北京市中考数学一模考试试卷

合集下载

2024年北京市九年级中考一模数学汇编:圆(含解析)

2024年北京市九年级中考一模数学汇编:圆(含解析)

2024北京初三一模数学汇编圆章节综合一、单选题1.(2024北京东城初三一模)如图,是的弦,是的直径,于点E .在下列结论中,不一定成立的是( )A .B .C .D .2.(2024北京东城初三一模)如图,作线段,在线段的延长线上作点,使得,取线段的中点,以为圆心,线段的长为半径作,分别过点作直径的垂线,交于点,连接,过点作于点.设,给出下面4个结论:①;;;④;上述结论中,正确结论的个数是()A .4个B .3个C .2个D .1个二、填空题3.(2024北京门头沟初三一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是 .4.(2024北京大兴初三一模)如图,是的直径,点,在上,若,则的度数为 .AB O CD O CD AB ⊥AE BE =90CBD ∠=︒2COB D ∠=∠COB C∠=∠AC a =AC B ()CB b a b =<AB O O OA O C O 、AB O D F 、OD AF CF 、、C CE OD ⊥E CF c =2a b c +<c <)a b <+2ab ac bc <+AB O C D O AC BC =D ∠︒5.(2024北京通州初三一模)我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积,并以此求取圆周率的方法,刘徽指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.例如,的半径为1,运用“割圆术”,以圆内接正六边形面积估计的面积,的面积近似为的面积,可得的估计值为 .6.(2024北京平谷初三一模)如图,内接于,为的直径, D 为上一点,连接.若,则的度数为 .7.(2024北京西城初三一模)如图, 在的内接四边形中, 点A 是的中点,连接, 若,则 .8.(2024北京石景山初三一模)如图,是的直径,是延长线上一点, 与相切于点.若,则 .πO O 1612S =⨯⨯正六边形O πO πABC O BC O O AD CD 、20D ∠=︒ACB ∠O ABCD BDAC 130DAB ∠=︒ACB =∠︒AB O P AB PC O C 40P ∠=︒A ∠=︒9.(2024北京顺义初三一模)如图,是的外接圆,,,平分,交于点D ,则的度数为 .10.(2024北京朝阳初三一模)如图,是的外接圆,于点,交于点,若,,则的长为 .11.(2024北京燕山初三一模)如图,是的直径,点在上,过点作的切线与直线交于点.若,则 °.三、解答题12.(2024北京朝阳初三一模)如图,在矩形中,,,点A 在直线l 上,与直线l 相交所得的锐角为.点F 在直线l 上,,⊥直线l ,垂足为点F 且,以为直径,在的左侧作半圆O ,点M 是半圆O 上任一点.发现:的最小值为 ,的最大值为 ,与直线l 的位置关系是 .思考:矩形保持不动,半圆O 沿直线l 向左平移,当点E 落在边上时,重叠部分面积为多少?O ABC AB AC =36BAC ∠=︒BD ABC ∠O DAB ∠O Rt ABC △OE AB ⊥D O E 8AB =2DE =BC AB O C O B O AC D 50D ∠=︒BOC ∠=ABCD 6AB =8BC =AD 60︒8AF =EF 6EF =EF EF AM AM OB ABCD AD13.(2024北京通州初三一模)如图,为的直径,过点A 作的切线,C 是半圆上一点(不与点A 、B 重合),连结,过点C 作于点E ,连接并延长交于点F .(1)求证:;(2)若的半径为5,,求的长.14.(2024北京东城初三一模)在平面直角坐标系中,的半径为1.对于线段给出如下定义:若线段与有两个交点,,且,则称线段是的“倍弦线”.(1)如图,点的横、纵坐标都是整数,在线段,,中,的“倍弦线”是_____;(2)的“倍弦线”与直线交于点,求点纵坐标的取值范围;(3)若的“倍弦线”过点,直线与线段有公共点,直接写出的取值范围.AB O O AM AB AC CD AB ⊥BD AM ∠=∠CAB AFB O 8AC =DF xOy O PQ PQ O M N ==PM MN NQ PQ O A B C D ,,,AB CB CD O O PQ 2x =E E E y O PQ (1,0)y x b =+PQ b15.(2024北京西城初三一模)在平面直角坐标系 中,已知的半径为.对于上的点 和平面内的直线 给出如下定义:点关于直线的对称点记为,若射线 上的点满足 则称点为点关于直线的“衍生点”.(1)当时,已知上两点 在点, 中,点关于直线的“衍生点”是 ,点关于直线的“衍生点”是 ;(2)为 上任意一点, 直线 与轴, 轴的交点分别为点 ,. 若线段上存在点,,使得点是点关于直线的“衍生点”,点不是点关于直线的“衍生点”,直接写出的取值范围;(3)当时,若过原点的直线上存在线段 ,对于线段 上任意一点,都存在上的点和直线,使得点是点关于直线的“衍生点”. 将线段长度的最大值记为,对于所有的直线,直接写出的最小值.16.(2024北京房山初三一模)在平面直角坐标系中,将中心为的等边三角形记作等边三角形,对于等边三角形和点(不与重合)给出如下定义:若等边三角形的边上存在点N ,使得直线与以为半径的⊙相切于点,则称点为等边三角形的“相关切点”.xOy O 1O P :l y ax =P l P 'OP Q OQ PP =',Q P l 0a =O121.2P P ⎛⎛ ⎝⎝,()112Q,232Q ⎫⎪⎪⎭,()(341,1Q Q --,1P l 2P l P O y x m =+()0m ≠x y A B AB S T S P l T P l m 11a -≤≤s MN MN R O P l R P l MN ()D s s ()D s xOy M M M P O M OP MN M P P M(1)如图,等边三角形的顶点分别为点,,.①在点,,中,等边三角形的“相关切点”是 ;②若直线上存在等边三角形的“相关切点”,求的取值范围;(2)已知点,等边三角形的边长为的两个“相关切点”,,使得△为等边三角形,直接写出的取值范围.17.(2024北京顺义初三一模)在平面直角坐标系中,对于图形M 和图形N 给出如下定义:如果图形M 上存在点P 、轴上存在点T ,使得点P 以点T 为旋转中心,逆时针旋转得到的点Q 在图形N 上,那么称图形N 是形M 的“关联图形”.(1)如图,点,,,.①在点B ,C ,D 中,点A 的“关联图形”是_____;②若不是点A 的“关联图形”,求的半径的取值范围;(2)已知点,,,的半径为1,以线段为对角线的正方形为,若是正方形的“关联图形”,直接写出的最小值和最大值.18.(2024北京门头沟初三一模)在平面直角坐标系中,的半径为2,点P 、Q 是平面内的点,如果点P 关于点Q 的中心对称点在上,我们称圆上的点为点P 关于点Q 的“等距点”.M ()0,0O (A (3,B 132P ⎛ ⎝23,2P ⎛ ⎝()32,2P M y x b =+M b (2)M m m -,M M E F OEF m xOy y 90︒()3,2A -()0,1B -()3,2C ()1,6D -O O r (),0O m '()3,0E m -()2,1G m -O ' EG EFGH O ' EFGH m xOy O O(1)已知如图1点.①如图1,在点 中,上存在点P 关于点Q 的“等距点”的是________;②如图2,点 ,上存在点P 关于点Q 的“等距点”,则m 的取值范围是________;(2)如图3,已知点,点P 在的图象上,若上存在点P 关于点Q 的“等距点”,求b 的取值范围.40(,)P ()()()12330,2,1,1,1Q Q Q -,O (),Q m n O ()1,1Q y x b =-+O参考答案1.D【分析】此题考查了圆周角定理、垂径定理,熟练掌握圆周角定理、垂径定理是解题的关键.根据垂径定理、圆周角定理判断求解即可.【详解】解:是的直径,,,,,,故A 、B 、C 不符合题意,D 符合题意;故选:D .2.C【分析】本题考查了圆的基本性质以及勾股定理内容以及完全平方公式的应用,先找出半径,结合斜边大于直角边,得知①是正确的,结合勾股定理以及完全平方公式的变形运算,得证③是错误的;同理得证②是正确的.对④运用反证法,得出,与①的结论相矛盾,即可作答.【详解】解:∵∴∵∴(斜边)大于即故①是正确的;∴在中,即∴∵故③是错误的;∵∴∴CD OCD AB ⊥AE BE ∴=90CBD ∠=︒2COB D ∠=∠CBO C ∠=∠2a b c +<2a b c +>2a b c +<()A b C a CB b a ==>,()1122OF AB a b ==+OF AB⊥CF OF2a bc +>()111222OC AO AC a b a b a =-=+-=-Rt COF △222OC OF FC +=22211222a b b a c +⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭2222a b c +==2a b c +<)a b =+b a>()2b a ->222b a ab +>,故②是正确的;假设是正确的则∴∵,且∴∴即与①的结论相矛盾故④是错误的综上:正确结论的个数是个故选:C3.的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“的圆周角所对的弦是直径”即可得出答案,故答案为:的圆周角所对的弦是直径.4.45【分析】本题主要考查了圆周角定理,先由直径所对的圆周角为,可得,然后由得:,然后根据同弧所对的圆周角相等,即可求出的度数.【详解】解:∵是的直径,∴,∵,∴,∴.故答案为:455.3【分析】过作于,求得的度数,根据直角三角形的性质得到,求出三角形的面积,于是得到正十二边形的面积,根据圆的面积公式即可得到结论.本题考查了正多边形与圆,三角形的面积的计算,正确地作出辅助线是解题的关键.【详解】如图,是正十二边形的一条边,点是正十二边形的中心,设的半径为1,过作于,>=>c 2ab ac bc <+0ac ab bc ab<-+-()()0a c b b c a <-+-00c b c a -<->,a b<0c b c a ->->b c c a->-2a b c +>2a b c +<290︒90︒90︒90︒90︒90ACB ∠=︒AC BC =45CAB CBA ∠=∠=︒D ∠AB O 90ACB ∠=︒AC BC =45CAB CBA ∠=∠=︒45D CAB ∠=∠=︒A AM OB ⊥M AOB ∠AM AB O O A AM OB ⊥M在正十二边形中,,∴正十二边形的面积为,,,的近似值为3,故答案为:3.6./70度【分析】本题考查了直径所对的圆周角为直角,同弧所对的圆周角相等,三角形内角和定理等知识.熟练掌握直径所对的圆周角为直角,同弧所对的圆周角相等是解题的关键.由为的直径,可得,由,可得,根据,计算求解即可.【详解】解:∵为的直径,∴,∵,∴,∴,故答案为:.7.25【分析】本题考查了圆的内接四边形性质,圆周角定理等知识,利用圆的内接四边形的性质求出的性质,然后利用圆周角定理求解即可.【详解】解:∵的内接四边形中,,∴,∵点A 是的中点,3601230AOB ∠=︒÷=︒1122AM OA ∴==111112224AOB S OB AM ∴=⋅=⨯⨯= 11234⨯=231π∴=⨯3π∴=π∴70︒BC O 90BAC ∠=︒ AC AC =20ABC D ∠=∠=︒180ACB BAC ABC ∠=︒-∠-∠BC O 90BAC ∠=︒ AC AC =20ABC D ∠=∠=︒18070ACB BAC ABC ∠=︒-∠-∠=︒70︒BCD ∠O ABCD 130DAB ∠=︒18500DA BCD B ∠︒∠==︒- BD∴,∴,故答案为:25.8.【分析】本题考查的是等腰三角形的性质,三角形的外角的性质,切线的性质,如图,连接,求解,再根据圆周角定理即可得答案.【详解】解:如图,连接,∵ 与相切于点.,∴,,∴,故答案为:9./72度【分析】本题考查了等腰三角形的性质,圆周角定理及三角形内角和定理,熟练掌握等腰三角形的性质及圆周角定理是解题的关键.根据等边对等角和三角形内角和定理可求得,再由角平分线及圆周角定理确定,即可求解.【详解】解:∵,,∴,∵平分,∴,∴,∴,故答案为:.10.【分析】本题考查了垂径定理,勾股定理和中位线定理,由垂径定理得,,则可得是的中位线,设半径为,由勾股定理得,求出即可求解,熟练掌握知识点的应用是解题的关键.【详解】解:∵,AD AB =1252ACD ACB BCD ∠=∠=∠=︒25OC 904050COP ∠=︒-︒=︒OC PC O C 40P ∠=︒90OCP ∠=︒904050COP ∠=︒-︒=︒1252A COP ∠=∠=︒2572︒72ABC C ∠=∠=︒36CBD CAD ∠=∠=︒AB AC =36BAC ∠=︒180180367222BAC ABC C ︒-∠︒-︒∠=∠===︒BD ABC ∠36CBD ∠=︒36CBD CAD ∠=∠=︒72DAB DAC CAB ∠=∠+∠=︒72︒6142AD BD AB ===90ADO BDO ∠=∠=︒OD ABC r 222OA OD AD =+=5r OE AB ⊥∴,,∵,∴是的中位线,∴,即,设半径为,则,在中,由勾股定理得:,∴,解得,∴,∴.11.【分析】本题考查了切线的性质,圆周角定理,直角三角形的性质,熟练掌握圆周角定理是解题的关键.先根据圆的切线垂直于经过切点的半径得到,根据直角三角形两个锐角互余计算出,然后根据圆周角定理即可求解.【详解】解:∵是的直径,为的切线,∴,∴,∵,∴,∴.故答案为:.12;;平行(或);思考:【分析】发现:如图1,连接,作于,由题意知,,,当三点共线时,最小,为;当重合时,最大,由勾股定理求解即可;由题意知,则,进而求解作答即可; 思考:如图2,连接,作于,则,,由,可得,,根据,计算求解即可.【详解】发现:解:如图1,连接,作于,142AD BD AB ===90ADO BDO ∠=∠=︒OA OC =OD ABC 12OD BC =2BC OD =r 2OD OE DE r =-=-Rt AOD 222OA OD AD =+()22224r r =-+=5r 23OD r =-=26BC OD ==8090ABD Ð=°40A ∠=︒AB O BD O AB BD ⊥90ABD Ð=°50D ∠=︒40A ∠=︒280BOC A ∠=∠=︒80310 3πAO AE 、BP AF ⊥P 3OM =60DAF ∠=︒A M O 、、AM AO OM -M E 、AM 30BAP ∠=︒132BP AB OF ===OG OH AD ⊥H 30AEF ∠=︒1322OH OE ==OE OG =120EOG ∠=︒2GE EH =EOG EOG S S S =- 重叠扇形AO AE 、BP AF ⊥P由题意知,,,当三点共线时,最小,由勾股定理得,∴;当重合时,最大,由勾股定理得,,∴的最大值为;∵矩形,∴,∴,∴,又∵,∴,故答案为:平行(或);;;平行(或);思考:解:如图2,连接,作于,∵,∴,∴,∵,∴,∴3OM =60DAF ∠=︒A M O 、、AM AO ==AM 3-M E 、AM 10AE ==AM 10ABCD 90BAD ∠=︒30BAP ∠=︒132BP AB OF ===BP OF ∥OB l ∥ 310 OG OH AD ⊥H 60DAF EF AF ∠=︒⊥,30AEF ∠=︒1322OH OE ==OE OG =120EOG ∠=︒2GE EH ===EOG EOG S S S =- 重叠扇形212031336022π⋅=-⨯3π=∴重叠部分面积为【点睛】本题考查了勾股定理,含的直角三角形,平行线的判定,等腰三角形的判定与性质,扇形面积等知识.熟练掌握勾股定理,含的直角三角形,平行线的判定,等腰三角形的判定与性质,扇形面积是解题的关键.13.(1)证明见解析(2)【分析】本题考查切线的判定和性质,垂径定理,圆周角定理以及勾股定理,掌握切线的性质和判断方法,垂径定理,圆周角定理以及勾股定理是正确解答的关键.(1)根据切线的性质,平行线的判定和性质以及圆周角定理即可得出结论;(2)根据相似三角形的判定和性质以及垂径定理进行计算即可.【详解】(1)证明:是的切线,,于点,,,,,.(2)解:连结,于点,是的直径,,是的垂直平分线,,的半径为5,,,是的直径,,3π30︒30︒323DF =AM O 90BAM ∴∠=o CD AB ⊥ E 90CEA ∴∠= CD AF ∴∥∴∠=∠CDB AFB CDB CAB ∠=∠ ∴∠=∠CAB AFB AD CD AB ⊥ E AB O CE DE ∴=AB ∴CD 8AC AD ∴==O 10AB ∴=6BD =∴AB O 90BDA =∴∠,,,,.14.(1)、;(2);(3).【分析】本题是新定义阅读题,考查了理解能力,与圆的位置关系,勾股定理等知识,解决问题的关键是几何直观能力,数形结合.(1)根据定义验证可得结果;(2)根据最大值为6,所以以为圆心,3为半径画圆,根据勾股定理求得,进而求得结果;(3)以为圆心,1为半径作圆,直线与圆相切,此时,以为圆心,2为半径作圆,直线与圆相切,求得,进而求得结果.【详解】(1)解:如图1,,,,是的“倍弦线”,与不相交,,和不是的“倍弦线”,故答案为:、;(2)如图2,BAD AFB ∴∠=∠tan tan ∴∠=∠BAD AFB ∴=AD BD DF AD2AD DF BD ∴=⋅323∴=DF AB CD ≤≤E y 21b -≤≤+PQ O EF (2,0)y x b =+2b =-(1,0)-y x b =+I b 2AF FH BH === CG GF DF ===AB ∴CD O BC O 23AI AE DI BH ==BC ∴AD O AB CD以为圆心,3 为半径画圆交直线于和,,;(3)如图3,以为圆心,2为半径画圆,直线与相切,此时,以为圆心,1为半径作,直线与线切,此时15.(1)(2)(3)【分析】(1)先得出直线为,根据轴对称得出进而可得,勾股定理求得点与原点的距离,进而根据新定义即可求解;(2)依题意,当线段上存在一个点到原点的距离为时,则符合题意,进而分画出图形,即可求解;(3)根据题意,画出图形,就点的位置,分类讨论,根据新定义即可求解.【详解】(1)解:∵当时,直线为,即轴,∵∴∴∵, O 2x =E E'EFE y (1,0)O '-O '1y x b =+ 11b =(2,0)O ''O '' 2y x b =+O '' 22b =-21b ∴-≤≤+23Q Q ,2m ≤≤2m -≤≤-2l 0y =121,.2P P ''⎛⎛ ⎝⎝,11PP '=22P P '=1234,,,Q Q Q Q 02PP '≤≤AB 20,0m m ><P 0a =l 0y =x 121.2P P ⎛⎛ ⎝⎝,121,.2P P ''⎛⎛ ⎝⎝,11PP '=22P P '=()112Q ,232Q ⎫⎪⎪⎭,()(341,1Q Q --,∴,,∴点关于直线的“衍生点”是,点关于直线的“衍生点”是,故答案为:.(2)解:依题意,,由(2)可得当点是点关于直线的“衍生点”则,∵为 上任意一点, 直线 与轴, 轴的交点分别为点 ,.∴,∴当线段上存在一个点到原点的距离为时,当时,如图所示,当时,即与点重合时,存在点是点关于直线的“衍生点”,则则(除端点外)上所有的点到的距离都,∵对称轴为直线,不能为轴,则和不是点关于直线的“衍生点”,则符合题意,∵线段上存在点,,使得点是点关于直线的“衍生点”,点不是点关于直线的“衍生点”,∴,当,此时最短,则当时,,此时只有1个点到的距离为,其他的点都不是点关于直线的“衍生点”,∴根据对称性,当时,可得;综上所述,(3)∵时∴随着的变化,点关于直线的对称点始终在圆上,如图所示,依题意,直线是经过圆心,且经过的直线,经过圆心,1OQ =2OQ ==3OQ ==42OQ ==1P l 2Q 2P l 3Q 23Q Q ,02PP '≤≤S P l 2OS ≤P O y x m =+()0m ≠x y A B OA OB m ==AB 20m >2OS =S B S P l 2m =AB O 2<y ax =y ()0,2()2,0-P l 2m =AB S T S P l T P l m 2≥OS y x m '⊥=+OS '2OS '=m =O 2P l 2m ≤≤0m <2m -≤≤-2m ≤≤2m -≤≤-11a -≤≤a P l P 'l AB s①当点在(包括边界)上时,当重合时,当为直径时,则,根据新定义可得,∴,②当点在的内部的圆弧上时(不包括边界),当为直径时,则,则对于线段 上任意一点,都存在上的点和直线,使得点是点关于直线的“衍生点”.当在轴上时,两条边界线的正中间,则P AB ,P P 'PP '2OQ PP '==02PP '≤≤()2D s =P AD PP '2OQ PP '==MN R O P l R P l P y PP '即综上所述,【点睛】本题考查了一次函数,圆的定义,轴对称的性质,勾股定理求线段长,理解新定义,熟练掌握几何变换是解题的关键.16.(1)①,;②;(2)或.【分析】()根据新定义即可求解;找到关键点先求出此时的值,然后即可求解;()由可知,点在直线上,再根据新定义分四种情况画出图即可;本题考查了圆的切线,勾股定理和等边三角形的性质,熟练掌握知识点的应用是解题的关键.【详解】(1)如图,根据题意,直线与以为半径的相切,由图可知,等边三角形的“相关切点”是,故答案为:;根据题意,满足题意的点是以,半径为的弧上,如图,2PP OQ '≤=≤()2D s =()2D s =1P 2P 312b -≤21m ≤≤10m ≤1①②b 2().2M m m -2y x =-①OP MN M M 12P P 、12P P 、②P ()1,01若直线上存在等边三角形的“相关切点”,如图,由,是等腰直角三角形,,∴,∴,即,∵,∴,∴此时,∴的取值范围为;(2)如图,此时中,,,y x b =+M HIK OSK 1HI=KI =1OK OS ==b =3,2P ⎛ ⎝PL =32KL =OG =b =b b 312b -≤≤OEM △30EOM ∠=︒90OEM ∠=︒(),2M m m -此时,,解得:,如图,此时中,,,此时,,解得:(正值舍去),如图,4OM =()22224m m +-=1m =+OEM △30EOM∠=︒90OEM ∠=︒(),2M m m -4OM =()22224m m +-=1m =此时,,解得:或(舍去),如图,此时,,解得:(舍去)或,综上可知:.17.(1)①②;(2).【分析】(1)①根据“关联图形”的定义判断即可;②根据关联图形的定义,判断出点旋转后的轨迹, 从而得到的半径范围(2)根据关联图形的定义,求出点旋转后的轨迹,当与该轨迹有唯一交点时,取最小值;根据关联图形的定义,求出点旋转后的轨迹,当与该轨迹有唯一交点时,取最大值;2OM =()22222m m +-=2m =0m =2OM =()22222m m +-=2m =0m =21m ≤≤10m ≤B0r <<m m A O G O ' m E O ' m【详解】(1)①点绕逆时针旋转得到点,故答案为:;②设点,那么点绕点逆时针旋转得到点,作轴交轴于点,作轴交轴于点,如图所示由旋转可知,,,,坐标为在上运动设与轴的交点为,与轴交点为当,,当时,,,以点为圆心,作圆,当与有为唯一交点时,半径为斜边上的高当不是点的关联图形时,故答案为:.(2)设点绕点逆时针旋转对应点为点,过点作轴交轴于点,连接A (0,2)90B B (0,)T a A T 90 A 'AJ y ⊥y J A K y '⊥y K AT A T '=90ATA ∠='︒90AJT ∠=︒90TAJ ATJ ∴∠+∠=︒90ATJ A TK =︒'+ TAJ A TK'∴∠=ATJ A KT'∴ ≌(3,2)A - 2TJ a KA '∴=-=3AJ TK==3OK TO TK a ∴=-=-∴A '(2,3)a a --A '∴1y x =-1y x =-x M y N0x =1y =-0y =1x =(1,0)M ∴(0,1)N-MN ∴==O O 1y x =-OMNOM ON r MN ⋅∴===∴OA 0r <0r <<(3,0)E m -(0,)T a 90︒E 'E 'E S y '⊥y S,,如图所示由旋转可知,,,,点坐标为所以在上运动,与轴的夹角为设在轴的交点为,那么点坐标为当与有唯一交点时,最大与相切为等腰直角三角形且故;TE TE 'AE =TE T E '=90ETE ∠='︒90ETO E TO '∴∠+∠=︒90ETO TEO ∠+∠=︒0E T TEO'∴∠=∠90EOT E ST '∠=∠=︒ETO TE S'∴ ≌3EO TS m ∴==-TO E S a'==(3)3TS TO SO a m a m∴=-=--=+-E '∴(,3)a a m +-E '3y x m =+-1k = 3y x m ∴=+-x 45︒3y x m =+-x Q Q (3,0)m -3y x m =+-O ' R m 3y x m =+- O ' 90O RQ ∴='∠︒O RQ '∴ 1O R '=(3)23O Q m m m '∴=--=-=m ∴=m设点绕点逆时针旋转对应点为点,过点作轴交轴于点,过点作轴交连接,,如图所示同理可证,,的坐标是在上运动设与轴的交点为,当与该直线有唯一交点时,取最小值.同理可证为等腰直角三角形,且故【点睛】本题考查了线段的旋转,三角形全等的判定与性质,圆与直线的关系判断,圆的切线的性质与计算,一次函数, “关联图形”等知识点,熟练掌握以上知识点并根据画出正确的图形是解题的关键.18.(1)①;②(2)【分析】(1)①求出点P关于的对称点,利用点到圆心的距离与半径比较,即可判断“等距点”;②在上任取一点点P 关于点Q 的“等距点”M ,连接,取的中点即为点Q ,连接,取其中点,连接,根据中位线定理则判断出点Q 的在以为圆心,半径为1的上,即可求解;(2)过点O 作点Q 的对称点,则点为,则上所有的点关于点Q 的对称点都在以为圆心,半径为2的上,那么直线与有公共点即可,找到两个临界状态,即相切位置,分别求b 即可.(2,1)G m -(0,)T a 90 G 'G 'G P y '⊥y P G GQ y ⊥TG TG 'GTQ G TP ' ≌1TQ PG a '∴==-2GQ TP m==-(2)2PO TO TP a m a m ∴=-=--=+-G '∴(1,2)a a m -+-G '∴1y x m =+-1y x m =+-x (1,0)L m -O ' K m O KL ' O L K ''==112O L m m m '∴=--=-=m ∴=m 12,Q Q 13m ≤≤44b -≤≤+()()()12330,2,1,1,1Q Q Q -,O MP MP OP O 'QO '()2,0O 'O ' O 'O '()2,2O O '()2,2O ' y x b =-+O '【详解】(1)解:①如图,点P 关于的对称点分别为,则,,∴在上,∴点P 关于点Q 的“等距点”的是故答案为:;②在上任取一点点P 关于点Q 的“等距点”M ,连接,取的中点即为点Q ,连接,取其中点,连接,∴,∴点Q 的在以为圆心,半径为1的上,()()()12330,2,1,1,1Q Q Q -,()()()2,0,0,2,2,2--12d R ==22d R ==3d R==>()()2,0,0,2-O 12,Q Q 12,Q Q O MP MP OP O 'QO '112QO OM '==()2,0O 'O '∵与轴交于点,∴,故答案为:.(2)解:过点O 作点Q 的对称点,则点为,∴上所有的点关于点Q 的对称点都在以为圆心,半径为2的上,∵点P 在的图象上,∴当直线与相交即可,当直线与第一次相切时,设切点为点E ,直线与y 轴交点G ,当直线与第二次相切时,设切点为点F ,∵,∴∴,∵点,∴其点Q 与点O 的水平距离与铅锤距离均是1,∴,由相切得:,∴为等腰直角三角形,∴,同理可求当直线与第二次相切时,综上:【点睛】本题考查了新定义,中心对称,圆的定义,中位线定理,点与圆的位置关系,直线与圆的位置关系,勾股定理,熟练掌握知识点是解题的关键.O ' x ()()1,0,3,0-13m ≤≤13m ≤≤O 'O '()2,2O O '()2,2O ' y x b =-+y x b =-+O ' y x b =-+O ' y x b =-+O ' ()2,2O 'OO ¢=2OE OO O E ''=-=()1,1Q 45EOG ∠=︒GE OO '⊥ OGE 4OG b ==-=y x b =-+O ' 4b =+44b -≤≤+。

