高中数学公式定理定律大全

合集下载

完整版)高中数学公式大全完整版

完整版)高中数学公式大全完整版

完整版)高中数学公式大全完整版高中数学常用公式及常用结论1.包含关系若集合A包含于集合B,则AB=B;若AB=B,则A为B 的子集;若C为A和B的并集,则B包含于C;若A和B的交集为∅,则AB=∅;若AB=R,则A和B互为补集。

2.集合的子集集合{a1,a2,…,an}的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个。

3.充要条件1)充分条件:若p→q,则p是q的充分条件。

2)必要条件:若q→p,则p是q的必要条件。

3)充要条件:若p→q,且q→p,则p是q的充要条件。

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。

4.函数的单调性1)设x1≠x2,且x1,x2∈[a,b],则有:f(x1)−f(x2)>0 ⇔ f(x)在[a,b]上是增函数;f(x1)−f(x2)<0 ⇔ f(x)在[a,b]上是减函数。

2)设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。

5.函数的性质如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)+g(x)也是减函数;如果函数y=f(u)和u=g(x)在其对应的定义域上都是减函数,则复合函数y=f[g(x)]是增函数。

6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,则这个函数是奇函数;如果一个函数的图象关于y轴对称,则这个函数是偶函数。

7.函数的对称轴对于函数y=f(x)(x∈R),若f(x+a)=f(b−x)恒成立,则函数f(x)的对称轴是函数x=a+b/2;函数y=f(x+a)与y=f(b−x)的图象关于直线x=a+b/2对称。

8.几个函数方程的周期(约定a>0)1)f(x)=f(x+a),则f(x)的周期T=a;2)f(x+a)=−f(x),或f(x+a)=f(−x)(f(x)≠0),则f(x)的周期T=2a。

高中数理化生:公式定理定律概念大全

高中数理化生:公式定理定律概念大全

高中数理化生:公式定理定律概念大全
一、定律:
1、对称定律:任何的形状如果关于某一特定的线条对称,那么该形状就是对称的。

2、位置定律:两个平行或非平行的直线,任何一点以某一点为中心,做同样方向和角度的旋转都不会改变相对位置。

3、轴对称定律:物体如果沿着某一垂线(轴线)进行翻转,对称的部分的形状不会改变,则称为轴对称。

4、动作定律:如果人正确使用物体,那么物体状态改变的中心点都以使用人手来位置为中心,而且变化角度也恒定。

二、定理:
1、三角形外角和定理:任何一个三角形的三个外角之和等于π(即180度)。

2、勾股定理:在一个直角三角形中,两条直角边长的平方之和等于斜边长的平方,也就是a²+b²=c².
3、梯形面积定理:梯形的面积等于两条小边之和乘以高除以2,也就是s=(a+b)*h/2.
4、勾股纳矩形定理:若在等腰直角三角形中选定两个对角线,则这两个对角线的乘积正好等于对角线对应的直角边乘积,也就是a×b=c×d.
三、公式:
1、直角三角形面积公式:Sh = 1/2*a*h.
2、梯形面积公式:S = 1/2(a + b) * h
3、圆面积公式:S = πr².
4、椭圆面积公式:S = π ab,其中a、b分别是椭圆的长短轴的长度。

5、球的表面积公式:S=4πr²。

高中数学常见公式定理汇总

高中数学常见公式定理汇总

高中数学常见公式定理汇总数学是一门丰富而复杂的学科,其中涵盖了许多公式和定理。

在高中数学学习中,学生们需要掌握和应用大量的数学公式和定理。

下面是一些常见的高中数学公式和定理的汇总:一、代数公式和定理1.二次方程求根公式:对于一元二次方程ax^2+bx+c=0,它的根可以通过求解公式x=(-b±√(b^2-4ac))/(2a)来得到。

2.因式分解公式:对于二次多项式ax^2+bx+c,可以使用公式(x+r)(x+s)=0来分解。

3.二项展开公式:(a+b)^n=a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+b^n,其中C(n,r)表示组合数(从n个元素中选取r个的组合数)。

