高考数学 公式 定理 经验总结
高考数学万能公式定理口诀全套汇编

高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
数学高考公式

数学高考公式数学高考公式汇总如下:1. 二次函数的一般式:y=ax^2+bx+c。
2. 二次函数的顶点式:y=a(x-h)^2+k。
3. 二次函数的根与系数的关系:若Δ=b^2-4ac>0,则有两个不相等的实数根;若Δ=0,则有两个相等的实数根;若Δ<0,则无实数根。
4. 二次函数的对称轴:x=h。
5. 二次函数的顶点坐标:(h,k)。
6. 二次函数的图像开口方向:若a>0,则开口向上;若a<0,则开口向下。
7. 一次函数的斜率:k=(y2-y1)/(x2-x1)。
8. 一次函数的点斜式方程:y-y1=k(x-x1)。
9. 一次函数的截距式方程:y=kx+b。
10. 两直线垂直的判定条件:两直线斜率的乘积为-1。
11. 两直线平行的判定条件:两直线斜率相等。
12. 两点间距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2)。
13. 等差数列通项公式:an=a1+(n-1)d。
14. 等差数列求和公式:Sn=(n/2)(a1+an)。
15. 等比数列通项公式:an=a1*r^(n-1)。
16. 等比数列求和公式(当r≠1):Sn=a1(1-r^n)/(1-r)。
17. 三角函数的正弦定理:a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)。
18. 三角函数的余弦定理:c^2=a^2+b^2-2ab*cosC。
19. 三角函数的正切定理:tan(A-B)=(tanA-tanB)/(1+tanA*tanB)。
20. 三角函数的和差化积公式:sin(A±B)=sinA*cosB±cosA*sinB,cos(A±B)=cosA*cosB∓sinA*sinB。
21. 高斯-赛德尔消元法。
22. 矩阵乘法:设A为m×p矩阵,B为p×n矩阵,则AB为m×n矩阵,其中(A*B)ij=a(i,1)b(1,j)+…+a(i,p)b(p,j)。
高考数学公式大全(最全面_最详细)

高考数学公式大全(最全面,最详细)抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tan A^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))an9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*t anA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sin A^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))0A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+ 210*tanA^6-45*tanA^8+tanA^10)²万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)³2正方形的周长=边长³4长方形的面积=长³宽正方形的面积=边长³边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底³高梯形的面积=(上底+下底)³高÷2直径=半径³2 半径=直径÷2圆的周长=圆周率³直径=圆周率³半径³2圆的面积=圆周率³半径³半径长方体的表面积=(长³宽+长³高+宽³高)³2长方体的体积 =长³宽³高正方体的表面积=棱长³棱长³6正方体的体积=棱长³棱长³棱长圆柱的侧面积=底面圆的周长³高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积³高圆锥的体积=底面积³高÷3长方体(正方体、圆柱体)的体积=底面积³高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2(a+b)S=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)³180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a³b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l³h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
「高考数学公式定理大全」

「高考数学公式定理大全」1.初等代数- 分式性质:$\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}$- 因式分解:差平方公式 $a^2 - b^2 = (a+b)(a-b)$,和差平方公式 $a^2+b^2=(a+b)^2-2ab$- 二次根式:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm 2\sqrt{ab}$,$(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$- 二次方程:$ax^2+bx+c=0$,求根公式 $x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 一次不等式:若$a>b$,则$ca>cb$($c>0$),若反号方向,不等号方向互换即可2.平面向量- 向量表示:$\vec{AB}=(x_2-x_1,y_2-y_1)$- 向量运算:加法 $\vec{a}+\vec{b}=(a_1+b_1,a_2+b_2)$,数乘$k\cdot \vec{a}=(ka_1,ka_2)$- 向量模长:$,\vec{AB},=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ - 向量共线:若$\vec{a}=k\cdot \vec{b}$,则$\vec{a}$与$\vec{b}$共线- 向量垂直:若$\vec{a}\cdot \vec{b}=0$,则$\vec{a}$和$\vec{b}$垂直,其中$\vec{a}\cdot \vec{b}=a_1b_1+a_2b_2$3.空间几何- 距离公式:点P(x,y,z)到平面Ax+By+Cz+D=0的距离为 $d=\frac{,Ax+By+Cz+D,}{\sqrt{A^2+B^2+C^2}}$- 点到直线的距离:点P(x0,y0,z0)到直线Ax+By+Cz+D=0的距离为$d=\frac{,Ax_0+By_0+Cz_0+D,}{\sqrt{A^2+B^2+C^2}}$- 两直线关系:平行条件为$\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}$,垂直条件为$A_1A_2+B_1B_2+C_1C_2=0$4.三角函数- 基本关系:正弦定理 $\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}=2R$,余弦定理 $a^2=b^2+c^2-2bc\cos A$ - 解三角形:已知三边a、b、c或三边两角及夹边等情况下,先确定角的类型,然后利用$S=\frac{1}{2}ab\sin C$公式计算面积,最后利用相关定理计算其他需要的长度或角度。
高考数学公式定理规律汇总