2024北京顺义区初三一模数学试题及答案

2024北京顺义区初三一模数学试题及答案

顺义区2024年初中学业水平考试综合练习(一)数学答案及评分参考二、填空题(本题共16分,每小题2分)9.3x ≠ ; 10.4(1)(1)m m +− ; 11.2x =; 12.6(答案不唯一);13.OB =OD (答案不唯一);14.72︒; 15. 60 ; 16.1,2n.三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-22题,每题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题每题7分)17.解:1024sin 458(1)π−−++− 1412=− ………………………………………………………4分 32= ………………………………………………………………………………5分 18.解:解不等式①得2x > …………………………………………………………………2分 解不等式②得1x > ………………………………………………………………… 4分 不等式组的解集是 2.x > ………………………………………………………… 5分19.解:()()2411x x ++− =24421x x x =−+−+ ……………………………………………………2分 =225x x ++ ……………………………………………………………3分∵221,x x +=∴ 原式=225x x ++=1+5=6. …………………………………………………5分20.(1)证明:∵四边形ABCD 是菱形,∴AD =BC ,AD ∥EC.∵BE =BC ,∴BE =AD .又BE ∥AD ,∴四边形AEBD 是平行四边形. ……………………………………………………3分(2)解:∵四边形ABCD 为菱形,∴∠BOC =90︒,12OA AC =. ∵四边形AEBD 为平行四边形, ∴AE ∥BD . ∴∠EAC =∠BOC =90︒. 在Rt △AEC 中, ∵AC =2,tan ∠AEB =12. ∴AO =1,AE =4.在Rt △AEO 中,由勾股定理,∵22217OE AO AE =+=,∴OE ………………………………………………………………………6分AB C D OE21.解:(1)n =90; ……………………………………………………………………2分(2)丙; ………………………………………………… …………………………3分 (3)推荐乙组;推荐理由:乙组平均分和丙组一样高,大于甲组平均分;由于乙、丙两组平均分都是90,而且有三个数据一样,所以乙组的两个85以上的数据是87,88或86,89,可以判断乙组的方差小于丙组的方差. …………………………………5分22.(1)解:由题意可得,45,1.k b b +=⎧⎨=−⎩,解得3,21.k b ⎧=⎪⎨⎪=−⎩ ∴该函数的解析式为312y x =−. …………………………………………………….2分 ∵点C 的横坐标为2,点C 在函数312y x =−的图象上, 当x =2时,解得y =2.∴点C 的坐标为(2,2). ……………………………………………………………3分 (2)n 的取值范围是12n ≤≤. ……………………………………………………5分23.设秤砣 x g ,秤盘重y g .由题意可得, 2.5(40)11,2.5(60)16.y x y x +=⎧⎨+=⎩,…………………………………………………3分 解得10,4.x y =⎧⎨=⎩…………………………………………………………………………….4分 所以这把杆秤的秤星E 对应的最大刻度是261041002.5⨯−=.所以这把杆秤的秤星E 对应的最大刻度是100克.……………………………………6分24.(1)证明:连接OC ,OD .∵弧AC = 弧AD ,∴∠AOC=∠AOD .又∵OC =OD ,∴AB ⊥CD .∵BF 是⊙O 的切线,∴AB ⊥BF ,∴CD ∥BF . ……………………………………..3分(2)∵E 为AO 中点,OA =4,∴OE =AE =2.在Rt △EOD 中,OD =4,∴DE=.∵CD ∥BF ,F B D E OG C A∴△AED ∽△ABF , ∴AE ED AB BF=,BF= 在△GEO 和△FBO 中,∠GOE =∠FOB ,∠GEO =∠FBO ,∴△GEO ∽△FBO ∴OE EG OB BF=,EG=∴CG =EG -CE =EG -DE=…………………………………………………..……6分25.(1)……………………………………………………2分(2)6.8 (6.4~7.2); …………………………………………………………………………3分(3)乙类,6.6 (6.2~7.0) . ………………………………………………………………. 5分26.解:(1)∵抛物线2(y ax bx c a =++>经过(0,c )和(2,c ),∴抛物线对称轴为x =1.…………………………………………………..…………….2分(2)2x t t x t =∵抛物线的对称轴为,<<+2,2'x N N ∴点在对称轴右侧,设点关于对称轴对称点的横坐标为2'2,t x t −∴<< 12y y ∵>,11t x t −−<<2 ∴①当点M 在对称轴左侧时, 2t t t −−≤2≥2 ②当点M 对称轴右侧时,11t t t −+≥2≤-21.t t ≥2或≤综述,-所2上…………………………………………………..…………….6分 27. (1)解:∵正方形ABCD ,∴AB =BC ,∠DCB=∠ABC=90°. …………………………………………………1分∴∠ABF=∠BCE=90°.x=h t 1x=h∵CE =BF ,∴△ABF ≌△BCE . ……………………………………………………………..…2分∴∠F=∠E .∵∠GBF=∠CBE ,∴∠FGB=∠ECB=90°.∴∠AGE=90°.……………………………………………………………………..3分(2) ①… ……………………………………………….…4分②BG CH 2=.证明:过点B 作GE BK ⊥交AH 于点K ,过点K 作AF KL ⊥与点L∴∠KBH=∠KLA=90°.∵∠ABC=90°,∴∠ABK+∠KBC=∠KBC +∠CBH .∴∠ABK=∠CBH .∵GH =AG ,∠AGE=90°,∴∠KAL=∠BHK=45°.∴∠AKL=∠BKH=45°.∴BH=BK ,KL=AL .∵AB=BC ,∴△BCH ≌△ABK .∴CH=AK . ……………………………………………………………6分∵∠GLK=∠GBK=∠AGE=90°,∴ 四边形GBKL 为矩形.∴GB=KL .∵△ALK 是等腰直角三角形,∴KL AK 2=.∴BG CH 2=.…………………………………………………………………………7分28.(1)①B ,C. ………………………………………………………………………………2分②设直线BC 的表达式是y =kx +b (k ≠0),则{b =−1−3k +b =2,解得{k =1b =−1 ∴直线BC 的表达式是y =x -1. …………………………………………………………..3分∴直线BC 与x 轴的交点坐标为B ’(1,0)∴BB ’=√2.作OP ’⊥BB ’于点P ’,∴OP .………………………………………………………………………………4分由①问的探索可知,点A 以y 轴上点T 为旋转中心,逆时针旋转90°,得到的点Q 落在直线BC 上,证明略.若⨀O 不是点A 的“关联图形”,∴0<r .…………………………………………………………………………….…5分(2)m的最小值为…………………………………………7分。

