仪表放大器与运算放大器的区别是什么

合集下载

电路中的传感器信号放大与处理

电路中的传感器信号放大与处理

电路中的传感器信号放大与处理一、引言电路中的传感器信号放大与处理是现代电子技术领域的重要内容之一,它涉及到传感器信号的采集、放大与处理,对于提高系统的精度和稳定性具有至关重要的作用。

本文将从传感器信号的基本原理入手,介绍电路中的传感器信号放大与处理的方法和技巧。

二、传感器信号的基本原理传感器是将被测量的物理量转化为可测量的电信号的装置。

传感器信号的产生是基于被测量物理量与传感器之间的相互作用。

常见的传感器类型包括温度传感器、压力传感器、湿度传感器等。

三、传感器信号放大的需求在实际应用中,传感器产生的信号往往是微弱的,因此需要进行信号放大以增加信号的幅度,从而使得信号更容易被后续的电路进行处理。

四、传感器信号放大的方法1. 增益放大器:增益放大器是最常用的传感器信号放大方法之一。

它通过放大器电路对信号进行放大,将微弱的传感器信号放大到适合后续处理的范围。

2. 运算放大器:运算放大器是一种高增益、差分输入、单端输出的放大器。

通过适当的电阻网络和反馈方式,可以实现对传感器信号的放大和处理。

3. 仪表放大器:仪表放大器是一种专门用于信号放大的放大器,其特点是高精度、低噪声。

在传感器信号放大的场景中,仪表放大器常常可以提供更好的性能。

五、传感器信号处理的方法1. 滤波器:滤波器是对信号进行滤波处理的电路。

常见的滤波器包括低通滤波器、高通滤波器和带通滤波器。

通过滤波器可以去除传感器信号中的干扰和噪声,提高信号的质量。

2. 数字转换:将模拟信号转换为数字信号是传感器信号处理的重要环节。

常用的模数转换器包括逐次逼近型模数转换器(SAR ADC)、双斜率积分型模数转换器(Σ-Δ ADC)等。

数字信号的处理更易于精确计算和存储。

3. 数据处理算法:对于特定的传感器应用,可以利用算法对传感器信号进行进一步的处理和分析。

例如,通过傅里叶变换可以将传感器信号转换到频率域进行频谱分析。

六、实例分析以温度传感器为例,介绍传感器信号放大与处理的具体实施过程。

实验报告——设计放大电路

实验报告——设计放大电路

课程名称:电路与电子实验Ⅱ指导老师: yyy 成绩:__________________ 实验名称:集成功放及其应用实验类型:模电同组学生姓名:一、实验目的二、实验原理三、实验接线图四、实验设备五、实验步骤六、实验数据记录七、实验数据分析八、实验结果或结论一、实验目的1.了解仪表放大器与运算放大器的性能区别;2.掌握仪表放大器的电路结构、设计和测试方法;3.学习仪表放大器在电子设计中的应用。

二、实验内容1 .用通用运算放大器设计一个仪表放大器2 .用INA128 精密低功耗仪器放大器设计一个仪表放大器3 .仪表放大器应用:实现电子秤量电路功能三、实验原理●基本放大器性能比对●输入电阻Ri:放大电路输入电压与输入电流之比。

(输入电阻越大,信号电压损失越小,输入电压越接近信号源电压)K:差模电压放大倍数与共模电压放大倍数之比的绝对值。

(一般要求:●共模抑制比CMR放大差模信号,抑制共模信号,即共模抑制比越大越好)●电子秤电路●用单个通用运算放大器设计一个差分放大电路,并与力传感器、零点与增益调节电路、万用表一起构成电子秤。

表1本实验选择该电路图做实验差动放大电路放大倍数为200倍,后面增益调节电路放大倍数7.5倍至12.5倍。

测量时实验箱上COM1与COM2须连接在一起。

●用单片集成仪表放大器INA128构成放大电路,并与力传感器、零点与增益调节电路、万用表一起构成电子秤。

INA128放大电路放大倍数为1000倍,后面增益调节电路放大倍数1.5倍至2.5倍。

测量时实验箱上COM1与COM2须连接在一起。

INA128仪用放大器的电源绝对不能接错!●零点与增益调整电路倍放大后,输出为0.5V,如果想在数字万用表上显示100的数值,可以通过零点与增益调节电路将0.5V直流信号放大两倍,使Vout输出1V的电压信号,万用表选择2V档量程,则在万用表上显示1.000,与被称物体的实际重量相一致,唯一的区别是小数点不对。