4.三角函数平方和差公式:sin(a±b)=sinacosb±cosasinb和cos(a±b)=cosacosb∓sinasinb。

5.二次型的最小值公式:对于一般的二次型f(x)=x^TAx,其中A是对称矩阵,其最小值可以通过求解矩阵A的特征值得到。

6.比例公式:对于比例关系a:b=c:d,可以使用公式ad=bc来求解其中任意一个未知量。

二、几何公式和定理1.直角三角形勾股定理:对于直角三角形,设边长分别为a、b、c,其中c为斜边,则有a^2+b^2=c^22.三角形面积公式:对于三角形,设边长分别为a、b、c,半周长为s,则三角形的面积可以通过公式S=√(s(s-a)(s-b)(s-c))来计算。

3.圆周率公式:4.相似三角形定理:如果两个三角形的对应角相等,则它们是相似的。

相似三角形之间的边长比例称为相似比。

5.泰勒级数:泰勒级数是一个函数在特定点展开成无穷级数的表示形式。

对于函数f(x),其在x=a点的泰勒级数展开可以写作f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...。

6.平面直角坐标系中两点之间的距离公式:两点P(x1,y1)和Q(x2,y2)之间的距离可以通过公式d=√((x2-x1)^2+(y2-y1)^2)来计算。

高中必背88个数学公式

高中必背88个数学公式

高中必背88个数学公式1. 勾股定理:直角三角形的两条直角边的平方和等于斜边平方。

2. 余弦定理:在任意三角形中,一个角的余弦等于与该角相对的边的平方和减去另外两条边的平方的差再除以两倍的另一条边与该角相对的角的正弦的乘积。

3. 正弦定理:在任意三角形中,一个角的正弦等于与该角相对的边长和另外两条边长的比例的乘积。

4. 长方形面积公式:长方形的面积等于长乘以宽。

5. 平行四边形面积公式:平行四边形面积等于底边长乘以高。

6. 梯形面积公式:梯形的面积等于上底加下底乘以高再除以二。

7. 三角形面积公式:三角形面积等于底边长乘以高再除以二。

8. 圆面积公式:圆的面积等于圆周率乘以半径的平方。

9. 圆周长公式:圆的周长等于直径乘以圆周率。

10. 球体表面积公式:球体的表面积等于四倍的圆面积。

11. 球体体积公式:球体的体积等于四分之三的圆面积乘以半径的立方。

12. 一次函数方程: y = kx + b。

13. 二次函数方程: y = ax² + bx + c。

14. 等差数列通项公式: an = a1 + (n - 1)d,其中a1为首项,d为公差,an为第n项。

15. 等差数列前n项和公式: Sn = n(a1 + an)/2,其中a1为首项,an为第n项,n为项数。

16. 等比数列通项公式:an = a1 × qⁿ⁻¹,其中a1为首项,q为公比,n为项数。

17. 等比数列前n项和公式: Sn = a1(1 - qⁿ)/1 - q,其中a1为首项,q为公比,n为项数。

18. 三角函数正弦的定义:在直角三角形中,任意一锐角的正弦是指这个角的对边与这个角所在的斜边的比值。

19. 三角函数余弦的定义:在直角三角形中,任意一锐角的余弦是指这个角的邻边与这个角所在的斜边的比值。

20. 三角函数正切的定义:在直角三角形中,任意一锐角的正切是指这个角的对边与这个角的邻边的比值。

21. 三角函数余切的定义:在直角三角形中,任意一锐角的余切是指这个角的邻边与这个角的对边的比值。

高中数学定理公式大全

高中数学定理公式大全

高中数学定理公式大全高中数学是数学学科的一部分,主要包括数学分析和数学推理两个方面。

数学分析是研究数学对象和数学对象之间的关系、性质和变化规律的学科,而数学推理是运用数学知识进行问题求解和推理的学科。

高中数学的学习过程中有许多重要的定理和公式,下面是一些高中数学常见的定理和公式的介绍。

1.二项式定理:对于任意实数a,b和正整数n,成立(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n,其中C(n,k)表示组合数,即从n个不同元素中取出k个元素的方法的数量。

2. 一次函数的斜率公式:对于一次函数y = mx + c,其中m表示斜率,c表示截距,斜率m可以通过任意两个点(x1, y1)和(x2, y2)来求得,m = (y2 - y1) / (x2 - x1)。