2024北京首都师大附中初三一模数学试卷和答案

2024北京首都师大附中初三一模数学试卷和答案

2024北京首都师大附中初三一模数 学一、选择题:本题共8小题,每小题2分,共16分.在每小题给出的选项中,只有一项是符合题目要求的.1. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( )A. 50.77810⨯B. 47.7810⨯C. 377.810⨯D. 277810⨯2. 下列计算正确的是( ).A. 235x x x +=B. 236•x x x =C. 32x x x ÷=D. 23626()x x =3. )A. 1B. 2C. 3D. 44. 不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A. 14 B. 13 C. 12 D. 345. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示.若b +d =0,则下列结论正确的是( )A. b +c >0B. a c >1C. ad >bcD. |a |>|b |6. 如图是30名学生A ,B 两门课程成绩的统计图,若记这30名学生A 课程成绩的方差为21S ,B 课程成绩的方差为22S ,则21S ,22S 的大小关系为( )A. 2212s s <B. 2212s s =C. 2212S s >D. 不确定7. 如图①,底面积为230cm 的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度()cm h 与注水时间()s t 之间的关系如图②.若“几何体”的下方圆柱的底面积为215cm ,求“几何体”上方圆柱体的底面积为( )2cmA. 24B. 12C. 18D. 21二、填空题:本题共8小题,每小题2分,共16分.8. 某潜艇从海平面以下27米上升到海平面以下18米,此潜艇上升了_____米.9. 如图所示的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该是________.10. 已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.11. 如图,在64⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的顶点均是格点,则sin ABC ∠的值是______.12. 已知21x y =⎧⎨=⎩是方程3ax by +=的一组解()0,0a b ≠≠,任写出一组符合题意的a 、b 值,则a =______,b =______.13. 如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若86AB AD ==,,则AF 的长为______.14. 图中的小正方形边长都相等,若MNP MFQ ≌,则点Q 可能是图中的_______.15. 初三(1)班同学在“2024义卖”活动中表现特别突出,他们设计了甲乙两款纪念品.销售一件甲纪念品可获利16%:销售一件乙纪念品可获利24%;当销售量的比为3:2时,总获利为18%.当销售量的比为1:3时,总获利为______.三、计算题:本大题共2小题,共10分.16.112cos3013-⎛⎫-︒+ ⎪⎝⎭17. 已知2240x x +-=,求22(1)(6)3x x x ---+的值.四、解答题:本题共10小题,共58分.解答应写出文字说明,证明过程或演算步骤.18. 解不等式组:()238112x x x x ⎧-≤-⎪⎨+>-⎪⎩19. 已知:如图,△ABC 为锐角三角形,AB =AC .求作:点P ,使得AP =AB ,且APC BAC ∠=∠.作法:①以点A 为圆心,AB 长为半径画圆;②以点B 为圆心,BC 长为半径画弧,交A 于点D (异于点C );③连接DA 并延长交A 于点P .所以点P就是所求作的点.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC .∵AB =AC ,∴点C 在A 上.∵ DC DC =,∴12DPC DAC =∠∠(____________________)(填推理的依据),由作图可知, BDBC =,∴DAB ∠=______12DAC =∠.∴APC BAC ∠=∠.20. 如图,⊙O 是Rt △ABC 的内切圆,∠B =90°.(1)若AB =4,BC =3,①求Rt △ABC 外接圆的半径;②求Rt △ABC 内切圆的半径;(2)连接AO 并延长交BC 于点D ,若AB =6,tan ∠CAD =13,求此⊙O 的半径.21. 如图,在四边形ABCD 中,∠DAB =60°,AD :AB =2:3,BD ,AB ⊥BC .(1)求sin ∠ABD 的值.(2)若∠BCD =120°,求CD 的长.22. 某社区通过公益讲座的方式普及垃圾分类知识.为了了解居民对相关知识的了解情况及讲座效果,请居民在讲座前和讲座后分别回答了一份垃圾分类知识问卷,从中随机抽取20名居民的两次问卷成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .这20名居民讲座前、讲座后成绩得分统计图如下:b .这20名居民讲座前、讲座后成绩的平均数、中位数、方差如下平均数中位数方差讲座前72.071.599.7讲座后86.8m 88.4c .结合讲座后成绩x ,被抽取的20名居民中有5人获得“参与奖”(80)x <,有7人获得“优秀奖”809()0x ≤<,有8人获得“环保达人奖”(90100)x ≤≤,其中成绩在8090x ≤<这一组的是:80 82 83 85 87 88 88根据以上信息,回答下列问题:(1)居民小张讲座前的成绩为80分,讲座后的成绩为95分,在图中用“○”圈出代表居民小张的点;(2)写出表中m 的值;(3)参加公益讲座的居民有160人,估计能获得“环保达人奖”的有_____人.23. 如图是某公园人工湖上的一座拱桥的示意图,其截面形状可以看作是抛物线的一部分.经测量拱桥的跨度AB 为12米,拱桥顶面最高处到水面的距离CD 为4米.(1)在边长为1的正方形网格中建立适当的平面直角坐标系,根据已知数据描出点A ,B ,C ,并用平滑曲线连接;(2)结合(1)中所画图象,求出该抛物线的表达式;(3)现有一游船(截面为矩形)宽度为4米,顶棚到水面的高度为2.8米.当游船从拱桥正下方通过时,为保证安全,要求顶棚到拱桥顶面的距离应大于0.5米,请判断该游船能否安全通过此拱桥.24. 如图,矩形AOBC 的顶点B ,A 分别在x 轴,y 轴上,点C 坐标是()5,4,D 为BC 边上一点,将矩形沿AD 折叠,点C 落在x 轴上的点E 处,AD 的延长线与x 轴相交于点.F(1)如图1,求点D 的坐标;(2)如图2,若P 是AF 上一动点,PM AC ⊥交AC 于M ,PN CF ⊥交CF 于N ,设AP t =,FN s =,求s 与t 之间的函数关系式;(3)在(2)的条件下,是否存在点P ,使PMN 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为160m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等设BC 的长度为m x ,矩形区域ABCD 的面积为2m y(1)是否存在x 的值,使得矩形ABCD 的面积是21500m ;(2)x 为何值时,y 有最大值?最大值是多少?26. 如图,在等边ABC 中,点D 在BC 边上,点E 在AC 的延长线上,且DE DA =.(1)求证:BAD EDC ∠=∠;(2)点E 关于直线BC 的对称点为M ,连接DM ,AM ,①根据题意将图补全;②在点D 运动的过程中,DA 和AM 有什么数量关系并证明.27. 如图,AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD ⊥EF 于点D ,∠DAC=∠BAC(1)求证:EF 是⊙O 的切线;(2)求证:AC 2=AD·AB ;(3)若⊙O 的半径为2,∠ACD=30°,求图中阴影部分的面积.参考答案一、选择题:本题共8小题,每小题2分,共16分.在每小题给出的选项中,只有一项是符合题目要求的.1. 【答案】B【详解】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:将77800用科学记数法表示为:47.7810⨯.故选B .点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2. 【答案】C【分析】根据指数的计算法则计算即可.【详解】解:A 、23x x +不能合并,错误;B 、235•x x x =,错误;C 、32x x x ÷=,正确;D 、23628()x x =,错误;故选C .【点睛】本题主要考查指数的计算法则,是考试的重点,应当熟练的掌握.3. 【答案】B<<2=,即可得出选项【详解】解:=<<,∴2.故选:B【点睛】本题主要考查了估算无理数的大小,在正数范围内,一个数越大,则它的算术平方根也越大.4. 【答案】A【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与第一次摸到红球,第二次摸到绿球的情况,然后利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有4种等可能的结果,第一次摸到红球,第二次摸到绿球有1种情况,∴第一次摸到红球,第二次摸到绿球的概率为14,故选:A .【点睛】本题考查了画树状法或列表法求概率,列出所有等可能的结果是解决本题的关键.5. 【答案】D【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】解:∵b +d =0,由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、∵b +d =0,∴b +c <0,故A 不符合题意;B 、a c<0,故B 不符合题意;C 、ad <bc <0,故C 不符合题意;D 、|a |>|b |=|d |,故D 正确;故选:D .【点睛】本题考查了实数与数轴,有理数的运算,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键.6. 【答案】A【分析】根据方差的意义求解.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】方差体现了某组数据的波动情况,波动越大,方差越大,由图可知,B 课程成绩的波动大,A 课程成绩的波动小,∴2212s s ;故选:A .【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7. 【答案】A【分析】根据图像,分三个部分:满过“几何体”下方圆柱需18s ,满过“几何体”上方圆柱需()24186s -=,注满“几何体”上面的空圆柱形容器需()422418s -=,再设匀速注水的水流速度为3cm /s x ,根据圆柱的体积公式列方程可得匀速注水的水流速度;设“几何体”下方圆柱的高为cm a ,根据圆柱的体积公式得()3015185a ⋅-=⨯,解得6a =,于是得到“几何体”上方圆柱的高为5cm ,设“几何体”上方圆柱的底面积为2cm S ,根据圆柱的体积公式得()()53052418S ⋅-=⨯-,再解方程即可求解.【详解】解:根据函数图像得到圆柱形容器的高为14cm ,两个实心圆柱组成的“几何体”的高度为11cm ,水从刚满过由两个实心圆柱组成的“几何体”到注满用了:()422418s -=,这段高度为:)14113m (c -=,设匀速注水的水流速度为3cm /s x ,则18303x ⋅=⨯,解得5x =,即匀速注水的水流速度为35cm /s ;“几何体”下方圆柱的高为cm a ,则3015185()a ⋅-=⨯,解得6a =,所以“几何体”上方圆柱的高为)1165m (c -=,设“几何体”上方圆柱的底面积为2cm S ,根据题意得()()53052418S ⋅-=⨯-,解得24S =,即“几何体”上方圆柱的底面积为224cm ,故选:A .【点睛】本题考查了函数图像的应用:把分段函数图像中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题是解决本题的关键.二、填空题:本题共8小题,每小题2分,共16分.8. 【答案】9【分析】用潜艇从海平面以下的高度减去上升到海平面以下的高度,就是潜艇上升的高度,据此解答.【详解】根据题意得:﹣18﹣(﹣27)=9(米).故答案为9.【点睛】本题考查了有理数的减法运算,根据题意列出算式是解答此题的关键.9. 【答案】(-3,-7)【详解】根据白棋的坐标,可确定如图,所示的平面直角坐标系,可得黑棋①的坐标为(-3,-7).10. 【答案】23-【分析】根据一元二次方程根与系数的关系得出121246x x x x +==-,,将分式通分,代入即可求解.【详解】解:∵一元二次方程256x x x +=+,即2460x x --=,的两根为1x 与2x ,∴121246x x x x +==-,,∴1211+x x 12124263x x x x +===--,故答案为:23-.【点睛】本题考查了分式的化简求值,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.11.【分析】本题考查解直角三角形,关键是掌握三角函数定义.构造直角三角形由勾股定理求出AB 长,由锐角的正弦定义即可求解.【详解】如图,利用格点作AD BC ⊥交BC 的延长线于点D ,ABD是直角三角形,AB ∴===sinAD ABC AB ∴∠===,12. 【答案】 ①. 1 ②. 1【分析】把方程组解代入,即得到关于,a b 的一个方程,有无数个解,任意写出一个即可.【详解】解:把21x y =⎧⎨=⎩代入方程3ax by +=可得:23a b +=1a ∴=时,有1b =故答案为:1,1.【点睛】本题考查了二元一次方程的解的意义.熟记相关定义即可.13. 【答案】103【分析】本题考查矩形的性质,勾股定理,相似三角形的判定和性质,先利用勾股定理求出对角线AC 的长,再证明CDF AEF ∽,根据对应边成比例即可求出AF 的长.【详解】解: 四边形ABCD 是矩形,86AB AD ==,,∴8CD AB ==,CD AB ∥,90ADC ∠=︒,∴10AC ===,E 是边AB 的中点,∴142AE AB ==, CD AB ∥,∴CDF AEF ∠=∠,DCF EAF ∠=∠,∴CDF AEF ∽,∴AE AF AF CD CF AC AF ==-,∴4810AF AF=-,解得103AF =,故答案为:103.14. 【答案】点D【分析】设图中小正方形的边长为1,由勾股定理可计算出MNF 的三边长,再计算出点M 、F 分别与A 、B 、C 、D 四点的距离,即可作出判断.【详解】解:设图中小正方形的边长为1,∵2MN MF ==,由勾股定理得:MP ==NP ==,由于AF MF ⊥,显然点A 不可能是点Q ;∵MD FD ====,∴MD MP FD NP ==,,∴MNP MFD ≌,即点D 是点Q ;∵MB MP FB NP ==≠==≠,,∴点B 不是点Q ;同理,点C 不是点Q ;∴点Q 可能是图中的点D ;故答案为:点D .【点睛】本题考查了全等三角形的性质,勾股定理,利用勾股定理求得各线段的长度是关键.15. 【答案】20.8%【分析】本题考查了分式方程,利润、成本及利润率的关系,设一件甲纪念品的成本为a 元,一件乙纪念品的成本为b 元,由“销售量的比为3:2时,总获利为18%”及利润率公式,可求得a 与b 的关系,则可求得销售量的比为1:3时的总获利.