运算放大器的应用实验报告

运算放大器的应用实验报告

运算放大器的应用实验报告仪用运算放大器及其应用实验报告实验报告课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________ 实验名称:仪用运算放大器及其应用实验类型:电路实验同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解仪表放大器与运算放大器的性能区别;2.掌握仪表放大器的电路结构及设计方法;3.掌握仪表放大器的测试方法; 4.学习仪表放大器在电子设计中的应用。

二、实验内容和原理1.用通用运算放大器设计一个仪表放大器(用LM358芯片)2.用INA128 精密低功耗仪器放大器设计一个仪表放大器仪表放大器是一种高增益放大器,其具有差分输入、单端输出、高输入阻抗及高共模抑制比等特点。

仪表放大器采用运算放大器构成,但在性能上与运算放大器有很大的差异。

标准运算放大器的闭环增益由反馈网络决定;而仪表放大器使用了一个与其信号输入端隔离的内部反馈电阻网络,因此具有很高的共模抑制比KCMR,在有共模信号的情况下也能放大很微弱的差分信号。

当前在数据采集、医疗仪器、信号处理等电子系统设计中普遍采用仪表放大器对弱信号进行高精度处理。

常用的仪表放大器可采用由三个运算放大器构成,也可直接选用单片仪表放大器。

单片仪表放大器具有高精度、低噪声、设计简单等特点以成为优选器件。

三、主要仪器设备LM358芯片INA128 精密低功耗仪器放大器四、操作方法和实验步骤两种仪表放大器的性能测量:一、电压增益和最大不失真输出,并计算出共模抑制比输入正弦波,改变输入信号幅度或频率,用示波器监测输出波形,在不失真的情况下,测量输入电压为最大或最小时的电压增益,及最大不失真输出电压,并计算共模抑制比。

二、输出端噪声电压输入为0,用示波器测量峰峰值。

如何选择仪表放大器_仪表放大器的选择分析

如何选择仪表放大器_仪表放大器的选择分析

如何选择仪表放大器_仪表放大器的选择分析什么是仪表放大器这是一个特殊的差动放大器,具有超高输入阻抗,极其良好的CMRR,低输入偏移,低输出阻抗,能放大那些在共模电压下的信号。

随着电子技术的飞速发展,运算放大电路也得到广泛的应用。

仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。

仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。

仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益组件,具有差分输入和相对参考端的单端输出。

与运算放大器不同之处是运算放大器的闭环增益是由反相输入端与输出端之间连接的外部电阻决定,而仪表放大器则使用与输入端隔离的内部反馈电阻网络。

仪表放大器的 2 个差分输入端施加输入信号,其增益即可由内部预置,也可由用户通过引脚内部设置或者通过与输入信号隔离的外部增益电阻预置。

仪表放大器构成原理仪表放大器电路的典型结构如图1所示。

它主要由两级差分放大器电路构成。

其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。

这样在以运放A3为核心部件组成的差分放大电路中,在CMRR 要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。

在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)Rf/R3。

由公式可见,电路增益的调节可以通过改变Rg阻值实现。

仪表放大器特点●高共模抑制比共模抑制比(CMRR)则是差模增益(A d)与共模增益(Ac)之比,即:CMRR = 20lg。

仪表放大器应用

仪表放大器应用
对于data sheet中的标准连接,电路示意图如图 10所示。
此处,A代表输出级增益。 假设 Ry/Re = 1 (即Re和Ry阻值相同)。那么:
图 10. 两个放大器组成的仪表放大电路
由于A值非常高,所以得到:
EL817x仪表放大器产品组功能特性
EL8171、EL8173 简化电路示意图如图 11 所 示,它描绘了输入、输出的轨至轨工作过程。 该电路图同样应用于 EL8170、EL8172,只需 将 PNP 晶体管(Q1-Q4)替换成针对超低输入偏 置电流的 P-沟道 MOSFET。
电压 (IN+和 IN-)的情况下使用。但是输入阻 抗是由 R3 和 R4 的电阻值决定,并不提供高输 入抵抗。这在仪表放大电路中是很常见的。
此外,由于共模抑制比(CMRR)会随着任何有 助于 R4 阻值增加并使 R2 和 R4 失配的源阻抗 而衰减,REF 输入必须由一个非常低的源阻抗 来驱动。
图 4.
(EQ. 5)
VOUT = (IN+ - IN-) × Gain + VREF
(EQ. 2)
x = R4 /(R3 +R4) ×(R1 +R2) /R1 - R2/R1 (EQ. 6)
更糟的情况是,共模抑制比发生在 R4 和 R1 容 差处于最高值、R2 和 R3 处于最低值的时候。 表 1 显示的是增益为 1、10、100 的情况下, 电阻容差与共模抑制比的关系。
电阻 容差
±5% ±1% ±0.1% ±0.01%
表 1.
增益为1 -20.4dB -34.1dB -54.0dB -74.0dB
共模抑制比 增益为10 -15.6dB -28.9dB -48.8dB -68.8dB