3. 三角函数的基本关系式:sin^2θ + cos^2θ = 1,1 + tan^2θ= sec^2θ,1 + cot^2θ = csc^2θ。

4.三角函数的和差公式:sin(A ± B) = sin(A) * cos(B) ± cos(A) * sin(B)cos(A ± B) = cos(A) * cos(B) ∓ sin(A) * sin(B)tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A) * tan(B))5. 余弦定理:对于任意三角形ABC,设a、b、c分别表示边BC、AC、AB的长度,A、B、C分别表示∠BAC、∠ABC、∠BCA的大小,则有c^2 =a^2 + b^2 - 2ab * cos(C)。

6. 正弦定理:对于任意三角形ABC,设a、b、c分别表示边BC、AC、AB的长度,A、B、C分别表示∠BAC、∠ABC、∠BCA的大小,则有a /sin(A) = b / sin(B) = c / sin(C)。

高中数学重要公式定律

高中数学重要公式定律

高中数学重要公式定律1.指数(1)分数指数幂①nm nm a a =()1,,,0*>∈>n Nn m a 且②n m n m nm aa a 11-==()1,,,0*>∈>n Nn m a 且③0的正分数指数幂等于0;0的负分数指数幂没有意义。

(2)运算的性质:设Qs ,r ,b<a>∈,00①s r s r a a a +=sr s r aa a +=②r-s s r a aa =③()rssr a a =④()r r r b a ab =⑤rb r a rb a =⎪⎭⎫⎝⎛2.对数(1)性质:①()101log ≠>=,a a a a ②()1001log ≠>=,a a a (2)常用对数:N N lg log 10=;自然对数:N N e In log =(3)运算性质:设1000≠>>>,a ,a ,N M 那么:①()N M MN a a a log log log +=②N M Ma a alog log log -=③()R n M n M a a ∈=log log n (4)常用公式设0011000≠≠≠≠>>>,n ,m ,b ,a ,b ,a N①对数恒等式:N a N a =log ②换底公式:bN N a a b log log log =③ab b a log 1log =3.空间几何体公式(1)侧面积公式:①πrl S 2圆柱侧=②πrl S =圆锥侧③()l r r πS '+=圆台侧(2)表面积公式:①()l r πr S +=2圆柱②2圆锥πr πrl S +=③()rl l r r r πS ''+++=22圆台④2R 4πS =球(3)体积公式:①Sh V =棱柱②hπr V 2圆柱=③ShV 1棱柱=()''S SS S h V ++=1棱台④h πr V 2圆锥31=()22圆台31r'rr r πh V '++=⑤3球34πR V =4.直线与平面之间的平行与垂直(1)空间两直线平行的判定:①c a c b b a //////⇒⎭⎬⎫②b a b a //⇒⎭⎬⎫⊥⊥αα③ba b a //⇒⎭⎬⎫=⊂βαβ ④a//bb βγa αγ⇒⎭⎬⎫== (2)空间两直线垂直的判定:①b a b a a ⊥⇒⎪⎭⎪⎬⎫⊂⊥ααα//②b l a l b a ⊥⇒⎪⎭⎪⎬⎫⊥////βα(3)直线与平面平行的判定:①ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄②βαβα////a a ⎭⎬⎫⊂(4)直线与平面平行的性质:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βααβ(5)直线与平面垂直的判定:①ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⊂⊂l n l m l B n m n m ,, ②αα⊥⇒⎭⎬⎫⊥b a b a //(6)直线与平面垂直的性质:b a b a //⇒⎭⎬⎫⊥⊥αα(7)平面与平面平行的判定:①βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂A b a b a b a ②βαβα//⇒⎭⎬⎫⊥⊥a a ③βαγβγα//////⇒⎭⎬⎫(8)平面与平面平行的性质:b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα (9)平面与平面垂直的判定:①βαβα⊥⇒⎭⎬⎫⊥⊂a a ②二面角的平面角90=θ(10)平面与平面垂直的性质:①βαβαβα⊥⇒⎭⎬⎫⊥⊂=⊥a b a a b ,, ②αββαα⊂⇒⎭⎬⎫⊥⊥∈∈a a A a A ,,5.