【详解】解:设一件甲纪念品的成本为a 元,一件乙纪念品的成本为b 元,则16%324%218%32a b a b⨯⨯+⨯⨯=+,解得2a b =,当销售量的比为1:3时,总获利为:16%124%3216%124%3104%20.8%3235a b b b b a b b b b⨯⨯+⨯⨯⨯⨯+⨯⨯⨯===++,故答案为:20.8%.三、计算题:本大题共2小题,共10分.16. 【答案】4【分析】先利用负整数指数幂,特殊角锐角三角函数值,绝对值的性质,立方根的性质化简,再合并,即可求解.112cos3013-⎛⎫+-︒+ ⎪⎝⎭2321=+--231=+4=.【点睛】本题主要考查了负整数指数幂,特殊角锐角三角函数值,绝对值的性质,立方根的性质,熟练掌握相关运算法则是解题的关键是解题的关键.17. 【答案】9.【分析】将2240x x +-=化为224x x +=,整体代入化简后的代数式即可.【详解】解:∵2240x x +-=,∴224x x +=.∴22222(1)(6)32426325459x x x x x x x x x ---+=-+-++=++=+=.【点睛】本题考查整式的混合运算及化简求值,掌握完全平方公式和单项式乘多项式的法则正确计算是解题关键.四、解答题:本题共10小题,共58分.解答应写出文字说明,证明过程或演算步骤.18. 【答案】2x ≤-【分析】分别解两个不等式得到两个不等式的解集,再取解集的公共部分可得答案.【详解】解:()238112x x x x ⎧-≤-⎪⎨+>-⎪⎩①②解不等式①,得2x ≤-解不等式②,得3x <在数轴上表示不等式①、②的解集,所以这个不等式组的解集是2x ≤-.【点睛】本题考查的是解不等式组,熟练掌握不等式组的解法是解题关键.19. 【答案】(1)见解析 (2)圆周角定理或同弧所对的圆周角等于它所对圆心角的一半,∠BAC【分析】(1)根据作法按步骤作图即可;(2)根据圆周角定理进行证明即可【小问1详解】解:如图所示,即为所求;【小问2详解】证明:连接PC .∵AB =AC ,∴点C 在A 上.∵ DC DC =,∴12DPC DAC =∠∠(_圆周角定理 或同弧所对的圆周角等于它所对圆心角的一半__)(填推理的依据),由作图可知, BDBC =,∴DAB ∠=_∠BAC __12DAC =∠.∴APC BAC ∠=∠.故答案为:圆周角定理或同弧所对的圆周角等于它所对圆心角的一半,∠BAC .【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.20. 【答案】(1) ①52; ②1(2)32【分析】(1)①先求得线段AC 的长度,然后取AC 的中点H ,得到AH 的长即为△ABC 的外接圆半径;②过点O 作OE BC ⊥于点E ,OF AB ⊥于点F ,OG AC ⊥于点G ,然后可得四边形OEBF 是正方形,设半径为1,结合点O 是ABC 的内心可得AF ,CE 的长度,然后由切线长定理得到4AG AF r ==-,3CG CE r ==-,进而得到72AC r =-,最后利用勾股定理求得r 的值;(2)设半径为r ,得到OF r =,6AF r =-,由内心的定义可知CAD BAD ∠=∠,然后利用正切值求得的大小,即为结果.【小问1详解】解:(1)①如图1,取AC 的中点H ,∵90B Ð=°,∴点H 是Rt ABC 的外接圆圆心.∵4AB =,3BC =,90B Ð=°,∴A 5AC ===1522AH AC ∴==,∴Rt ABC 的外接圆半径为52;②如图2,过点O 作OE BC ⊥于点E ,OF AB ⊥于点F ,OG AC ⊥于点G ,则90OFB OEB ∠=∠=︒.90B ∠=︒ ,∴四边形OEBF 是正方形,设半径为r ,则BF OF OE BE r ====,∴O 是Rt ABC 的内切圆,4AB =,3BC =,∴4AG AF r ==-,3CG CE r ==-,∴.72AC AG CG r =+=-,在Rt ABC 中,222AB BC AC +=,()2224372r ∴+=-,解得1r =或6r =(不符合题意舍去),Rt ABC ∴ 内切圆的半径为l ;【小问2详解】解:如图2,设半径为r ,则0F r =,6AF r =-.O 是Rt ABC 的内切圆,OAF CAD ∴∠=∠.13tan CAD ∠= ,13OF tan OAF AF ∴∠==,163r r ∴=-,解得32r =,O ∴ 的半径为32.【点睛】本题考查了三角形的外接圆和内切圆的性质、解直角三角形,熟知圆的切线长定理是解题关键.21. 【答案】(1)sin ∠;(2)【分析】(1)作DE ⊥AB 于E ,CF ⊥DE 于F .设AE=a .在Rt △BDE 中,利用勾股定理构建方程求出a ,即可解决问题;(2)作CF ⊥DE 于F .首先证明四边形CFEB 是矩形,解直角三角形△CFB 即可解决问题.【详解】解:(1)作DE ⊥AB 于E ,设AE=a .在Rt △ADE 中,∵∠A=60°,AE=a ,∴∠ADE=30°,∴AD=2a ,a ,∵AD :AB=2:3,∴AB=3a ,EB=2a ,在Rt △DEB 中,)2+(2a )2=2,解得a=1,∴BE=2,∴sin ∠ABD=DE AB (2)CF ⊥DE 于F .∵CB ⊥AB ,CF ⊥DE ,∴∠CFE=∠FEB=∠CBE=90°,∴四边形CFEB 是矩形,∴CF=EB=2,BC=EF ,∵∠DCB=120°,∠FCB=90°,∴∠DCF=30°,∴,∴【点睛】本题考查解直角三角形,矩形的判定和性质,直角三角形30度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22. 【答案】(1)见解析 (2)87.5(3)64【分析】(1)找出横坐标是80,纵坐标是95的点即可;(2)根据中位数的定义求解;(3)利用样本估计总体思想求解.【小问1详解】解:代表居民小张的点如下图所示:【小问2详解】解:将讲座后20人的成绩从低到高排序,第10名和第11名的成绩分别为87,88,因此中位数878887.52m +==;【小问3详解】解:81606420⨯=(人),即估计能获得“环保达人奖”的有64人,故答案为:64.【点睛】本题考查统计图、中位数、利用样本估计总体等知识点,解题的关键是看懂所给统计图,掌握中位数的定义,能够利用样本估计总体思想解决问题.23. 【答案】(1)见详解 (2)21493y x x =-+ (3)能安全通过,理由见详解【分析】(1)以点A 为原点,AB 所在的直线为x 轴,过点A 作垂直于AB 的直线为y 轴,建立平面直角坐标系即可;(2)待定系数法求抛物线的表达式即可;(3)游船从拱桥正下方通过时,抛物线的对称轴为6,x =游船也关于直线6x =对称,宽度为4米,对称轴左右两边各2米,当624x =-=时,求出y 的值,再进行比较即可.【小问1详解】以点A 为原点,AB 所在的直线为x 轴,过点A 作垂直于AB 的直线为y 轴,建立平面直角坐标系,如图所示,【小问2详解】解:(0,0),(12,0)A B ,根据交点式,设抛物线的表达式为2(0)(12)12y a x x ax ax =--=-,代入点(6,4)C 得:136724,9a a a -==-, 抛物线的表达式为21493y x x =-+;【小问3详解】解:能安全通过,理由如下:游船从拱桥正下方通过时,抛物线的对称轴为6,x =游船也关于直线6x =对称,宽度为4米,对称轴左右两边各2米当624x =-=时,2143244939y =-⨯+⨯=,32550.5 2.8918-=> ,故能安全通过.【点睛】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键.24. 【答案】(1)34,2D ⎛⎫ ⎪⎝⎭(2)8s =+ (3)存在,()4,2或4024,1111⎛⎫⎪⎝⎭或4820,1111⎛⎫ ⎪⎝⎭【分析】(1)设()5,D a ,则,4BD a CD ED a ===-,再求出,OE BE 的长,在Rt BDE △中,根据勾股定理求出a 的值,即可求解;(2)延长MP 交OF 于N ',则PN OF '⊥,先证明ADC FDB ∽,可得38BF OF ==,,从而得到AF ==,在Rt BCF 中,由勾股定理可得5CF =,可得AC CF =,从而得到CAF AFC ∠=∠,进而得到CAF EFA AFC ∠∠∠==,可证得PFN DAC ∽,可得到11,422PN s PM s ==-,再证明APM FPN ' ∽,即可求解;(3)分三种情况:①当PM PN =时;②当PM MN =时;当MN NP =时,即可求解.【小问1详解】解:在矩形AOBC 中,()5,4C ,5AC ∴=,4OA BC ==,设()5,D a ,则BD a =,4CD ED a ==-,5AE AC == ,在Rt AOE △中,3O E ===,532BE OB OE ∴=-=-=,在Rt BDE △中,由勾股定理得:222DE BD BE =+,222(4)2a a ∴-=+,0a ∴>,32a ∴=,34,2D ⎛⎫∴ ⎪⎝⎭;【小问2详解】如图2,延长MP 交OF 于N ',则PN OF '⊥,∵AC BF ∥,PAM DFB ∠∠∴=,90ACD FBD ∠∠==︒ ,ADC FDB ∴ ∽,ACCDBF BD ∴=,由(1)知:32BD =,35422CD ∴=-=,又5AC =,55232BF ∴=,38BF OF ∴==,,AF ∴===在Rt BCF中,由勾股定理得:5CF ==,5AC = ,AC CF ∴=,CAF AFC ∴∠=∠,∵AC EF ∥,CAF EFA AFC ∠∠∠∴==,FA ∴平分CFO ∠,,PN CF PN OF '⊥⊥ ,PN PN '∴=,4PM PN PM PN MN ''∴+=+==,90CAF CFA ACD PNF ∠∠∠∠===︒ ,,PFN DAC ∴ ∽,FN PNAC CD ∴=,51252PN CD NF AC ∴===,又NF s =,11,422PN s PM s ∴==-,PA t PF t ==- ,,,PAM PFN APM FPN ∠∠∠∠''== ,APM FPN '∴ ∽,PM AP PN PF ∴=',即14212s s-=8s ∴=+;【小问3详解】分三种情况:①当PM PN =时,如图3,PAM PFN ∠=∠ ,90AMP PNF ∠=∠= ,PAM ∴ ∽PFN ,1PA PMPF PN ∴==,PA PF ∴=,即t t =-,解得:t =,∴84FN s ==+=,2PM PN ∴===,4AM ===,()4,2P ∴;②当PM MN =时,如图4,过M 作MH PN ⊥于H ,PN 与MC 的延长线交于点G ,有1124PH NH PN s ===,4PM PN += ,142PM s ∴=-,GCN MPN BFC ∠∠∠== ,即MPN BFC ∠∠=,90MHP CBF ∠=∠= ,∴ PMH ∽FCB ,53PM FC PH FB ∴==,即1452134ss-=,解得:4811s =,代入8s =+得:t =∵AC OF ∥,∴MAP AFO ∠=∠,tan tan MAP AFO ∠=∠,∴12PM AOAM OF ==,∴::1:2PM AM AP =,∴4011AM =,2011PM =,∴P 的纵坐标为:202441111-=,4024,1111P ⎛⎫∴ ⎪⎝⎭;③当MN NP =时,如图5,过点N 作NQ PM ⊥于Q ,NPQ BFC ∠∠∴=,90NQP CBF ∠=∠= ,NQP ∴ ∽CBF V ,PNCFPQ BF ∴=,又12PN s =,1111422224PQ PM s s ⎛⎫==-=- ⎪⎝⎭ ,5CF =,1521324s s ∴=-,4011s ∴=,代入8s =+得:t =同理可得:4820,1111P ⎛⎫ ⎪⎝⎭;综上,点P 的坐标是()4,2或4024,1111⎛⎫⎪⎝⎭或4820,.1111⎛⎫ ⎪⎝⎭【点睛】此题是四边形综合题,主要考查了折叠的性质,相似三角形的性质和判定,勾股定理,一次函数,等腰三角形的性质和判定,锐角三角函数的应用等知识,用分类讨论的数学思想和方程思想解决问题是解本题的关键.25. 【答案】(1)不存在x 的值,使得矩形ABCD 的面积是21500m ;(2)当40x =时,y 有最大值,最大值是21200m 【分析】(1)设AE a =,由题意得2AE AD BE BC ⋅=⋅,进而得1322BE a AB a ==,,即可得到y 与x 的函数关系式,将数据代入即可判断;(2)将(1)中函数关系式进行变形即可判断;【小问1详解】解:设AE a =,由题意得:2AE AD BE BC ⋅=⋅,∵AD BC =,∴1322BE a AB a ==,,由题意可得:12321602x a a ++⨯=,∴1402a x =-,∴33140222y AB BC ax x x ⎛⎫=⋅==- ⎪⎝⎭,∴()23600804y x x x =-+<<,令1500y =得:236015004x x -+=,化简得:28020000x x -+=,∵28042000640080000∆=-⨯=-<,∴方程无解,答:不存在x 的值,使得矩形ABCD 的面积是21500m .【小问2详解】()22336040120044y x x x =-+=--+,∴当40x =时,y 有最大值,最大值是21200m .【点睛】本题主要考查二次函数的应用,根据题意正确列出二次函数关系式是解题的关键.26. 【答案】(1)见解析 (2)①见解析;②DM AM =,证明见解析【分析】本题考查了等腰三角形的性质、等边三角形的判定与性质、轴对称的性质等知识点,利用轴对称的性质求解是解题关键.(1)根据等边三角形的性质可得60BAC ACB ∠=∠=︒,根据等腰三角形的性质及三角形外角的性质即可得出BAD EDC ∠=∠;(2)①根据题意补全图形即可;②根据轴对称的性质得出MDC EDC ∠=∠,DE DM =,结合(1)中结论可得60ADM B ∠=∠=︒,即可证明ADM △是等边三角形,可得DM AM =.【小问1详解】解:∵ABC 是等边三角形,∴60BAC ACB ∠=∠=︒,∵BAD DAC BAC ∠+∠=∠,EDC DEC ACB ∠+∠=∠,∴BAD DAC EDC DEC ∠+∠=∠+∠,∵DE DA =,∴DAC DEC ∠=∠,∴BAD EDC ∠=∠.【小问2详解】①补全图形如图所示:②DM AM =,理由如下:如①中图,连接CM ,∵点M 、E 关于直线BC 对称,∴MDC EDC ∠=∠,DE DM =,由(1)知BAD EDC ∠=∠,∴MDC BAD ∠=∠,∵ADC BAD B ∠=∠+∠,即ADM MDC BAD B ∠+∠=∠+∠,∴60ADM B ∠=∠=︒,∵DA DE DM ==,∴ADM △是等边三角形,∴DM AM =.27. 【答案】(1)证明见解析;(2)证明见解析;23π.【分析】(1)连接OC ,根据OA=OC 推出∠BAC=∠OCA=∠DAC ,推出OC ∥AD ,得出OC ⊥EF ,根据切线的判定推出即可.(2)证△ADC ∽△ACB ,得出比例式,即可推出答案.(3)求出等边三角形OAC ,求出AC 、∠AOC ,在Rt △ACD 中,求出AD 、CD ,求出梯形OCDA 和扇形OCA 的面积,相减即可得出答案.【详解】解:(1)证明:连接OC ,∵OA=OC ,∴∠BAC=∠OCA .∵∠DAC=∠BAC ,∴∠OCA=∠DAC .∴OC ∥AD .∵AD ⊥EF ,∴OC ⊥EF .∵OC 为半径,∴EF 是⊙O 的切线.(2)证明:∵AB 为⊙O 直径,AD ⊥EF ,∴∠BCA=∠ADC=90°.∵∠DAC=∠BAC ,∴△ACB ∽△ADC .∴AD ACAC AB =.∴AC 2=AD•AB .(3)∵∠ACD=30°,∠OCD=90°,∴∠OCA=60°.∵OC=OA ,∴△OAC 是等边三角形.∴AC=OA=OC=2,∠AOC=60°.∵在Rt △ACD 中,AD=12AC=1.由勾股定理得:∴阴影部分的面积是S=S 梯形OCDA ﹣S 扇形OCA =12×(2+1)260223603ππ⋅⋅=-.。