一文知道运算放大器和仪表放大器有哪些区别

一文知道运算放大器和仪表放大器有哪些区别

一文知道运算放大器和仪表放大器有哪些区别仪表放大器这一术语经常被误用,它指的是器件的应用,而非器件的架构。

在过去,任何被认为精准(即,实现某种输入失调校正)的放大器都被视为“仪表放大器”,这是因为它被设计为用于测量系统。

仪表放大器(即INA)与运算放大器(运放)相关,因为二者基于相同的基本构件。

但INA 是专用器件,专为特殊功能设计,并非一个基本构件。

就这一点而言,仪表放大器不是运放,因为它们的用途不同。

就用途而言,INA与运放之间最显著的区别或许是前者缺少反馈回路。

运放可配置为执行各种功能,包括反相增益、同相增益、电压跟随器、积分器、低通滤波器和高通滤波器等。

在所有情况下,用户都会提供从运放的输出到输入的反馈回路,此反馈回路决定放大器电路的功能。

这种灵活性使运放得以广泛用于各种应用。

另一方面,INA的反馈位于内部,因此没有到输入引脚的外部反馈。

INA的配置限制为1个或2个外部电阻,也可能限制为一个可编程寄存器,用于设置放大器的增益。

INA 专为差分增益和共模抑制功能而设计和使用。

仪表放大器将放大反相输入和同相输入间的差值,同时抑制这两个输入的任何共用信号,从而使INA的输出上不存在任何共模成分。

增益(反相或同相)配置的运放将以设定的闭环增益来放大输入信号,但输出上将一直存在共模信号。

所关注信号与共模信号间的增益差会导致共模成分(以差分信号的百分比表示)减少,但运放的输出上仍存在共模成分,这将限制输出的动态范围。

如上所述,INA用于在存在大量共模成分时提取小信号,但共模成分的形式可能多种多样。

当使用采用惠斯通电桥配置(我们将稍后探讨)的传感器时,存在由两个输入共用的较大直流电压。

但是,干扰信号可具有多种形式;一个常见来源是来自电源线的50 Hz或60 Hz 干扰,更不用说谐波了。

这种时变误差源通常还会随频率发生明显波动,从而使得在仪表放大器的输出端进行补偿变得极其困难。

由于存在这些变化,因此不仅要在直流下,还要在各种频率下实现共模抑制。

仪表放大器优势_仪表放大器典型应用及实例

仪表放大器优势_仪表放大器典型应用及实例

仪表放大器优势_仪表放大器典型应用及实例随着电子技术的飞速发展,运算放大电路也得到广泛的应用。

仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。

仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。

本文首先介绍了仪表放大器的原理及特点,其次介绍了仪表放大器的优势,最后介绍了仪表放大器典型应用及实例。

仪表放大器的原理仪表放大器电路的典型结构如图1所示。

它主要由两级差分放大器电路构成。

其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得共模抑制比得到提高。

这样在以运放A3为核心部件组成的差分放大电路中,在共模抑制比要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。

在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:Au=(1+2R1/Rg)(Rf/R3)。

由公式可见,电路增益的调节可以通过改变Rg阻值实现,仪表放大器典型结构见图1。

仪表放大器的特点仪表放大器是一种高增益、直流耦合放大器,它具有差分输入、单端输出、高输入阻抗和高共模抑制比、低噪声、低线性误差、低失调电压和失调电压漂移、低输入偏置电流和失调电流误差等特点。