直线、圆与方程(1)直线的斜率公式:()211212x x x x y y k ≠--=(2)直线方程:①点斜式:()00x x k y y -=-②斜截式:b kx y +=③两点式:121121x x x x y y y y --=--④截距式:()01≠=+ab bya x ⑤一般式:()0022≠+=++B A C By Ax (3)两条直线的位置关系:①()()2121222111且平行b b k k b x k y l b x k y l ≠=+=+=:与②()()1垂直21222111-=+=+=k :k b x k y 与l b x k y l ③2121212222111100C CB B A A :)C y B x (A l )C y B x (A l ≠==++=++平行与④000212122221111=+=++=++B B A :A )C y B x (A l )C y B x (A l 垂直与(4)距离公式:①两点间距离:()()21221221y y x x P P -+-=②点到直线的距离:2200B A CBy Ax d +++=③两平行线间的距离:2212B A C C d +-=(5)圆的方程:①圆的标准方程:()()222r b y a x =-+-,其中圆心为()b a ,,半径为r②圆的一般方程:FE D r E DF E D F Ey Dx y x 421,2,2,04,0222222-+=⎪⎭⎫⎝⎛-->-+=++++半径为圆心为其中(6)空间直角坐标系:①空间中的点与原点的距离公式:222z y x OP ++=②空间中任意两点的距离公式:()()()22122122121z z y y x x P P -+-+-=③空间的中点坐标公式:⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x 6.概率与统计(1)概率:①古典概型的概念公式:()nmA A P ==基本事件总数包含的基本事件数事件②几何概型的概率公式:()()()体积积或面的区域长区试验的全部结果所构成体积积或面的区域长区构成事件A A P =(2)统计①离散型随机变量的数学期望:()nn i i p x p x p x p x X E ++++=2211性质:()()()是常数b a b X aE b aX E ,+=+若X 服从两点分布,则()p X E =;若X 服从二项分布,即()p n B X ,~,则()npX E =②离散型随机变量的方差:()()()ini i p X E x X D ∑=-=12性质:()()()是常数b a X D a b aX D ,2=+若X 服从两点分布,则()()p p X D -=1若X 服从二项分布,即()p n B X ,~,则()()p np X D -=17.三角函数(1)弧度与角度的换算关系:①rad rad 017453.01==π②'18573.571801=≈⎪⎭⎫ ⎝⎛=πrad (2)弧长公式:rl α=扇形的面积公式:2211r lr S α==(3)同角三角函数的基本关系:①1cos sin 22=+αα②⎪⎭⎫⎝⎛∈+≠=z ,k πkπαααα2cos sin tan (4)三角函数的诱导公式:公式一:()απαsin 2sin =⋅+k ()απαcos 2cos =⋅+k ()()z k απk α∈=⋅+其中tan 2tan 公式二:()ααπsin sin -=+()ααπcos cos -=+()ααπtan tan =+公式三:()ααsin sin -=-()ααcos cos =-()ααtan tan -=-公式四:()ααπsin sin =-()ααπcos cos -=-()ααπtan tan -=-公式五:ααπcos 2sin =⎪⎭⎫⎝⎛-ααπsin 2cos =⎪⎭⎫⎝⎛-公式六:ααπcos 2sin =⎪⎭⎫⎝⎛+ααπsin 2cos -=⎪⎭⎫⎝⎛+8.平面向量(1)向量的坐标运算:设()()则,,,,,2211R y x b y x a ∈==λ①()2121,y y x x b a ±±=±②()()1111,,y x y x a λλλλ== ③2121cos y y x x b a b a +=⋅=⋅θ (2)平面向量的重要定理、公式:①平面向量基本定理:2211e e aλλ+=②两个向量平行的充要条件:()0//1221=-⇔=⇔≠y x y x b a b b aλ③两个非零向量垂直的充要条件:002121=+⇔=⋅⇔⊥y y x x b a b a④长度公式:()()⎧-+-=+=22122122y y x x y x a ⑤角度公式:()之间的夹角与为非零向量b a y x y x y y x x b a b aθcos 222221212121+⋅++=⋅⋅=θ9.三角恒等变换(1)两角和与差的三角函数:()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±()()πϕϕϕϕααα20cos ,sin ;sin cos sin 222222≤≤+=+=++=+ba a ba b b a b a 其中(2)二倍角公式:αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=(3)积化和差与和差化积公式:()()βαβαβα-++=sin sin cos sin 2()()βαβαβα--+=sin sin sin cos 2()()βαβαβα-++=cos cos cos cos 2()()βαβαβα--+=-cos cos sin sin 22cos 2sin 2sin sin βαβαβα-+=+sincos 2sin sin βαβαβα-+=-2cos2cos 2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-(4)半角公式:2cos 1sinαα-±=2cos 1cosαα+±=αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±=10.