2024北京北师大附中初三一模数学

2024北京北师大附中初三一模数学

2024北京北师大附中初三一模数学一、选择题(本大题共8小题,共24分)1.(3分)下图中标注的角可以用∠O来表示的是()A.B.C.D.2.(3分)要使二次根式有意义,则a的值可以为()A.0B.﹣1C.﹣2D.﹣43.(3分)下列说法正确的是()A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数4.(3分)如图,在⊙O中,AD是直径,∠ABC=35°,则∠CAD等于()A.75°B.65°C.55°D.45°5.(3分)学校组织春游,安排给九年级三辆车,小明和小慧都可以从这三辆车中任选辆乘坐,小明和小慧乘坐同一辆车的概率是()A.B.C.D.6.(3分)如果,那么代数式的值为()A.3B.C.D.8. (3分)如图,在四边形ABCD中,AD//BC,AB=CD,B=60°,AD=2,BC=8,点P从点B出发沿折线BA−AD−DC匀速运动,同时,点Q从点B出发沿折线BC−CD匀速运动,点P与点Q的速度相同,当二者相遇时,运动停止,设点P运动的路程为x,△BPQ的面积为y,则y关于x的函数图象大致是()A. B.C. D.二、填空题(共24分)9.(3分))若分式2a+1有意义,则a的取值范围是_____.10.(3分)方程xx−1+21−x=4的解是______.11.(3分)在函数y=−1x的图象上有两点(﹣3,y1)、(﹣1,y2),则函数值y1,y2的大小关系是___.12.(3分)直线y=kx(k<0)与双曲线y=﹣交于A(x1,y1),B(x2,y2)两点(A在第二象限),则2x1y2+3x2y1的值为.13.(3分)Rt△BEF和Rt△DFG是一副三角尺,且BE=DG,按如图所示的方式恰好放置在矩形ABCD内,点E,G分别在边AD,BC上,点B,D恰好与矩形的顶点重合,则=________________.14.(3分)生活委员小刚对本班50名学生所穿校服尺码的数据统计如下: 尺码 S M L XL XXL XXXL 频率0.050.10.20.3250.30.025则该班学生所穿校服尺码为“XXL ”的人数 个.15.(3分)如图,正六边形ABCDEF 中,G ,H 分别是边AF 和DE 上的点AB =2,∠GCH =60°____________.16.(3分)2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴.与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,则徽章和风铃销售总额的最大值是____________元.三、解答题(共8题)解答应写出文字说明、演算步骤或证明过程。

2023北京朝阳区初三一模数学试题及参考答案

2023北京朝阳区初三一模数学试题及参考答案

北京市朝阳区九年级综合练习(一)一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.下图是某几何体的三视图,该几何体是(A )长方体(B )三棱柱(C )圆锥(D )圆柱第1题 第3题 第4题 第7题2.我国已建成世界上规模最大的社会保障体系、医疗卫生体系,基本养老保险覆盖1 040 000 000人左右,将1 040 000 000用科学记数法表示应为(A )1.04×1010 (B )1.04×109 (C )10.4×109 (D ) 0.104×10113.如上图,若数轴上的点A 表示下列四个无理数中的一个,则这个无理数是(A ) (B(C (D )π4. 如上图,直线AB ,CD 相交于点O ,若∠AOC =60°,∠BOE =40°,则∠DOE 的度数为(A )60° (B )40°(C )20° (D )10°5. 经过某路口的汽车,只能直行或右转. 若这两种可能性大小相同,则经过该路口的两辆汽车都直行的概率为(A )(B )(C )(D )141312346.正六边形的外角和为(A )180°(B )360°(C )540°(D )720°7.某中学为了解学生对四类劳动课程的喜欢情况,从本校学生中随机抽取了200名进行问卷调查,根据数据绘制了如上面图所示的统计图. 若该校有2000名学生,估计喜欢木工的人数为(A )64(B )380(C )640 (D )7208. 下面的三个问题中都有两个变量:①矩形的面积一定,一边长y 与它的邻边x ;②某村的耕地面积一定,该村人均耕地面积S 与全村总人口n ;③汽车的行驶速度一定,行驶路程s 与行驶时间t .其中,两个变量之间的函数关系可以用形如的式子表示的是(A )①②(B )①③(C )②③(D )①②③二、填空题(共16分,每题2分)9在实数范围内有意义,则实数x 的取值范围是 .10.分解因式:.11. 若关于x 的一元二次方程260x x m ++=有两个相等的实数根,则实数m 的值为 .12.方程的解为 .13.在平面直角坐标系xOy 中,若反比例函数的图象经过点和点,则.14.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6. 若△ABD 的周长为13,则△ABC 的周长为.15.如图,在矩形ABCD 中,点E 在AD 边上,连接BE 并延长,交CD 的延长0ky k k x=≠(为常数,)2363a a -+=322x x=+6y x=()2A m ,()2B n -,m n +=第14题图第15题图线于点F . 若AB =2,BC =4,,则BF 的长为 .16. 一个33人的旅游团到一家酒店住宿,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚130元.(说明:男士只能与男士同住,女士只能与女士同住. 三人间客房可以不住满,但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元,则他们租住了间一人间;(2)若该旅游团租住了3间一人间,且共有19名男士,则租住一晚的住宿房费最少为元.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.计算:.18.解不等式组:19.已知,求代数式的值.20. 下面是证明“等腰三角形的两个底角相等”的两种添加辅助线的方法,选择其2AEDE=(02sin 45π-+-o 17242.3x x xx +⎧⎪+⎨⎪⎩>-,≤230x x --=(2)(2)(2)x x x x +---中一种,完成证明.已知:如图,在△ABC 中,AB =AC .求证:∠B =∠C .方法一证明:如图,作△ABC 的中线AD .方法二证明:如图,作△ABC 的角平分线AD .21. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在BD 上,AE ∥CF ,连接AF ,CE .(1)求证:四边形AECF 为平行四边形;(2)若∠EAO +∠CFD =180°,求证:四边形AECF 是矩形.22. 在平面直角坐标系xOy 中,一次函数的图象经过点(0,1),(-2,2),与x轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x ≥时,对于x 的每一个值,函数的值大于一次函数0y kx b k =+≠()2y x m =+的值,直接写出m 的取值范围.23. 如图,AB 是⊙O 的弦,过点O 作OC ⊥AB ,垂足为C ,过点A 作⊙O 的切线,交OC 的延长线于点D ,连接OB .(1)求证:∠B =∠D ;(2)延长BO 交⊙O 于点E ,连接AE ,CE ,若AD=,sinBCE 的长.24.某校为了解读书月期间学生平均每天阅读时间,在该校七、八、九年级学生中各随机抽取了15名学生,获得了他们平均每天阅读时间(单位:min ),并对数据进行了整理、描述,给出部分信息.a . 七、八年级学生平均每天阅读时间统计图:0y kx b k =+≠()七年级学生平均每天阅读时间八年级学生平均每天阅读时间b . 九年级学生平均每天阅读时间:21 22 25 33 36 36 37 37 39 39 41 42 46 48 50c . 七、八、九年级学生平均每天阅读时间的平均数:年级七八九平均数26.435.236.8根据以上信息,回答下列问题:(1)抽取的15名九年级学生平均每天阅读时间的中位数是 ;(2)求三个年级抽取的45名学生平均每天阅读时间的平均数;(3)若七、八、九年级抽取的学生平均每天阅读时间的方差分别为,,,则,,之间的大小关系为.25.一位滑雪者从某山坡滑下并滑完全程,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足“一次函数”、“二次函数”或“反比例函数”关系中的一种. 测得一些数据如下:滑行时间t /s 01234滑行距离s /m261220(1)s 是t 的函数(填“一次”、“二次”或“反比例”);21s 22s 23s 21s 22s 23s(2)求s 关于t 的函数表达式;(3)已知第二位滑雪者也从坡顶滑下并滑完全程,且滑行距离与第一位滑雪者相同,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足函数关系2522s t t =+. 记第一位滑雪者滑完全程所用时间为t 1,第二位滑雪者滑完全程所用时间为t 2,则t 1t 2(填“<”,“=”或“>”).26.在平面直角坐标系xOy 中,抛物线y =ax 2+(2m -6)x +1经过点()124m -,.(1)求a 的值;(2)求抛物线的对称轴(用含m 的式子表示);(3)点()1m y -,,()2m y ,,()32m y +,在抛物线上,若231y y y <≤,求m 的取值范围.27. 如图,∠MON =α,点A 在ON 上,过点A 作OM 的平行线,与∠MON 的平分线交于点B ,点C 在OB 上(不与点O ,B 重合),连接AC ,将线段AC 绕点A 顺时针旋转180°-α,得到线段AD ,连接BD .(1)直接写出线段AO 与AB 之间的数量关系,并证明∠MOB =∠DBA ;(2)连接DC 并延长,分别交AB ,OM 于点E ,F . 若α=60°,用等式表示线段EF 与AC 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,对于点P ,C ,Q (点P 与点C 不重合),给出如下定义:若∠PCQ =90°,且1CQ CP k,则称点Q 为点P 关于点C 的“k -关联点”.已知点A (3,0),点B (0,),⊙O 的半径为r .(1)①在点D (0,3),E (0,-1.5),F (3,3)中,是点A 关于点O 的“1-关联点”的为;②点B 关于点O 的关联点”的坐标为;(2)点P 为线段AB 上的任意一点,点C 为线段OB 上任意一点(不与点B重合).①若⊙O 上存在点P 关于点O 的关联点”,直接写出r 的最大值及最小值;②当r =⊙O 上不存在点P 关于点C 的“k -关联点”,直接写出k 的取值范围:.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2023.4一、选择题(共16分,每题2分)题号12345678答案A B D C A B C A 二、填空题(共16分,每题2分)三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分)17. 解:原式12=-++1=+.18. 解:原不等式组为17242.3x xxx+⎧⎪+⎨⎪⎩>-,≤解不等式①,得 2.x>解不等式②,得 4.x≤∴原不等式组的解集为2 4.x<≤19. 解:(2)(2)(2)x x x x+---2242x x x=--+222 4.x x=--∵230x x--=,∴2 3.x x-=题号9101112答案5x≥23(1)a-9x=4题号13141516答案01951;1600①②∴原式22()4 2.x x =--=20. 方法一证明:∵AD 是△ABC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C .方法二证明:∵AD 是△ABC 的角平分线, ∴∠BAD =∠CAD . 在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C.21. 证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC . ∵AE ∥CF ,∴∠EAO =∠FCO .∵∠AOE =∠COF ,∴△AEO ≌△CFO . ∴OE =OF .∴四边形AECF 为平行四边形.(2)∵∠EAO +∠CFD =180°,∠CFO +∠CFD =180°,∴∠EAO=∠CFO . ∵∠EAO =∠FCO ,∴∠FCO=∠CFO . ∴OC=OF . ∴AC=EF .∴四边形AECF 是矩形.22. 解:(1)∵一次函数的图象经过点(0,1),(-2,2),∴12 2.b k b =⎧⎨-+=⎩,解得 121.k b ⎧=-⎪⎨⎪=⎩ ∴该一次函数的表达式为11.2y x =-+令0y =,得 2.x =∴()20.A ,(2) 4.m >-23. (1)证明:如图,连接OA .∵AD 为⊙O 的切线,∴∠OAD =90°.∴∠CAD +∠OAB =90°.∵OC ⊥AB ,∴∠ACD =90°.∴∠CAD +∠D =90°.∴∠OAB =∠D .∵OA =OB ,∴∠OAB =∠B .∴∠B =∠D .(2)解:在Rt △ACD 中,AD=,sin D =sin B,可得sin 2AC AD D =⋅=.∴AB =2AC =4.根据勾股定理,得CD =4.∴tan B =tan D =12.∵BE 为⊙O 的直径,0y kx b k =+≠()∴∠EAB =90°.在Rt △ABE 中,tan 2AE AB B =⋅=.在Rt △ACE 中,根据勾股定理,得CE=24.解:(1)37.(2)根据题意可知,三个年级抽取的45名学生平均每天阅读时间的平均数为 1526.41535.21536.832.8.45⨯+⨯+⨯=(3)<<.25.解:(1)二次.(2)设s 关于t 的函数表达式为s =at 2+bt ,根据题意,得242 6.a b a b +=⎧⎨+=⎩,解得11.a b =⎧⎨=⎩,∴s 关于t 的函数表达式为s =t 2+t.(3)>.26.解:(1)∵抛物线y =ax 2+(2m -6)x +1经过点()124m -,,∴2m -4=a +(2m -6)+1.∴a =1(2)由(1)得抛物线的表达式为y =x 2+(2m -6)x +1.∴抛物线的对称轴为3.x m =-(3)①当m >0时,可知点()1m y -,,()2m y ,,()32m y +,从左至右分布.根据23y y <可得232m m m ++-<.∴ 1.m >根据31y y ≤可得232m m m -++-≥.∴ 2.m ≤22s 21s 23s∴1 2.m <≤②当m ≤0时,∵3m m m +≤-<-,∴21y y ≥,不符合题意.综上,m 的取值范围为1 2.m <≤27.解:(1)AO =AB .证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB ,∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB .根据题意,得AC =AD ,∠OAB =∠CAD .∴∠CAO =∠DAB.∴△OAC ≌△BAD. ∴∠COA =∠DBA. ∴∠MOB =∠DBA.(2)EF =.证明:如图,在OM 上截取OH =BE ,连接CH .∵△OAC ≌△BAD ,∴OC=BD.又OH =BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED ,∵OM//AB ,∴∠MFC=∠BED.∴∠MFC=∠OHC.∴CF=CH.∴CF=DE.∴CD=EF.∵α=60°,∴∠CAD=180°-α=120°,作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK =30°,1.2CK CD =∴.CK AC =∴CD =.∴EF =.28. 解:(1)①D .②(-3,0)或(3,0).(2)① 3,32.②k .。