集合● 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. ● 德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .● 包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=● 容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .● 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.● 集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;二次函数,二次方程● 二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. ● 解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x N M f x ->-⇔11()f x NM N>--.● 方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k ab k +<-<,或0)(2=k f 且22122k ab k k <-<+.● 闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p ab x ,2∈-=,则{}m in m ax m ax()(),()(),()2b f x f f x f p f q a=-=;[]q p ab x ,2∉-=,{}max max()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p ab x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p ab x ,2∉-=,则{}m a x ()m a x (),()f x f p f q =,{}min ()min (),()f x f p f q =. ● 一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .● 定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()m an f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.简易逻辑●●常见结论的否定形式●四种命题的相互关系●充要条件(1)充分条件:若p q⇒,则p是q充分条件.(2)必要条件:若q p⇒,则p是q必要条件.(3)充要条件:若p q⇒,则p是q充要条件.⇒,且q p注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.函数● 函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.● 如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. ● 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;● 若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.● 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.● 若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数. ● 多项式函数110()nn n n P x a x a xa --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. ● 函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b m x f m x ⇔+-=.● 两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f m x a =-与函数()y f b m x =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.● 若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.● 互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.● 若函数)(b kx f y +=存在反函数,则其反函数为])([11b x fk y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.● 几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.● 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.指数与对数● 分数指数幂(1)mna=(0,,a m n N *>∈,且1n >).(2)1m nmnaa-=(0,,a m n N *>∈,且1n >).● 根式的性质(1)na =.(2)当na =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩.● 有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.● 指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.● 对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log mna a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).● 对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a M N M N =+;(2) log log log aa a M M N N=-;(3)log log ()na a Mn M n R =∈.● 设函数)0)((log )(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. ● 对数换底不等式及其推广 若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n ++<.(2)2log log log 2a a am n m n +<.● 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).数列● 等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈; 其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.● 等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.● 等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111nn nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. ● 分期付款(按揭贷款) 每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).三角函数● 常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.● 同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.● 正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩ 212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).● 半角正余切公式:sin sin tan ,cot 21cos 1cos αααααα==+-● 二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.● 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos 34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.● 三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.● 正弦定理 2sin sin sin a b c R ABC===.● 余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.● 面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)O AB S ∆=● 三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.● 在三角形中有下列恒等式: ① sin()sin A B C +=②tan tan tan tan .tan .tan A B C A B C ++=● 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()kk k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.● 最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈.cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.● 角的变形:2()()2()()()ααβαββαβαβααββ=-++=+--=+-向量● 实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb . ● 向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. ● 平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. ● 向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.● a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. ● a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. ● 平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. ● 两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).● 平面两点间的距离公式,A B d =||AB ==(A 11(,)x y ,B 22(,)x y ).● 向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. ● 线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12P P PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121O P O P O P λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). ● 三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x xy y yG ++++.● 点的平移公式''''x x h x x h y y k y y k ⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''O P O P PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .● “按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . ● 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222O A O B O C ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.不等式● 常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈⇒2a b +≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. ● 极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.● 一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.● 含有绝对值的不等式 当a> 0时,有22x a x aa x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. ● 指数不等式与对数不等式 (1)当1a >时,()()()()f x g x aaf xg x >⇔>;()0log ()log ()()0()()aa f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x aaf xg x >⇔<;()0log ()log ()()0()()aa f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩直线方程● 斜率公式 ①2121y y k x x -=-(111(,)P x y 、222(,)P x y ).② k=tan α(α为直线倾斜角)● 直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).● 两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②两直线垂直的充要条件是 12120A A B B +=;即:12l l ⊥⇔12120A A B B += ● 夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π.●1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.● 四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0A x B y C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.● 点到直线的距离||Ax By C d ++=(点00(,)P x y ,直线l :0Ax By C ++=).●0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,若A>0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++<,0Ax By C ++>,若A<0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++>,0Ax By C ++<,可记为“x 为正开口对,X 为负背靠背“。
高考数学公式大全

