②连接、.所以四边形就是所求作的平行四边形.老师说:“小敏的作法正确.请回答:小敏的作法正确的理由是__________. 17.如图,函数y=(x>0)的图象与矩形OABC 的边BC 交于点D ,分别过点A ,D 作AF ∥DE ,交直线y=k 2x(k 2<0)于点F ,E.若OE=OF ,BD=2CD ,四边形ADEF 的面积为12,则k 1的值为________.三、解答题18.如图,ABC ∆为等边三角形,AE CD =,AD BE 、 相交于点P ,BQ AD ⊥ 于点Q ,(1)求证: ;AEB CDA ∆∆≌ (2)求BPQ ∠的度数.19.(6分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表: 笔 试 面 试 体 能 甲 85 80 75 乙 80 90 73 丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.20.(6分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分) 门窗 桌椅 地面 一班 85 90 95 二班958590(1)两个班的平均得分分别是多少;(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.21.(6分)如图,在△ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,CD=5cm ,求AB 的长.22.(8分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?23.(8分)如图所示,有一长方形的空地,长为x米,宽为12米,建筑商把它分成甲、乙、丙三部分,甲和乙为正方形.现计划甲建筑成住宅区,乙建成商场丙开辟成公园.()1请用含x的代数式表示正方形乙的边长;;()2若丙地的面积为32平方米,请求出x的值.24.(10分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x⩾0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。
2019-2020学年安徽省马鞍山市八年级(上)期末数学试卷(附详解)

2019-2020学年安徽省马鞍山市八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形是轴对称图形的有()A. 2个B. 3个C. 4个D. 5个2.在平面直角坐标系中,点M(−2019,2020)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限)、B(x2,5),则x1与x2的大小关系是3.一次函数y=2x+m的图象上有两点A(x1,32()A. x1<x2B. x1>x2C. x1=x2D. 无法确定4.已知三角形两边长分别为5cm和16cm,则下列线段中能作为该三角形第三边的是()A. 24cmB. 15cmC. 11cmD. 8cm5.下列命题的逆命题为假命题的是()A. 有两角互余的三角形是直角三角形B. 如果k>0,那么直线y=kx经过一、三象限C. 如果a=0,那么点A(a,b)在坐标轴上D. 三边分别相等的两个三角形全等6.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A. B. C. D.7.如图,用尺规作已知角的平分线的理论依据是()A. SASB. AASC. SSSD. ASA8.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图中描述了他上学的途中离家距离S(米)与离家时间t(分钟)之间的函数关系.下列说法中正确的个数是()(1)修车时间为15分钟;(2)学校离家的距离为4000米;(3)到达学校时共用时间为20分钟;(4)自行车发生故障时离家距离为2000米.A. 1个B. 2个C. 3个D. 4个9.如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,则∠A与∠1、∠2之间的数量关系是()A. 2∠A=∠1−∠2B. 3∠A=2(∠1−∠2)C. 3∠A=2∠1−∠2D. ∠A=∠1−∠210.如图,在平面直角坐标系中,∠MON=30°,点A1、A2、A3、A4在x轴上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若A1点坐标是(1,0),那么A6点坐标是()A. (6,0)B. (12,0)C. (16,0)D. (32,0)二、填空题(本大题共8小题,共24.0分)11.在函数y=√x+2中,自变量x的取值范围是______.2x12.已知等腰△ABC的两边长分别为3和5,则等腰△ABC的周长为______.13.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为______ .14.已知直线y=kx−3与直线y=−x+2相交于x轴上一点,则k=______.15.将一次函数y=2x−1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为______.16.如图,△ABC的三条角平分线交于点O,O到AB的距离为3,且△ABC的周长为18,则△ABC的面积为______.,3),则不等式2x>ax+4的解17.如图,函数y=2x和y=ax+4的图象相交于点A(32集为______.18.在平面直角坐标系中,已知A、B两点的坐标分别为A(−1,1)、B(3,2),若点M为x轴上一点,且MA+MB最小,则点M的坐标为______.三、解答题(本大题共6小题,共46.0分)19.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______ ;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______ .20.已知y−1与x+2成正比例,且x=−1时,y=3.(1)求y与x之间的函数关系式;(2)若点(2m+1,3)是该函数图象上的一点,求m的值.21.已知:如图,AB=DE,AB//DE,BE=CF,且点B、E、C、F都在一条直线上,求证:AC//DF。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马鞍山市2019~2020学年度第一学期期末素质测试
八年级数学试题
一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确选项的代号填在题后的括号内.) 1.下列图形是轴对称图形的有( )
A .2个
B .3个
C .4个
D .5个
2.在平面直角坐标系中,点(2019,2020)A -在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.一次函数2y x m =+的图象上有两点123
(,)(,5)2
A x
B x 、,则1x 与2x 的大小关系是( )
A .12x x <
B .12x x >
C .12x x =
D .无法确定
4.已知三角形两边长分别为5cm 和16cm ,则下列线段中能作为该三角形第三边的是( )
A .24cm
B .15cm
C .11cm
D .8cm
5.下列命题的逆命题...
为假命题的是 ( ) A .有两角互余的三角形是直角三角形 B .如果0k >,那么直线y kx =经过一、三象限 C .如果0a =,那么点(,)A a b 在坐标轴上 D .三边分别相等的两个三角形全等
6.若实数a b c 、、满足0a b c ++=,且a b c <<,则函数y ax c =+的图象可能是( )
A .