2024年北京市朝阳区中考数学一模试卷

2024年北京市朝阳区中考数学一模试卷

一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.(2分)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10112.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.等腰直角三角形C.正五边形D.正六边形3.(2分)如图,直线AB,CD相交于点O,若∠AOC=50°,∠DOE=15°,则∠BOE 的度数为()A.15°B.30°C.35°D.65°4.(2分)如果一个几何体的三视图都是矩形,那么这个几何体可能是()A.三棱柱B.长方体C.圆柱D.圆锥5.(2分)若a<b,则下列结论正确的是()A.﹣a<﹣b B.2a<a+b C.1﹣a<1﹣b D.2a+1>2b+1 6.(2分)正十边形的内角和为()A.144°B.360°C.1440°D.1800°7.(2分)掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,向上一面的点数为5的概率是()A.B.C.D.8.(2分)如图,四边形ABCD是正方形,点E,F分别在AB,BC的延长线上,且BE=CF,设AD=a,AE=b,AF=c.给出下面三个结论:①a+b>c;②2ab<c2;③>2a.上述结论中,所有正确结论的序号是()A.①②B.②③C.①③D.①②③二、填空题(共16分,每题2分)9.(2分)若式子在实数范围内有意义,则x的取值范围是.10.(2分)分解因式:3x2+6xy+3y2=.11.(2分)方程=的解为.12.(2分)关于x的一元二次方程x2+5x+m=0有两个不相等的实数根,则实数m的取值范围是.13.(2分)某种植户种植了1000棵新品种果树,为了解这1000棵果树的水果产量,随机抽取了50棵进行统计,获取了它们的水果产量(单位:千克),数据整理如下:水果产量x<5050≤x<7575≤x<100100≤x<125x≥125果树棵数11520122根据以上数据,估计这1000棵果树中水果产量不低于75千克的果树棵数为.14.(2分)在数学活动课上,小南利用镜子、尺子等工具测量学校教学楼高度(如图所示),当他刚好在点C处的镜子中看到教学楼的顶部D时,测得小南的眼睛与地面的距离AB =1.6m,同时测得BC=2.4m,CE=9.6m,则教学楼高度DE=m.15.(2分)如图,⊙O是Rt△ABC的外接圆,OE⊥AB于点D,交⊙O于点E,若AB=8,DE=2,则BC的长为.16.(2分)甲、乙两位同学合作为班级联欢会制作A、B、C、D四个游戏道具,每个道具的制作都需要拼装和上色两道工序,先由甲同学进行拼装,拼装完成后再由乙同学上色.两位同学完成每个道具各自的工序需要的时间(单位:分钟)如表所示:A B C D甲9568乙7793(1)如果按照A→B→C→D的顺序制作,两位同学合作完成这四个道具的总时长最少为分钟;(2)两位同学想用最短的时间完成这四个道具的制作,他们制作的顺序应该是.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:+|1﹣|+(2﹣π)0﹣2sin45°.18.(5分)解不等式组:.19.(5分)已知x+2y+2=0,求代数式(x﹣)•的值.20.(6分)如图,在▱ABCD中,AB=AC,过点D作AC的平行线与BA的延长线相交于点E.(1)求证:四边形ACDE是菱形;(2)连接CE,若AB=5,tan B=2,求CE的长.22.(5分)在平面直角坐标系xOy中,正比例函数y=mx(m≠0)的图象和反比例函数y =(k≠0)的图象都经过点A(2,4).(1)求该正比例函数和反比例函数的解析式;(2)当x>3时,对于x的每一个值,函数y=mx+n(m≠0)的值都大于反比例函数y =(k≠0)的值,直接写出n的取值范围.23.(5分)某广场用月季花树做景观造型,先后种植了两批各12棵,测量并获取了所有花树的高度(单位:cm),数据整理如下:a.两批月季花树高度的频数:131135136140144148149第一批1304220第二批0123501b.两批月季花树高度的平均数、中位数、众数(结果保留整数):平均数中位数众数第一批140140n第二批141m144(1)写出表中m,n的值;(2)在这两批花树中,高度的整齐度更好的是(填“第一批”或“第二批”);(3)根据造型的需要,这两批花树各选用10棵,且使它们高度的平均数尽可能接近.若第二批去掉了高度为135cm和149cm的两棵花树,则第一批去掉的两棵花树的高度分别是cm和cm.24.(6分)如图,AB是⊙O的直径,点C在⊙O上,D是的中点,AD的延长线与过点B的切线交于点E,AD与BC的交点为F.(1)求证:BE=BF;(2)若⊙O的半径是2,BE=3,求AF的长.25.(5分)某款电热水壶有两种工作模式:煮沸模式和保温模式,在煮沸模式下将水加热至100℃后自动进入保温模式,此时电热水壶开始检测壶中水温,若水温高于50℃水壶不加热;若水温降至50℃水壶开始加热,水温达到100℃时停止加热…此后一直在保温模式下循环工作.某数学小组对壶中水量a(单位:L),水温T(单位:℃)与时间t(单位:分)进行了观测和记录,以下为该小组记录的部分数据.表1 从20℃开始加热至100℃水量与时间对照表a0.51 1.52 2.53t 4.5811.51518.522表2 1L水从20℃开始加热,水温与时间对照表煮沸模式保温模式t036m101214161820222426…T205080100898072666055505560…对以上实验数据进行分析后,该小组发现,水壶中水量为1L时,无论在煮沸模式还是在保温模式下,只要水壶开始加热,壶中水温T就是加热时间t的一次函数.(1)写出表中m的值;(2)根据表2中的数据,补充完成以下内容:①在图中补全水温与时间的函数图象;②当t=60时,T=;(3)假设降温过程中,壶中水温与时间的函数关系和水量多少无关.某天小明距离出门仅有30分钟,他往水壶中注入2.5L温度为20℃的水,当水加热至100℃后立即关闭电源.出门前,他(填“能”或“不能”)喝到低于50℃的水.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx(a>0)上有两点(x1,y1),(x2,y2),它的对称轴为直线x=t.(1)若该抛物线经过点(4,0),求t的值;(2)当0<x1<1时,①若t>1,则y10;(填“>”“=”或“<”)②若对于x1+x2=2,都有y1y2>0,求t的取值范围.27.(7分)如图,在菱形ABCD中,∠BAD=120°,E是CD边上一点(不与点C,D重合).将线段AE绕点A逆时针旋转60°得到线段AF,连接DF,连接BF交AC于点G.(1)依据题意,补全图形;(2)求证:GB=GF;(3)用等式表示线段BC,CE,BG之间的数量关系.28.(7分)在平面直角坐标系xOy中,⊙O的半径为1,对于直线l和线段PQ,给出如下定义:若线段PQ关于直线l的对称图形是⊙O的弦P′Q′(P′,Q′分别为P,Q的对应点),则称线段PQ是⊙O关于直线l的“对称弦”.(1)如图,点A1,A2,A3,B1,B2,B3的横、纵坐标都是整数.线段A1B1,A2B2,A3B3中,是⊙O关于直线y=x+1的“对称弦”的是;(2)CD是⊙O关于直线y=kx(k≠0)的“对称弦”,若点C的坐标为(﹣1,0),且CD=1,求点D的坐标;(3)已知直线y=﹣x+b和点M(3,2),若线段MN是⊙O关于直线y=﹣x+b 的“对称弦”,且MN=1,直接写出b的值.。