解三角形(1)正弦定理:()的外接圆外接为2sin sin sin ΔABC R R CcB b A a ===(2)余弦定理:Abc c b a cos 2222-+=Bac c a b cos 2222-+=Cab b a c cos 2222-+=推理:bca cb A 2cos 222-+=acb c a B 2cos 222-+=abc b a C 2cos 222-+=(3)三角形的面积公式Cab B ac A bc S sin 21sin 21sin 21===∆11.数列(1)等差数列:通项公式:()dn a a n 11-+=中项公式:()成等差列,,2b A a b a A +=前n 项和公式:()()dn n na a a n S n n 21211-+=+=(2)等比数列:通项公式:11-=n n q a a 中项公式:abG =2()成等比数列,,b G a 前n 项和公式:()()()⎪⎩⎪⎨⎧=≠--=--=11111S 111n q na q q q a a q q a n n (3)n a 与n S 的关系:()()⎩⎨⎧=≥-=-1211n S n S S a n nn (4)常用求和公式:①()211+=∑=n n k nk ②()()612112++=∑=n n n k nk ③()2131⎥⎦⎤⎢⎣⎡+=∑=n n k nk 12.基本不等式(1)()时等号成立当且仅当b a ab b a =≥+222(2))时等号成立当且仅当b a ab ba =≥+(3)()()时等号成立当且仅当b a b a b a ba ab ba =>+≤+≤≤+0,,221122213.圆锥曲线与方程(1)椭圆:标准方程:()012222>>=+b a b y a x 离心率:()222,10b a c e ace -=<<=(2)双曲线:标准方程:()0,012222>>=-b a b y a x 离心率:()222,1b a c e ace +=>=(3)抛物线:标准方程:()022>=p px y 准线:2p x -=离心率:1=e 14.空间向量与立体几何(1)空间向量运算的坐标表示:设()()为实数,则,,,,,,222111λz y x b z y x a ==()212121,,z z y y x x b a +++=+()212121,,z z y y x x b a ---=-()111,,z y x a λλλλ=212121z z y y x x b a ++=⋅222222212121212121,cos z y x z y x z z y y x x ba b a b a ++⋅++++=⋅⋅=(2)空间向量的平行和垂直:()λλ===⇔=⇔≠2121210//z z y y x x b a b b a2121210z z y y x x b a b a ++⇔=⋅⇔⊥(3)空间两点的距离:()()()212212212z z y y x x -+-+-=15.导数及其应用(1)几种常见函数的导数:①()为常数0'c c =②()()0,1'≠∈=-n Q n nx x n n 且③()x x cos sin '=④()x x sin cos '-=⑤()x x e e ='⑥()()1,0'≠>=a a Ina a a x x 且⑦()()01'>=x x Inx ⑧()()1,0,01log '≠>>=a a x x a 且(2)导数的运算①()[]()[]()()x g x f x g x f '''±=±②()()[]()()()()x g x f x g x f x g x f '''+=⋅③()()()()()()()[]()()02'''≠-=⎥⎦⎤⎢⎣⎡x g x g x g x f x g x f x g x f (3)定积分的基本性质:①()()()为常数k dx x f k dx x kf ba b a ⎰⎰=②()()[]()()⎰⎰⎰±=±b a b a b a dx x f dx x f dx x f x f 2121③()()()()b c a dx x f dx x f dx x f bc c a b a <<+=⎰⎰⎰其中16.数系的扩充与复数的引入(1)复数:()R b a bi a z ∈+=,,其共轭复数为bia z -=(2)复数的代数运算12-=i i i -=314=i d b c a di c bi a ==⇔+=+,()()()()i d b c a di c bi a ±+±=+±+()()()()i ad bc bd ac di c bi a ++-=++()02222≠++-+++=++di c i ad bc bd ac bi a 17.记数原理(1)排列数公式:()()()()()n m N m n m n n m n n n n A m n ≤∈-=+---=且、,!!121* (2)组合数公式:()()()()()n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+---==且、,!!!!121* (3)组合数与排列数的关系:()n m A C A m m m n m n≤⋅=(4)二项式定理()()*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+-- 通项公式:()n r b a C T r r n r nr ≤≤=-+01二项式系数的性质:①m n n m n C C -=②n n n n nC C C 210=+++ ③131202-=++=++n n n n nC C C C 特例:1!0=10=n C。