高考数学公式大全1. 二次方程的求根公式:对于二次方程$ax^2+bx+c=0$,其中$a\neq0$,它的根可以通过以下公式得出:$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$2. 两点间距离公式:设平面上点A($x_1,y_1$)和点B($x_2,y_2$)的坐标,则点A与点B之间的距离为:$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$3. 等差数列前n项和公式:设等差数列的首项为$a_1$,公差为$d$,前n项和为$S_n$,则$S_n$可以通过以下公式计算:$S_n=\frac{n}{2}(2a_1+(n-1)d)$4. 等比数列前n项和公式:设等比数列的首项为$a_1$,公比为$r$,前n项和为$S_n$,若$r\neq1$,则$S_n$可以通过以下公式计算:$S_n=\frac{a_1(1-r^n)}{1-r}$5. 平方差公式:对于任意实数$a$和$b$,有以下公式成立:$(a+b)^2=a^2+2ab+b^2$$(a-b)^2=a^2-2ab+b^2$6. 三角函数的和差化积公式:$\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B$$\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B$7. 二项式展开公式:对于任意实数$a$和$b$,以及正整数$n$,有以下公式成立:$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}$,其中$\binom{n}{k}=\frac{n!}{k!(n-k)!}$表示组合数8. 正弦定理:对于任意三角形ABC,边长分别为$a$,$b$,$c$,以及对应的内角分别为$A$,$B$,$C$,有以下公式成立:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$9. 余弦定理:对于任意三角形ABC,边长分别为$a$,$b$,$c$,以及对应的内角分别为$A$,$B$,$C$,有以下公式成立:$c^2=a^2+b^2-2ab\cos C$10. 三角函数的倒数关系:$\sin(\frac{\pi}{2}-A)=\cos A$$\cos(\frac{\pi}{2}-A)=\sin A$。
高考必记数学公式汇总

高考必记数学公式汇总1. 一元一次方程:ax + b = 0-解的公式:x=-b/a2. 一元二次方程:ax^2 + bx + c = 0- 解的公式:x = (-b ± √(b^2 - 4ac)) / (2a)3.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正切定理:tanA = a/b4.平面几何:-点到直线的距离:d=,Ax+By+C,/√(A^2+B^2)-平行线的性质:两条直线的斜率相等-垂直线的性质:两条直线的斜率的乘积等于-15.统计与概率:-高斯分布:P(x)=(1/(√(2π)σ))*e^(-((x-μ)^2/(2σ^2))) - 期望值计算:E(x) = ∑(xi * P(xi))- 方差计算:Var(x) = ∑((xi - E(x))^2 * P(xi))6.矩阵:-矩阵乘法:若A是一个mxn的矩阵,B是一个nxp的矩阵,那么它们的乘积C是一个mxp的矩阵,其中C的第i行第j列元素为A的第i行与B的第j列的乘积之和。
7.三角函数补充:- 反正弦函数:sin^(-1)(x)- 反余弦函数:cos^(-1)(x)- 反正切函数:tan^(-1)(x)8.指数与对数函数:-指数函数的性质:a^m*a^n=a^(m+n)- 对数函数的性质:log(a) * log(b) = log(a*b)9.数列与数学归纳法:-等差数列通项公式:an = a1 + (n-1)d-等差数列求和公式:Sn = (n/2)(a1 + an)-等比数列通项公式:an = a1 * r^(n-1)-等比数列求和公式:Sn=a1*(1-r^n)/(1-r)10.导数与微分:- 基本导数公式:(常数)' = 0,(x^n)' = nx^(n-1),(e^x)' = e^x,(sinx)' = cosx,(cosx)' = -sinx-链式法则:(f(g(x)))'=f'(g(x))*g'(x)11.不等式与绝对值:-绝对值不等式性质:,a*b,=,a,*,b,a+b,≤,a,+,b- 一次不等式:ax + b > 0 (a ≠ 0)- 二次不等式:ax^2 + bx + c > 0 (a ≠ 0)这些是高考中常见的一些数学公式,掌握并熟练运用它们可以帮助你在数学考试中提高得分。
最新高考高中数学基础知识归纳及常用公式及结论