2024年北京市人大附中朝阳学校中考数学一模试卷及答案解析

2024年北京市人大附中朝阳学校中考数学一模试卷及答案解析

2024年北京市人大附中朝阳学校中考数学一模试卷一.选择题(共16分,每小题2分)1.(2分)右图是某几何体的三视图,该几何体是()A.长方体B.三棱柱C.圆锥D.圆柱2.(2分)2023年我国规模以上内容创作生产营业收入累计值前三个季度分别约为6500亿元,13000亿元,20000亿元,合计约39500亿元,将39500用科学记数法表示应为()A.395×102B.3.95×104C.3.95×103D.0.395×105 3.(2分)不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是()A.B.C.D.4.(2分)如图,直线AB,CD相交于点O,若∠AOC=60°,∠BOE=40°,则∠DOE 的度数为()A.60°B.40°C.20°D.10°5.(2分)正六边形的外角和是()A.720°B.540°C.360°D.180°6.(2分)已知关于x的方程x2﹣2x+a=0有两个相等的实数根,则a的值为()A.﹣1B.0C.2D.17.(2分)图1是变量y与变量x的函数关系的图象,图2是变量z与变量y的函数关系的图象,则z与x的函数关系的图象可能是()A.B.C.D.8.(2分)如图,正方形边长为a,点E是正方形ABCD内一点,满足∠AEB=90°,连接CE.给出下面四个结论:①AE+CE≥a;②CE≤a;③∠BCE的度数最大值为60°;④当CE=a时,tan∠ABE=.上述结论中,所有正确结论的序号为()A.①②B.①③C.①④D.①③④二.填空题(共16分,每小题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围是.10.(2分)分解因式:3x2﹣12=.11.(2分)方程的解为.12.(2分)在平面直角坐标系xOy中,若反比例函数的图象经过点A(2,m)和点B (﹣2,n),则m+n=.13.(2分)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC =3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是米.14.(2分)如图,AB 是⊙O 的直径,CD 是弦,连接AC ,AD .若∠BAC =40°,则∠D =_______°.15.(2分)用一组a ,b ,m 的值说明“若a <b ,则ma >mb ”是错误的,这组数可以是a =,b =,m =.16.(2分)从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t ≤3535<t ≤4040<t ≤4545<t ≤50合计A 59151166124500B 5050122278500C4526516723500早高峰期间,乘坐(填“A ”,“B ”或“C ”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.三.解答题(共52分)17.计算:6cos45°﹣+|﹣5|﹣(π﹣2)0.18.解不等式组:.19.已知x 2﹣x ﹣3=0,求代数式(x +2)(x ﹣2)﹣x (2﹣x )的值.20.如图,在△ABC 中,AB =AC .(1)使用直尺和圆规,作AD ⊥BC 交BC 于点D (保留作图痕迹);(2)以D 为圆心,DC 的长为半径作弧,交AC 于点E ,连接BE ,DE .①∠BEC =°;②写出图中一个与∠CBE相等的角.21.如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cos B=,求BF和AD的长.22.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(0,1),(﹣2,2),与x轴交于点A.(1)求该一次函数的表达式及点A的坐标;(2)当x≥2时,对于x的每一个值,函数y=2x+m的值大于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.23.列方程解应用题:无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件?24.如图,AB是⊙O的直径,点E是OB的中点,过E作弦CD⊥AB,连接AC,AD.(1)求证:△ACD是等边三角形;(2)若点F是的中点,连接AF,过点C作CG⊥AF,垂足为G,若⊙O的半径为2,求线段CG的长.25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A和场景B下做对比实验,设实验过程中,该试剂挥发时间为x分钟时,在场景A,B中的剩余质量分别为y1,y2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y1,y2与x的几组对应值如下:x(分钟)05101520…y1(克)2523.52014.57…y2(克)252015105…(1)在同一平面直角坐标系xOy中,描出上表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(2)进一步探究发现,场景A的图象是抛物线的一部分,y1与x之间近似满足二次函数:.场景B的图象是直线的一部分y2与x之间近似满足一次函数y2=kx+c(k≠0).则b=,c=,k=;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用,在上述实验中,记该化学试剂在场景A,B中发挥作用的时间分别为x A,x B,则x A x B(填“>”,“=”或“<”).26.在平面直角坐标系xOy中,点M(x1,y1),N(x2,y2)是抛物线y=ax2﹣2ax+c(a>0)上任意两点.(1)直接写出抛物线的对称轴;(2)若x1=a+1,x2=a+2,比较y1与y2的大小,并说明理由;(3)若对于m<x1<m+1,m+1<x2<m+2,总有y1<y2,求m的取值范围.27.如图,在△ABC中,AB=AC,∠BAC=2α(45°<α<90°)D是BC的中点,E是BD的中点,连接AE.将射线AE绕点A逆时针旋转α得到射线AM,过点E作EF⊥AE 交射线AM于点F.(1)①依题意补全图形;②求证:∠B=∠AFE;(2)连接CF,DF,用等式表示线段CF,DF之间的数量关系,并证明.28.在平面直角坐标系xOy中,⊙O的半径为1,点P是⊙O外一点,给出如下定义:若在⊙O上存在点T,使得点P关于某条过点T的直线对称后的点Q在⊙O上,则称点Q为点P关于⊙O的“关联对称点”.(1)若点P在直线y=2x上;①若点P的坐标为(1,2),则Q1(0,1),Q2(1,0),中,是点P关于⊙O的“关联对称点”的是;②若存在点P关于⊙O的“关联对称点”,求点P的横坐标x P的取值范围;(2)已知点,动点M满足AM≤1,若点M关于⊙O的“关联对称点”N存在,直接写出MN的取值范围.2024年北京市人大附中朝阳学校中考数学一模试卷参考答案与试题解析一.选择题(共16分,每小题2分)1.【分析】根据几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体侧面形状,得到答案.【解答】解:由几何体的主视图和左视图都是长方形,可知该几何体是柱体,又因为俯视图是长方形,故该几何体是长方体.故选:A.【点评】本题考查了由三视图判断几何体,如果有两个视图为三角形,该几何体一定是锥体,如果有两个长方形,该几何体一定柱体,其底面由第三个视图的形状决定.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:39500=3.95×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接由概率公式求解即可.【解答】解:从中随机摸出一个小球,摸到黄球的概率是=,故选:D.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.4.【分析】由对顶角的性质得到∠BOD度数,而∠BOE=40°,即可求出∠DOE的度数.【解答】解:∵∠BOD=∠AOC=60°,∠BOE=40°,∴∠DOE=∠BOD﹣∠BOE=60°﹣40°=20°.故选:C.【点评】本题考查对顶角,角的计算,关键是掌握对顶角的性质.5.【分析】根据任何多边形的外角和是360度即可求出答案.【解答】解:六边形的外角和是360°.故选:C .【点评】本题考查了多边形的外角和定理,关键是掌握任何多边形的外角和是360度,外角和与多边形的边数无关.6.【分析】根据判别式的意义得到Δ=(﹣2)2﹣4×1×a =0,然后解一次方程即可【解答】解:根据题意得Δ=(﹣2)2﹣4×1×a =0,解得a =1.故选:D .【点评】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2﹣4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.7.【分析】由图1可设y =kx +b (k ,b 为常数,且k <0,b >0),由图2可设z =my (m 为常数,m >0),将y =kx +b 代入z =my 得z =mkx +mb ,再根据一次函数图象与系数之间的关系即可判断.【解答】解:由图1可设y =kx +b (k ,b 为常数,且k <0,b >0),由图2可设z =my (m 为常数,m >0),将y =kx +b 代入z =my 得:z =m (kx +b )=mkx +mb ,∴z 与x 的函数关系为一次函数关系,∵k <0,b >0,m >0,∴mk <0,mb >0,∴z 与x 的函数图象过一、二、四象限.故选:C .【点评】本题主要考查函数的图象,一次函数的图象与性质,根据图象正确设出函数解析式,学会利用整体思想解决问题是解题关键.8.【分析】根据正方形性质和切线的性质定理逐项分析判断即可.【解答】解:①连接AC ,△ABC 为等腰直角三角形,AC =a ,所以AE +CE ≥a正确;②连接CO ,OC ==,CE最小==,故CE ≥a ;故②错误;③当CE 与圆O 相切时,∠BCE 最大,此时∠BCE =2∠OCB ,若∠BCE =60°,则∠BCO=30°,tan30=,但此时tan∠BCO=,故③错误;④当CE=a时,CE与圆O相切,tan∠ABE=tan∠BCO=,故④正确.故选:C.【点评】本题考查了切线的性质定理,熟练掌握切线的性质是解答本题的关键.二.填空题(共16分,每小题2分)9.【分析】根据二次根式有意义的条件即可解得.【解答】解:由题意可得,∴x﹣1≥0,∴x≥1,故答案为:x≥1.【点评】此题考查了二次根式的意义,解题的关键是列出不等式求解.10.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.11.【分析】按照解分式方程的步骤,进行计算即可解答.【解答】解:,3x=2(x+2),解得:x=4,检验:当x=4时,x(x+2)≠0,∴x=4是原方程的根,故答案为:x=4.【点评】本题考查了解分式方程,一定要注意解分式方程必须检验.12.【分析】根据反比例函数系数k=xy得到2m=﹣2n,即m=﹣n,即可得到m+n=0.【解答】解:∵反比例函数的图象经过点A(2,m)和点B(﹣2,n),∴2m=﹣2n,∴m=﹣n,∴m+n=0.故答案为:0.【点评】本题考查了反比例函数图象上点的坐标特征,根据反比例函数系数k=xy得到2m=﹣2n是解题的关键.13.【分析】利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴=,∴AB=2(m),答:树的高度AB长是2m,故答案为:2.【点评】本题考查中心投影以及相似三角形的应用.测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.14.【分析】连接BC.利用三角形内角和定理求出∠B,即可解决问题.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°.∵∠CAB=40°,∴∠B=90°﹣∠CAB=50°,∴∠ADC=∠B=50°,故答案为:50.【点评】本题考查圆周角定理,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【分析】根据不等式的性质即可求得答案.【解答】解:若a=2,b=3,m=4时,那么ma=4×2=8,mb=4×3=12,此时a<b,但ma<mb,那么原结论错误,故答案为:2(答案不唯一);3(答案不唯一);4(答案不唯一).【点评】本题考查不等式的性质,此为基础且重要知识点,必须熟练掌握.16.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.三.解答题(共52分)17.【分析】首先计算零指数幂、特殊角的三角函数值、开平方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:6cos45°﹣+|﹣5|﹣(π﹣2)0=6×﹣3+5﹣1=3﹣3+5﹣1=4.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①得:x>3,解不等式②得:x<5,则不等式组的解集为3<x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【分析】根据单项式乘多项式的运算法则、平方差公式、合并同类项法则把原式化简,把已知等式变形,代入计算即可.【解答】解:(x+2)(x﹣2)﹣x(2﹣x)=x2﹣4﹣(2x﹣x2)=x2﹣4﹣2x+x2=2x2﹣2x﹣4,∵x2﹣x﹣3=0,∴x2﹣x=3,则原式=2(x2﹣x)﹣4=2×3﹣4=2.【点评】本题考查的是整式的化简求值,掌握整式的混合运算法则是解题的关键.20.【分析】(1)利用基本作图,作BC的垂直平分线得到AD;(2))①根据等腰三角形的性质得到DB=DC,则BC为⊙O的直径,然后根据圆周角定理得到∠BEC=90°;②先利用AB=AC得到∠ABC=∠ACB,再根据圆周角定理得到∠CFB=∠BEC=90°,根据等角的余角相等得到∠CBE=∠CAD=∠BAD=∠BCF.【解答】解:(1)如图,AD为所作;(2)①∵AB=AC,AD⊥BC,∴DB=DC,AD平分∠BAC,∴BC为⊙O的直径,∴∠BEC=90°;故答案为:90;②∵AB=AC,∴∠ABC=∠ACB,∴BC为⊙O的直径,∴∠CFB=∠BEC=90°,∴∠CBE=∠BCF,∵∠CBE+∠BCE=90°,∠CAD+∠ACD=90°,∴∠CBE=∠CAD,∴∠CBE=∠CAD=∠BAD=∠BCF.故答案为:∠BCF(答案不唯一).【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了等腰三角形的性质和圆周角定理.21.【分析】(1)证AD∥CE,再由AE∥DC,即可得出结论;(2)先由锐角三角函数定义求出BF=4,再由勾股定理求出EF=3,然后由角平分线的性质得EC=EF=3,最后由平行四边形的性质求解即可.【解答】(1)证明:∵∠ACB=∠CAD=90°,∴AD∥CE,∵AE∥DC,∴四边形AECD是平行四边形;(2)解:∵EF⊥AB,∴∠BFE=90°,∵cos B==,BE=5,∴BF=BE=×5=4,∴EF===3,∵AE平分∠BAC,EF⊥AB,∠ACE=90°,∴EC=EF=3,由(1)得:四边形AECD是平行四边形,∴AD=EC=3.【点评】本题考查了平行四边形的判定与性质、锐角三角函数定义、角平分线的性质以及勾股定理等知识;熟练掌握锐角三角函数定义,证明四边形AECD为平行四边形是解题的关键.22.【分析】(1)先利用待定系数法求出函数解析式为y=﹣x+1,然后计算自变量为0时对应的函数值得到A点坐标;(2)当函数y=x+n与y轴的交点在点A(含A点)上方时,当x>0时,对于x的每一个值,函数y=2x+m的值大于函数y=kx+b(k≠0)的值.【解答】解:∵一次函数y=kx+b(k≠0)的图象经过点(0,1),(﹣2,2),∴,解得,该一次函数的表达式为y=﹣x+1,令y=0,得0=﹣x+1,∴x=2,∴A(2,0);(2)当x≥2时,对于x的每一个值,函数y=2x+m的值大于一次函数y=kx+b(k≠0)的值,∴2x+m>﹣x+1,∴m>﹣4.【点评】本题考查了待定系数法求一次函数解析式:掌握待定系数法求一次函数解析式一般步骤是解决问题的关键.也考查了一次函数的性质.23.【分析】设1名快递员平均每天可配送包裹x件,则1辆无人配送车平均每天可配送包裹5x件,利用工作时间=工作总量÷工作效率,结合“要配送6000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天”,可列出关于x的分式方程,解之经检验后,即可得出结论.【解答】解:设1名快递员平均每天可配送包裹x件,则1辆无人配送车平均每天可配送包裹5x件,根据题意得:﹣=2,解得:x=150,经检验,x=150是所列方程的解,且符合题意.答:1名快递员平均每天可配送包裹150件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.【分析】(1)连接OC,先证AB是CD的垂直平分线,从而得AC=AD,∠DAE=∠CAE,在Rt△OCE中,利用锐角三角函数可求出∠COE=60°,进而可得∠DAE=∠CAE=60°,则∠CAD=60°,据此可得出结论;(2)先利用(1)得结论证明∠CAF=30°,然后求出AE=3,进而求出AC=,最后在Rt△ACG中根据AC=,∠CAF=30°可得CG的长.【解答】(1)证明:连接OC,如图:∵AB是⊙O的直径,弦CD⊥AB,∴AB是CD的垂直平分线,∴AC=AD,∴∠DAE=∠CAE,∵OC=OB,点E为OB的中点,∴OE=OB=OC,在Rt△OCE中,cos∠COE==,∴∠COE=60°,∴∠CAE=∠COE=30°,∴∠DAE=∠CAE=30°,∴∠CAD=∠DAE+∠CAE=60°,∴△ABC为等边三角形.(2)解:由(1)可知:△ACD是等边三角形,∠CAE=30°,∴∠D=60°,∵点F为弧AC的中点,∴∠CAF=30°,∵⊙O的半径为2,∴OA=OB=2,∵点E为OB的中点,∴OE=1,∴AE=OA+OE=2+1=3,在Rt△ACE中,cos∠CAE=,∴AC===,在Rt△ACG中,AC=,∠CAF=30°,∴CG=AC=.【点评】此题主要考查了垂径定理及其推论,等边三角形的判定和性质,锐角三角函数,理解垂径定理及其推论,熟练掌握等边三角形的判定和性质,灵活运用锐角三角函数进行计算是解答此题的关键.25.【分析】(1)依据题意,根据表格数据描点,连线即可作图得解;(2)根据函数图象确定点的坐标,利用待定系数法解答即可;(3)依据题意,分别求出当y=4时x的值,即可得出答案.【解答】解:(1)由题意,作图如下.(2)由题意,场景A的图象是抛物线的一部分,y1与x之间近似满足函数关系y1=﹣0.04x2+bx+c.又点(0,25),(10,20)在函数图象上,∴.解得:.∴场景A函数关系式为y1=﹣0.04x2﹣0.1x+25.对于场景B的图象是直线的一部分,y2与x之间近似满足函数关系y2=kx+c.又(0,25),(10,15)在函数图象上,∴,解得:,∴场景B函数关系式为y2=﹣x+25.故答案为:﹣0.1,25,﹣1;(3)由题意,当y=4时,场景A中,x A≈21.7,场景B中,4=﹣x B+25,解得:x B=21,∴x A>x B.故答案为:>.【点评】本题主要考查了一次函数、二次函数的应用,读懂题意是解答本题的关键.26.【分析】(1)更近抛物线对称轴公式求出即可;(2)根据条件点M、N都在对称轴右侧,根据函数增减性进行解答即可;(3)根据二次函数图象上点的坐标特征,分析MN中点坐标与对称轴的关系得到不等式,解不等式即可得到m的取值范围.【解答】解:(1)抛物线y=ax2﹣2ax+c(a>0)的对称轴为:x=﹣=1,∴抛物线的对称轴为直线x=1;(2)∵a>0,抛物线开口向上,对称轴为直线x=1;∴M(x1,y1),N(x2,y2)都在对称轴右侧,∵当x>1时,y随x的增大而增大,且x1<x2,∴y1<y2;(3)∵m<x1<m+1,m+1<x2<m+2,∴<,∵y1<y2,a>0,∴M(x1,y1)距离对称轴更近,x1<x2,则MN的中点在对称轴的右侧,∴解得:m.【点评】本题考查了二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.27.【分析】(1)①根据题意画出图形,即可求解;②由余角的性质可得结论;(2)由“SAS”可证△ABE≌△HDE,可得∠BAE=∠AHD,AB=DH=AC,由“SAS”可证△ACF≌△HDF,可得CF=DF.【解答】解:(1)①解:如图所示,②证明:如图,连接AD,∵AB=AC,点D是BC的中点,∴∠BAD=∠CAD=α,∠B+∠BAD=90°,∵将射线AE绕点A逆时针旋转α得到射线AM,∴∠EAF=α=∠BAD,∵EF⊥AE,∴∠EAF+∠AFE=90°,∴∠B=∠AFE;(2)解:DF=CF,理由如下:如图,延长AE至H,使EH=AE,连接DH,∵点E是BD的中点,∴BE=DE,又∵AE=EH,∠AEB=∠HED,∴△ABE≌△HDE(SAS),∴∠BAE=∠AHD,AB=DH=AC,∵AE=EH,AE⊥EF,∴AF=FH,∴∠FAE=∠FHE=α,∵∠BAC=2α,∴∠BAE+∠CAF=α=∠AHD+∠FHD,∴∠CAF=∠FHD,∴△ACF≌△HDF(SAS),∴DF=CF.【点评】本题是三角形综合题,考查了等腰三角形的性质,旋转的性质,全等三角形的判定和性质等知识,添加恰当辅助线构造全等三角形是解题的关键.28.【分析】(1)①根据新定义,画出图形,进而即可求解;②设y=2x与⊙O交于点M,N,过点N,P分别作x轴的垂线,垂足分别为A,B,根据勾股定理得出x2+y2=1,联立直线解析式,得出交点坐标,进而根据平行线分线段成比例得出p=,同理可得p的最小值为﹣即可求解;(2)依题意,关于⊙O的关联点在半径为3的圆内,进而根据点与圆的位置关系,求得MN的最值,即可求解.【解答】解:(1)解:如图所示,PQ3连线的中点在⊙O的内部,PQ1的中点的纵坐标为1,则点P,Q1关于y=1对称,点P关于⊙O的关联点是Q3,Q2,故答案为:Q2,Q3.②如图所示,点P在线段RS和UW上,设R(m,2m),在Rt△OHR中,m2+(2m)2=32,解得m=或m=﹣(舍),∴x R=;同理x S=,x U=﹣,x W=﹣,∴﹣≤p<﹣或<p≤;(2)依题意,关于⊙O的关联点在半径为3的圆内,如图所示,∵AM≤1,则M在半径为1的⊙A上以及圆内,M关于⊙O的关联点N,∴MN的最大值为OM+ON=3+1=4,如图所示,当M在线段OA上时,MN取最小值,∴OA==,设MN=GH=x,则GT=HT=x,∴MH2=()2﹣(1+x)2,∴NG2=12﹣(1﹣x)2,∴()2﹣(1+x)2=12﹣(1﹣x)2,解得x=,∴≤MN≤4.【点评】本题考查了坐标与图形,勾股定理,平行线分线段成比例,解一元二次方程,点与圆的位置关系求最值问题,熟练掌握以上知识是解题的关键。