仪表放大器的优势1、高共模抑制比仪表放大器具有能够消除任何共模信号(两输入端电位相同)而放大差模信号(两输入端电位不同)的特性。

为了使仪表放大器能正常工作,要求它既能放大微伏级差模信号,同时又能抑制几伏的共模信号,实现这种功能的仪表放大器必须具有很高的共模抑制能力。

共模抑制比的典型值为70- 100dB.通常,在高增益时,CMRR 的性能会得到改善,即。

三运放组成的仪表放大器原理分析

三运放组成的仪表放大器原理分析

三运放组成的仪表放大器原理分析仪表放大器与运算放大器的区别是什么?仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。

大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。

其输入偏置电流也应很低,典型值为 1 nA至50 nA。

与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。

运算放大器的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。

与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。

对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。

专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。

使用三个普通运放就可以组成一个仪用放大器。

电路如下图所示:输出电压表达式如图中所示。

看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。

在此之前,我们先来看如下我们很熟悉的差分电路:如果R1 =R3,R2 =R4,则VOUT = (VIN2—VIN1)(R2/R1)这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。

首先,同相输入端和反相输入端阻抗相当低而且不相等。

在这一例子中VIN1反相输入阻抗等于100 kΩ,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 kΩ。

因此,当电压施加到一个输入端而另一端接地时,差分电流将会根据输入端接收的施加电压而流入。

(这种源阻抗的不平衡会降低电路的CMRR。

)另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。

例如,当增益等于1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有0.1% 失配,其CMR便下降到66 dB(2000:1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪表放大器与运算放大器的区别是什么?
文章来源:EDN博客作者:zhangjinlei2005 访问次数:513
--------------------------------------------------------------------------------
该文章讲述了仪表放大器与运算放大器的区别是什么?的电路原理和应用

表放大器与运算放大器的区别是什么?
仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。

大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。

其输入偏置电流也应很低,典型值为1 nA至50 nA。

与运算放大器一样,其输出阻抗很低,
在低频段通常仅有几毫欧(mΩ)。

运算放大器的闭环增益是由其反向输入端和输
出端之间连接的外部电阻决定。

与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。

对仪表放大器的两个差分输入端施
加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。

专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。

使用三个普通运放就可以组成一个仪用放大器。

电路如下图所示:
输出电压表达式如图中所示。

看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。

在此之前,我们先来看如下我们很熟悉的差分电路:
如果R1 =R3,R2 =R4,则VOUT = (VIN2—VIN1)(R2/R1)
这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。

首先,同相输入端和反相输入端阻抗相当低而且不相等。

在这一例子中VIN1反相输入阻抗等于100 kΩ,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 kΩ。

因此,当电压施加到一个输入端而另一端接地时,差分电流将会根据输入端接收的施加电压而流入。

(这种源阻抗的不平衡会降低电路的CMRR。


另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。

例如,当增益等于1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有0.1% 失配,其CMR便下降到66 dB (2000:1)。

同样,如果源阻抗有100 Ω的不平衡将使CMR下降6 dB。

为解决上述问题,我们在运放的正负输入端都加上电压跟随器以提高输入阻抗。

如下图所示:

上前置的两个运放作为电压跟随器使用,我们现在改为同相放大器,电路如下所示:
输出电压表达式如上图所示。

上图所示的电路增加增益(A1 和A2)时,
它对差分信号增加相同的增益,也对共模信号增加相同的增益。

也就是说,上述电路相对于原电路共模抑制比并没有增加。

下面,要开始最巧妙的变化了!看电路先:
这种标准的三运放仪表放大器电路是对带缓冲减法器电路巧妙的改进。

像前面的电路一样,上图中A1 和A2 运算放大器缓冲输入电压。

然而,在这种结构中,单个增益电阻器RG连接在两个输入缓冲器的求和点之间,取代了带缓冲减法器电路的R6和R7。

由于每个放大器求和点的电压等于施加在各自正输入端的电压,因此,整个差分输入电压现在都呈现在RG两端。

因为输入电压经过放大后(在A1 和A2的输出端)的差分电压呈现在R5,RG和R6这三只电阻上,所以差分增益可以通过仅改变RG进行调整。

这种连接有另外一个优点:一旦这个减法器电路的增益用比率匹配的电阻器设定后,在改变增益时不再对电阻匹配有任何要求。

如果R5 =R6,R1=R3和R2 =R4,则VOUT = (VIN2-VIN1)(1+2R5/RG)(R2/R1)由于RG两端的电压等于VIN,所以流过RG的电流等于VIN/RG,因此输入信号将通过A1 和A2 获得增益并得到放大。