最新高考高中数学基础知识归纳第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…2 .数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决3.(1) 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.(2)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B == .(3)A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔= 注意:讨论的时候不要遗忘了φ=A 的情况.(4)集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空真子集有2n –2个.4.φ是任何集合的子集,是任何非空集合的真子集.第二部分 函数与导数1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ; ⑥利用均值不等式 2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨平方法;⑩ 导数法3.复合函数的有关问题:(1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的三条中线的交点叫三角形的重心. 如图,设O为三角形的重心,则有:7.重心在向量中的重要结论:外心二.外心三.内心四.旁心1 三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。
2旁心到三角形三边的距离相等。
3三角形有三个旁切圆,三个旁心。
旁心一定在三角形外。
4直角三角形斜边上的旁切圆的半径等于三角形周长的一半。
五.垂心三角形的垂心是三角形三边上的高的交点(通常用H表示)。
三角形的垂心的性质1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心3. 垂心O关于三边的对称点,均在△ABC的外接圆上4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。
1.常见的配方:a2+b2=(a+b)2-2ab=(a-b)2+2ab;a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a2+b2+c2+ab+bc+ca=12[(a+b)2+(b+c)2+(c+a)2]a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2;x2+12x=(x+1x)2-2=(x-1x)2+2 ;……等等。
BD ACCAD∠sin4.共角定理:若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。
证明:由三角形面积公式S=1/2*a*b*sinC可推导出即若△ABC和△ADE中,∠BAC=∠DAE 或∠BAC+∠DAE=180°,则S △ABC /S △ADE =(AB*AC)/(AD*AE)5.张角定理:在△ABC 中,D 是BC 上的一点,连结AD 。
那么sin ∠BAD/AC+sin ∠CAD/AB=sin ∠BAC/AD 。
逆定理: 如果sin ∠BAD/AC+sin ∠CAD/AB=sin ∠BAC/AD ,那么B,D,C 三点共线。
6.燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,有S △AOB ∶S △AOC =BD ∶CD S △AOB ∶S △COB =AE ∶CES △BOC ∶S △AOC =BF ∶AF7.塞瓦定理:在△ABC 内任取一点O ,延长AO 、BO 、CO 分别交对边于D 、E 、F ,则1=⨯⨯FBAFEA CE DC BD17.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 18.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形19.平行四边形对角线平方之和等于四条边平方之和20.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++21.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -22.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222224.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S ′ ,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ = S ′ : S25.角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 26.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则(这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,27.x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意△ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos≤⋅⋅C B A ③232sin 2sin 2sin ≤++C B A④2332cos 2cos 2cos ≤++C B A⑤833sin sin sin ≤⋅⋅C B A⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin222≥++C B A ⑩12tan 2tan 2tan222≥++CB A ⑪32tan 2tan 2tan ≥++CB A⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角△ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A28.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos ∠OAC=cos ∠BAC ·cos ∠OAB (∠BAC 和∠OAB 只能是锐角)29.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-30.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x点(x ,y )关于直线A x+B y+C =0的对称点坐标为32.222b a +≥2b a +≥ab ≥ba ab+2(a 、b 为正数,是统一定义域) 33.1²+2²+3²+…+n ²=6)12)(1(++n n n ;13+23+33+…+n 3=4)]1([2+n n34.函数的周期性问题(记忆三个): ①若f(x)=-f(x+k),则T=2k;②若f(x)=m/(x+k)(m 不为0),则T=2k;③若f(x)=f(x+k)+f(x-k),则T=6k 。
注意点:a .周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinx ,y=sin πx 相加不是周期函数。
35. 关于对称问题(无数人搞不懂的问题)总结如下:①若在R 上(下同)满足:f(a +x)=f(b-x)恒成立,对称轴为x=2ba +; ②函数y=f(a +x)与y=f(b-x)的图像关于x=2ab -对称; ③若f(a +x)+f(a -x)=2b ,则f(x)图像关于(a ,b)中心对称36. 函数奇偶性:①对于属于R 上的奇函数有f(0)=0;②对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项37. 函数详解补充:①复合函数奇偶性:内偶则偶,内奇同外②复合函数单调性:同增异减③重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。
它有一个对称中心,求法为二阶导后导数为0,根x 即为中心横坐标,纵坐标可以用x 带入原函数界定。