2024年北京市石景山区中考数学一模试卷

2024年北京市石景山区中考数学一模试卷

、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)下列几何体中,主视图是三角形的是()A.B.C.D.2.(2分)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1043.(2分)下列图书馆标志图形中,是轴对称图形的是()A.B.C.D.4.(2分)如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C.若∠1=55°,则∠2的大小为()A.35°B.45°C.55°D.125°5.(2分)已知m+3<0,则下列结论正确的是()A.﹣3<m<﹣m<3B.m<﹣3<﹣m<3C.﹣3<m<3<﹣m D.m<﹣3<3<﹣m 6.(2分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.77.(2分)不透明的袋子中装有两个黄球和一个红球,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次都摸到黄球的概率是()A.B.C.D.8.(2分)如图,∠ABC=90°,BA=BC,BM是∠ABC内部的射线且∠CBM<45°,过点A作AD⊥BM于点D,过点C作CE⊥BM于点E,在DA上取点F,使得DF=DE,连接EF.设CE=a,BE=b,EF=c,给出下面三个结论:①;②;③.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③二、填空题(共16分,每题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围是.10.(2分)分解因式:xy2﹣4x=.11.(2分)如图,在▱ABCD中,点E在BC上且EB=2EC,AE与BD交于点F.若BD=5,则BF的长为.12.(2分)方程的解为.13.(2分)在平面直角坐标系xOy中,若点A(1,y1),B(3,y2)在反比例函数y=(k >0)的图象上,则y1y2(填“>”“=”或“<”).14.(2分)若关于x的一元二次方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是.15.(2分)如图,AB是⊙O的直径,P是AB延长线上一点,PC与⊙O相切于点C.若∠P=40°,则∠A=°.16.(2分)某酒店在客人退房后清洁客房需打扫卫生、整理床铺、更换客用物品、检查设备共四个步骤.某清洁小组有甲、乙、丙三名工作人员,工作要求如下:①“打扫卫生”只能由甲完成;每间客房“打扫卫生”完成后,才能进行该客房的其他三个步骤,这三个步骤可由任意工作人员完成并可同时进行;②一个步骤只能由一名工作人员完成,此步骤完成后该工作人员才能进行其他步骤;③每个步骤所需时间如表所示:步骤打扫卫生整理床铺更换客用物品检查设备所需时间/分钟9764在不考虑其他因素的前提下,若由甲单独完成一间客房的清洁工作,需要分钟;若由甲、乙、丙合作完成四间客房的清洁工作,则最少需要分钟.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:.18.(5分)解不等式组:.19.(5分)已知x2﹣3x﹣6=0,求代数式的值.20.(6分)如图,在四边形ABCD中,AD∥BC,AB=AD,AE平分∠BAD交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)连接BD交AE于点F.若∠BCD=90°,cos∠DBC=,BD=2,求EC的长.21.(6分)为了保护水资源,提倡节约用水,北京市居民用水实行阶梯水价,实施细则如表:北京市居民用水阶梯水价表(单位:元/立方米)供水类型阶梯户年用水量(立方米)水价其中水费水资源费污水处理费自来水第一阶梯0﹣180(含)5 2.07 1.57 1.36第二阶梯181﹣260(含)7 4.07第三阶梯260以上9 6.07某户居民2023年用水共缴纳1040元,求这户居民2023年的用水量.22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点A(0,3)和B(﹣2,1),与过点(0,5)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<2时,对于x的每一个值,函数y=mx(m≠0)的值小于y=kx+b(k≠0)的值,直接写出m的取值范围.23.(5分)为了培养学生的爱国情感,某校在每周一或特定活动日举行庄严的升国旗仪式.该校的国旗护卫队共有18名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.18名学生的身高:170,174,174,175,176,177,177,177,178,178,179,179,179,179,181,182,183,186b.18名学生的身高的平均数、中位数、众数:平均数中位数众数178m n(1)写出表中m,n的值;(2)该校的国旗护卫队由升旗手、护旗手、执旗手组成,其中12名执旗手分为两组:甲组学生的身高175177177178178181乙组学生的身高170174174176177179对于不同组的学生,如果一组学生的身高的方差越小,则认为该组的执旗效果越好.据此推断:在以上两组学生中,执旗效果更好的是(填“甲组”或“乙组”);(3)该校运动会开幕式的升国旗环节需要6名执旗手,因甲组部分学生另有任务,已确定四名执旗手的身高分别为175,177,178,178.在乙组选另外两名执旗手时,要求所选的两名学生与已确定的四名学生所组成的六名执旗手的身高的方差最小,则选出的另外两名学生的身高分别为和.24.(6分)如图,AB是⊙O的直径,CD是⊙O的弦,CD⊥AB于点E,点F在⊙O上且,连接AF.(1)求证:AF=CD;(2)连接BF,BD.若AE=2,BF=6,求BD的长.25.(5分)某农科所的科研小组在同一果园研究了甲、乙两种果树的生长规律.记果树的生长时间为x(单位:年),甲种果树的平均高度为y1(单位:米),乙种果树的平均高度为y2(单位:米).记录的部分数据如下:x0.0 1.0 2.0 3.0 4.0 5.0 6.07.08.09.010.0 y1 1.00 2.50 5.007.509.009.649.879.959.9810.0010.00 y2 1.50 4.24 5.67 5.95 5.99 6.00 6.00 6.00 6.00 6.00 6.00对以上数据进行分析,补充完成以下内容.(1)可以用函数刻画y1与x,y2与x之间的关系,在同一平面直角坐标系xOy中,已经画出y1与x的函数图象,请画出y2与x的函数图象;(2)当甲种果树的平均高度达到8.00米时,生长时间约为年(结果保留小数点后一位);当乙种果树的平均高度为5.00米时,两年后平均高度约为米(结果保留小数点后两位);(3)当甲、乙两种果树的平均高度相等时,生长时间约为年(结果保留小数点后一位).26.(6分)在平面直角坐标系xOy中,抛物线y=x2﹣(2+m)x+2m的对称轴为直线x=t.(1)求t的值(用含m的代数式表示);(2)点A(﹣t,y1),B(t,y2),C(t+1,y3)在该抛物线上.若抛物线与x轴的一个交点为(x0,0),其中0<x0<2,比较y1,y2,y3的大小,并说明理由.27.(7分)在△ABC中,AB=AC,0°<∠BAC<60°,将线段BC绕点B逆时针旋转60°得到线段BD,连接AD.将线段AD绕点A顺时针旋转90°得到线段AE,连接DE.(1)如图1,求证:EA∥BC;(2)延长BC到点F,使得CF=CB,连接DF交AC于点M,依题意补全图2.若点M 是AC的中点,用等式表示线段MF,MD,DE之间的数量关系,并证明.28.(7分)对于线段MN和点P给出如下定义:点P在线段MN的垂直平分线上,若以点P为圆心,PM为半径的优弧上存在三个点A,B,C,使得△ABC是等边三角形,则称点P是线段MN的“关联点”.例如,图1中的点P是线段MN的一个“关联点”.特别地,若这样的等边三角形有且只有一个,则称点P是线段MN的“强关联点”.在平面直角坐标系xOy中,点A的坐标为(2,0).(1)如图2,在点C1(1,﹣3),C2(1,0),,C4(2,1)中,是线段OA的“关联点”的是;(2)点B在直线上.存在点P,是线段OA的“关联点”,也是线段OB的“强关联点”.①直接写出点B的坐标;②动点D在第四象限且AD=2,记∠OAD=α.若存在点Q,使得点Q是线段AD的“关联点”,也是OB的“关联点”,直接写出α及线段AQ的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市中考数学一模考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)(2016·义乌) ﹣8的绝对值等于()
A . 8
B . ﹣8
C . -
D .
2. (2分)将一包卷卫生纸按如图所示的方式摆在水平桌面上,则它的俯视图是()
A .
B .
C .
D .
3. (2分)第29届北京奥运会火炬接力活动历时130天,传递行程约为137 000km.用科学记数法表示137 000是()
A . 1.37×105
B . 13.7×104
C . 1.37×104
D . 1.37×103
4. (2分)在□ABCD中,∠A-∠B=40°,则∠C的度数为()
A . 70°
B . 40°
C . 110°
D . 150°
5. (2分)(2019·石首模拟) 为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:
每天锻炼时间(分钟)20406090
学生数2341
则关于这些同学的每天锻炼时间,下列说法错误的是()
A . 众数是60
B . 平均数是21
C . 抽查了10个同学
D . 中位数是50
6. (2分)(2018·高台模拟) 下列图形中,是中心对称图形的是()
A .
B .
C .
D .
7. (2分)如图,正方形ABCD的边AB=1,BD和AC都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是()
A .
B .
C .
D .
8. (2分)王芳将如图所示的三条水平直线m1 , m2 , m3的其中一条记为x轴(向右为正方向),三条竖
直直线m4 , m5 , m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了抛物线y=ax2﹣6ax﹣3,则她所选择的x轴和y轴分别为()
A . m1 , m4
B . m2 , m3
C . m3 , m6
D . m4 , m5
9. (2分)如图,已知∠ABC=90°,BD⊥AC于D , AB=4,AC=10,则AD=()
A .
B . 2
C .
D . 1
10. (2分)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:
①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()
A . 1个
B . 2个
C . 3个
D . 4个
11. (2分) (2017八下·宁波期中) 如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=2,点E是BC的中点,连结OE,则OE的长是()
A .
B . 2
C . 2
D . 4
12. (2分)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()
A . (﹣3,7)
B . (﹣1,7)
C . (﹣4,10)
D . (0,10)
二、填空题 (共6题;共8分)
13. (1分) (2019九下·江苏月考) 分解因式:2a2-2=________.
14. (1分)如果代数式与的值相等,那么x=________.
15. (2分) (2020九下·丹阳开学考) 用1,2,3三个数字排成一个三位数,则排出的数是偶数的概率是________.
16. (1分)如图,是半圆的直径,,则的长为________.
17. (2分) (2017八下·石景山期末) 如图1,将正方形置于平面直角坐标系中,其中边在
轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图1中的点的坐标为________,图2中的值为________.
图1 图2
18. (1分)(2017·长春模拟) 如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为________.
三、计算题 (共2题;共7分)
19. (5分)(2016·上海) 计算:| ﹣1|﹣﹣ + .
20. (2分)(1)化简:(x+2)2+x(x+3)
(2)解不等式组:
四、综合题 (共7题;共72分)
21. (5分)如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).
(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.
(2)在(1)的基础上,若∠APB=55°,求∠B的度数.
(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.
22. (10分)(2017·河池) 某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.
(1)
排球和足球的单价各是多少元?
(2)
若恰好用去1200元,有哪几种购买方案?
23. (10分) (2019九上·淅川期末) 观察发现:如图(1),⊙O是△ADC的外接圆,点B是边CD上的一点,且△ABC是等边三角形.OD与AB交于点E,以O为圆心、OE为半径的圆交AB于点F,连接CF、OF.
(1)求∠AOD的度数;
(2)线段AE、CF有何大小关系?证明你的猜想.
拓展应用:如图(2),△HJI是等边三角形,点K是IH延长线上的一点.点O是△JKI的外接圆圆心,OK与JH 相交于点E.如果等边三角形△JHI的边长为2,请直接写出JE的最小值和此时∠JEO的度数.
24. (2分)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛
(1)
若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率
(2)
用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率
26. (15分)(2018·番禺模拟) 如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O.
(1)判定直线AC是否是⊙O的切线,并说明理由;
(2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值;
(3)在(2)的条件下,设的半径为3,求AC的长.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共8分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、计算题 (共2题;共7分)
19-1、
20-1、
四、综合题 (共7题;共72分)
21-1、22-1、
22-2、23-1、
23-2、24-1、
24-2、26-1、26-2、
26-3、。

相关文档
最新文档