2017年高考数学解题思路的总结
2017年高考数学解题思路的总结

2017年高考数学解题思路的总结高考数学解题思想一:函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。
利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学解题思想三:特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解题思想四:极限思想解题步骤极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题思想五:分类讨论常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
在分类讨论解题时,要做到标准统一,不重不漏。
2017年高考数学各题型解题方法汇总_答题技巧

2017年高考数学各题型解题方法汇总_答题技巧
成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时中不断积累,小编为大家准备了
高考数学解析几何题,希望同学们不断取得进步!
2017年高考数学各题型解题方法
★ 2017年12个高考数学考场解题方法
★ 2016-2017高考数学立体几何解题方法
★ 名师精讲2017年高考数学常用的解题思路
★ 高分生分享2017高考数学解答题答题技巧
★ 考生拿下高考数学解析几何题的方法
小编为大家提供的
2017年高考数学各题型解题方法大家仔细阅读了吗?最后祝同学们学习进步。
2017年高考数学考试解答题答题技巧.doc

2017年高考数学考试解答题答题技巧高考数学考试很多考生都觉得头疼,这是因为大家没有掌握好解题方法和答题技巧,不同类型的数学题要采用不同的应对策略,为此下面为大家带来2017年高考数学考试解答题答题技巧,希望能够帮助大家轻松应对2017年高考数学考试。
数列问题数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。
2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
2017高考常见数学题型及答题技巧_答题技巧

2017高考常见数学题型及答题技巧_答题技巧高考复习面广量大,不少学生感到既畏惧,又无从下手。
同学们如何才能提高复习的针对性和实效性呢?下面来看看高考常见数学题型,相信对你的复习有很大帮助~1.选择题——“不择手段”题型特点:(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
2017高考数学全国一卷

2017高考数学全国一卷2017年高考数学全国一卷是中国高考的一套数学试卷,具有重要的教育意义。
本文将从试题的整体结构、题目分析和解题思路等方面对该试卷进行详细介绍。
试题整体结构方面,2017年高考数学全国一卷共分为第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷主要包括选择题和填空题,试题涵盖了数学基础知识的多个方面,如代数、几何、函数等。
第Ⅱ卷则主要包括解答题和证明题,涉及到了解题能力和思维能力的考查。
首先,分析选择题部分。
选择题是学生考试中常见的题型之一,它要求考生从若干个选项中选择一个正确答案。
2017年高考数学全国一卷选择题的难度较为适中,考查的知识点较为广泛。
例如,该卷中有一道关于解一元二次方程的选择题,考查了学生对解方程的基本方法和技巧的掌握程度。
另外,该卷中还涉及到了对函数、几何图形和数列等基本概念的理解和运用。
选择题的正确答案往往可通过计算或推理得到,因此对学生的思维能力和逻辑推理能力提出了一定的要求。
其次,填空题部分也是这套试卷的重点考查内容之一。
填空题要求考生根据题目给出的条件,将正确的答案填入空白处。
2017年高考数学全国一卷的填空题中,有一道考查函数的题目。
题目给出一元一次函数的表达式和一个具体的函数值,要求考生求出另外一个函数值。
这道题考察了学生对函数的理解和运用能力,以及在具体问题中如何将函数的表达式与问题相结合的能力。
接下来,解答题和证明题是第Ⅱ卷的考查重点。
解答题要求考生从已有条件出发,运用所学的知识和方法进行分析和推理,最终得出正确的结论。
2017年高考数学全国一卷的解答题中,有一道关于数列的题目。
要求考生根据已知项数和公差,求出数列的和。
这道题考查了学生对数列知识的熟练掌握和运用能力。
证明题则更加注重考生的推理和证明能力,要求考生根据题意进行推理,最终得出正确的证明结果。
在这套试卷中,有一道证明题是要求考生证明一个几何问题中的等式成立。
这道题目考查了学生对几何知识的掌握以及应用几何推理和证明的能力。
2017高考数学答题技巧及方法

2017高考数学答题技巧及方法做题时,有一些“条件反射”你应该记住,这能帮你大大的节省时间!具体的看看下面吧!对你一定有帮助哦!1。
函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2。
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3。
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4。
选择与填空中出现不等式的题目,优选特殊值法;5。
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6。
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7。
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8。
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9。
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10。
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11。
数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12。
立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13。
2017年高考数学试题理科考点分析、预测及对策

考点分析
【选择题与填空题对策与预测】 1、集合 在高考中就考一道选择题,位置就是 1-2 两题中的一题。目的是给学生考前热身,因此难度不大。但是考生 不光是要把它做对,更主要是获取时间。最好的解法优先考虑代入排除法。
2、复数 在高考中就考一道选择题,位置就是 1-2 两题中的一题。要注意复数分母实数化的运算。
3 28
B.
5 28
C.
3 7
D.
9 14
9、圆锥曲线 必考两道选择题线的性质考察。
10、函数 函数是高中数学的灵魂。其实它渗透在其它的题目中考察。但也会以每年两道选择填空题单独考察。主要 考察函数的图像,函数的性质(单调性,奇偶性,周期性,对称性),复合函数的研究。 预测:已知函数 y f x ,满足 y f x 和 y f x 2 是 偶函数,且 f 1 A. π
1 CD 在向量 BC 上的投影为 ,则 CE BD ( 2 1 A.-2 B. 2
C.0 12、数列 D. 2
数列与解三角形在解答题第一题中,考察一题。基本上是两年数列,两年解三角形。考什么直接影响数列 的和解三角形的题数。大题考数列,选择填空就不再考察数列。大题考察解三角形,则数列在选择题空中 考察两题,一般是一个简单一个中等难度甚至压轴。主要是考察等差等比数列的性质。
3、三视图 难度属于中档题。可能分布在 6—8 中,也可能在选择题的 11,12.若在后面难度就大一些。对于三视图关 键是还原直观图。最好的方法是结合长方体为框架构建。按照先主视图,再俯视图,后侧视图。结合长对 正,宽相等,高平齐。计算体积或面积。
4、程序框图 难度一般,分布在 3-9 位置中的一题。一般都是考察循环结构。步数不多,逐一写出(6 步以内),步数较 多,需要寻找规律解题即可。
2017年高考数学选择题的解法总结

2017年高考数学选择题的解法总结姓名:XXX学校:XXX时间:XXX第1 页共6 页2017年高考数学选择题的解法总结高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。
选择题的解题思想,渊源于选择题与常规题的联系和区别。
它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。
因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。
“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;“8大原则”是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。
经过我的培训,很多的学生的选择题甚至1分都不丢。
下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于第 2 页共 6 页原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学解题思路的总结
高考数学解题思想一:函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。
利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学解题思想三:特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解题思想四:极限思想解题步骤
极限思想解决问题的一般步骤为:
(1)对于所求的未知量,先设法构思一个与它有关的变量;
(2)确认这变量通过无限过程的结果就是所求的未知量;
(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题思想五:分类讨论
常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
在分类讨论解题时,要做到标准统一,不重不漏。