然而须注意的是对加到放大器输入端的共模电压在RG两端具有相同的电位,从而不会在RG上产生电流。

由于没有电流流过RG(也就无电流流过R5和R6),放大器A1 和A2 将作为单位增益跟随器而工作。

因此,共模信号将以单位增益通过输入缓冲器,而差分电压将按〔1+(2 RF/RG)〕的增益系数被放大。

这也就意味着该电路的共模抑制比相比与原来的差分电路增大了〔1+(2 RF/RG)〕倍!
在理论上表明,用户可以得到所要求的前端增益(由RG来决定),而不增加共模增益和误差,即差分信号将按增益成比例增加,而共模误差则不然,所以比率〔增益(差分输入电压)/(共模误差电压)〕将增大。

因此CMR理论上直接与增益成比例增加,这是一个非常有用的特性。

最后,由于结构上的对称性,输入放大器的共模误差,如果它们跟踪,将被输出级的减法器消除。

这包括诸如共模抑制随频率变换的误差。

上述这些特性便是这种三运放结构得到广泛应用的解释。

到这里,我们导出了这个经典电路的;来龙去脉:差分放大器-->前置电压跟随器-->电压跟随器变为同相放大器-->三运放组成的仪用放大器。

本文来自: 高校自动化网() 详细出处参考(转载请保留本链接):/html/xuekezhishi/modianshudian/14021924722_2.html
本文来自: 高校自动化网() 详细出处参考(转载请保留本链接):
/html/xuekezhishi/modianshudian/14021924722.html
被完全误解的三运放仪表放大器
作者:| 出处:维库开发网| 2010-06-24 13:16:12 | 阅读4652 次
被完全误解的三运放仪表放大器,图1所示的三运放仪表放大器看似为一种简单的结构,因为它使用已经存在了几十年的基本运算放大器(op a
图1所示的三运放仪表放大器看似为一种简单的结构,因为它使用已经存在了几十年的基本运算放大器(op amp)来获得差动输入信号。

运算放大器的输入失调电压误差不难理解。

运算放大器开环增益的定义没有改变。

运算放大器共模抑制(CMR)的简单方法自运算放大器时代之初就已经有了。

那么,问题出在哪里呢?
图1:三运放仪表放大器,其VCM为共模电压,而VDIFF为相同仪表放大器的差动输入。

单运算放大器和仪表放大器的共享CMR方程式如下:
本方程式中,G相当于系统增益,VCM为相对于接地电压同样施加于系统输入端的变化电压,而VOUT为相对于变化VCM值的系统输出电压变化。

在CMR方面,运算放大器的内部活动很简单,其失调电压变化是唯一的问题。

就仪表放大器而言,有两个影响器件CMR的因素。

第一个也是最重要的因素是,涉及第三个放大器(图1,A3)电阻比率的平衡问题。

例如,如果R1等于R3,R2等于R4,则理想状况下的三运放仪表放大器CMR为无穷大。

然而,我们还是要回到现实世界中来,研究R1、R2、R3 和R4与仪表放大器CMR的关系。

具体而言,将R1:R2同R3:R4匹配至关重要。

结合A3,这4个电阻从A1和A2的输出减去并增益信号。

电阻比之间的错配会在A3输出端形成误差。

方程式2在这些电阻关系方面会形成CMR误差:
例如,如果R1、R2、R3和R4接近相同值,且R3:R4等于R1/R2的1.001,则该0.1%错配会带来仪表放大器CMR的降低,从理想水平降至66dB级别。

根据方程式1,仪表放大器CMR随系统增益的增加而增加。

这是一个非常好的特性。

方程式1可能会激发仪表放大器设计人员确保有许多可用增益,但是这种方法存在一定的局限性。

A1和A2开环增益误差和噪声。

放大器的开环增益等于20log(ΔVOUT/ΔVOS)。

随着A1和A2增益的增加,放大器开环增益失调误差也随之增加。

A1和A2的输出振幅变化一般涵盖电源轨。

仪表放大器增益更高的情况下,运算放大器的开环增益误差和噪声占主导。

通过RSS公式,这些误差降低了更高增益下的仪表CMR。

因此,您会看到仪表放大器的CMR性能值往往会在更高增益时达到最大值。

因此,从CMR角度来看,仪表放大器就像是一个在不同系统增益下器件各部分都诱发CMR误差的系统。

当您对器件的内部原理进行研究时,它便不再如此神秘。

您把各个部分都分开来,就会一目了然。

相关文档
最新文档