B .
C .
D .
7.如图,用尺规作已知角的平分线的理论依据是( )
A .SAS
B .AAS
C .SSS
D .ASA
8.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了
学校.图中描述了他上学的途中离家距离S (米)与离家时间t (分钟)之间的函数关系.下列说法中正确的个数是( )
x
y
O x
y
O x
y
O x
y
O C
B
A
M
N
O
第7题
(1)修车时间为15分钟;
(2)学校离家的距离为4000米;
(3)到达学校时共用时间为20分钟; (4)自行车发生故障时离家距离为2000米. A .1个 B .2个 C .3个
D .4个
9.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部A ' 时,则A ∠与1∠、2∠之
间的数量关系是( )
A .212A ∠=∠-∠
B .32(12)A ∠=∠-∠
C .3212A ∠=∠-∠
D .12A ∠=∠-∠
10.如图,在平面直角坐标系中,30MON ∠=︒,点1A 、2A 、3A 、4A 在x 轴上,点1B 、2B 、3B … 在
射线OM 上,112A B A △、223A B A △、334A B A △……均为等边三角形,若1A 点坐标是(1,0) ,那么6A 点坐
标是( ) A .(6,0) B .(12,0) C .(16,0)
D .(32,0)
二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.) 11.函数2
2x y x
+=
的自变量x 的取值范围是 . 12.已知等腰ABC △的两边长分别为3和5,则等腰ABC △的周长为 .
13.如图,在Rt ABC △中,90C ∠=︒,边AB 的垂直平分线DE 交BC 于点D ,AD 平分BAC ∠,则B ∠=
︒.
14.已知直线3y kx =-与直线2y x =-+相交于x 轴上一点,则k = .
15.将一次函数21y x =- 的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式
为 . 16.如图,ABC △的两条角平分线交于点O ,点O 到AB 的距离为3,且ABC △的周长为18,则ABC
△的面积为 .
第8题图
o
离家距离(米)
离家时间(分钟)
20
15
10
2000
4000
A'
E
A
D
B
C
21第9题图
x
y B B B
M N
A A A A O
第10题图
第13题图
A
B
C
D
E
第16题图
O
C
B
A
32
3
o
y
x
A
第17题图
17.如图,已知函数2y x =与函数4y ax =+的图象交于点3
(,3)2
A ,则不等式24x ax >+的解集是 . 18.在平面直角坐标系中,已知A 、
B 两点的坐标分别为(1,1),(3,2)A B -,若点M 为x 轴上一点,且
MA MB + 最小,则点M 的坐标为 . [来源:学|科|网]
三、解答题(本大题共6小题,共46分)
19.(本题共6分)在边长为1的小正方形网格中,AOB △的顶点均在格点上.
(1)B 点关于y 轴的对称点坐标为______ ;
(2)将AOB △向左平移3个单位长度,再向上平移2个单位长度得到111AO B △,
请画出111AO B △;
(3)在(2)的条件下,AOB △边AB 上有一点P 的坐标
为(,)a b ,则平移后点P 的对应点1P 的坐标为______..
20.(本题共8分)已知1y -与2x +成正比例,且1x =-时,3y =. (1)求y 与x 之间的函数关系式;
(2)若点()21,3m +是该函数图象上的一点,求m 的值.
21.(本题共8分)已知:如图,AB DE =,AB //DE ,BE CF =,且点B 、E 、C 、F 在同一条直线上.求证:AC //DF .
y
x
–1
–2
–3
–4
–5
–1–2–3
1
23456
12345
B
A
O
第21题图
F
E
D
C
B
A
22.(本题共8分)某村庄甲、乙两家大棚草莓采摘园的草莓销售价格相同,两家采摘园春节期间将推出优惠方案. 甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需要购买门票,采摘的草莓超过一定数量后,超过部分打折优惠. 优惠期间,某游客的草莓采摘量为x (千克),在甲园所需总费用为y 甲(元),在乙园所需总费用为y 乙(元),y 甲、y 乙与x 之间的函数关系如图所示。
(1)甲采摘园的门票是_____元,两个采摘园优惠前的草莓单价是每千克__ __元; (2)当10x >时,求y 乙与x 的函数表达式;
(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.
23.(本题共8分)如图,在ABC △中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并
延长交AC 于E .
(1)求证:BF AC =;
(2)求证:BE AC ⊥;
(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.
O
y 乙y 甲B
A
y (元)
x (千克)
1025480
300
60
第22题图
E
F
D
C
B
A 第23题图
24.(本题共8分)如图1,直线AB 与x 轴交于点60A
-(,),交y 轴于点06B (,),直线BC 与AB 关于y 轴对称,交x 轴于点C ,
(1)求直线BC 的解析式;
(2)过点B 在ABC △外作直线l ,过A 点作AE l ⊥于点E ,过C 点作CF l ⊥于点 F .求证:
AE CF EF += (3)如图2,如果ABC △沿x 轴向右平移,AB 边交y 轴于点M ,点N 是BC 的延长线上的一点,
且CN AM =,MN 与x 轴交于点P ,在ABC △平移的过程中,OP 的长度是否为定值,请说明理由.
图2
图1
B x y
N
M P
C O
A F
E B
y
x
C
O A。