高中数学公式定理大全

高中数学公式定理大全

1高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x N M f x ->-⇔11()f x NM N>--.8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k ab k +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下: (1)当a>0时,若[]q p ab x ,2∈-=,则{}m i nmaxmax ()(),()(),(2bf x f f x fp f q a=-=; []q p ab x ,2∉-=,{}max max()(),()f x f p f q =,{}min min()(),()f x f p f q =.(2)当a<0时,若[]q p ab x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p ab x ,2∉-=,则{}max()ma x f x fp=,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q pm ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或22()0()0402f m f n p q p m n>⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ . 11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是m in (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或240a b ac <⎧⎨-<⎩. 12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;3如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a xa --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()(f a m x f b m x⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x fky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()c o f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,4或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)mn a =(0,,a m n N *>∈,且1n >). (2)1m nmnaa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当na =; 当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质(1) (0,,)r s r sa a a a r s Q +⋅=>∈. (2) ()(0,,)rsrsa a a r s Q =>∈.(3)()(0,0,)rrrab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log baN b a N =⇔=(0,1,0)a a N >≠>. 34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log mn a a n b b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+; (2) log log log aa a M M N N=-; (3)log log ()na a Mn M n R =∈.36.设函数)0)((log )(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am n m n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系511,1,2n nn s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.41.等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为 11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为 1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111nn nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩ 47.和角与差角公式sin()sin cos cos sinαβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ; tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.6sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos 34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式 函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b c R ABC===.52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)O A B S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()kk k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb .758.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ). 64.平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12P P PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121O P O P O P λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''O P O P P P ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为A B C ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为A B C ∆的外心222O A O B O C ⇔== .8(2)O 为A B C ∆的重心0OA OB OC ⇔++=.(3)O 为A B C ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为A B C ∆的内心0aOA bOB cOC ⇔++=.(5)O 为A B C ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈⇒2a b +≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x aa x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x aaf xg x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x aaf xg x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).9(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y(12x x ≠)).(4)截距式1xya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A xB yC λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0A x B y C ++=平行的直线系方程是0A x B y λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0A x B y C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:10111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b y c ++=是直线A B 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3)过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y Dx E yF xyD xE yF λ+++++++++=,λ是待定的系数. 88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k的圆的切线方程为y kx =±92.椭圆22221(0)x y a b ab+=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.1193.椭圆22221(0)x y a b ab +=>>焦半径公式)(21c ax e PF +=,)(22x cae PF -=. 94.椭圆的的内外部 (1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b ab+=>>的外部2200221x y ab⇔+>.95. 椭圆的切线方程 (1)椭圆22221(0)x y a b ab+=>>上一点00(,)P x y 处的切线方程是00221x x y y ab+=.(2)过椭圆22221(0)x y a b ab+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab+=. (3)椭圆22221(0)x y a b ab+=>>与直线0A x B y C ++=相切的条件是22222A aB b c +=.96.双曲线22221(0,0)x y a b ab-=>>的焦半径公式21|()|aPF e x c=+,22|()|aPF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b ab-=>>的内部2200221x y ab⇔->.(2)点00(,)P x y 在双曲线22221(0,0)xya b a b-=>>的外部2200221x y ab⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax ⇒渐近线方程:22220x y ab-=⇔x ab y ±=.(2)若渐近线方程为x a b y ±=⇔0=±by ax ⇒双曲线可设为λ=-2222by ax .(3)若双曲线与12222=-b ya x有公共渐近线,可设为λ=-2222bya x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b ab-=>>上一点00(,)P x y 处的切线方程是00221x x y y ab-=.(2)过双曲线22221(0,0)x y a b ab-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab-=.(3)双曲线22221(0,0)x y a b ab-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p C F x =+.12过焦点弦长p x x p x p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt PP (,)x y ,其中 22y px = .102.二次函数2224()24b ac b y ax bx c a x aa-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a--;(2)焦点的坐标为241(,)24b ac b aa-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+. (2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y p x p =>与直线0A x B y C ++=相切的条件是22p B A C =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221xya kb k+=--,其中22max{,}k a b <.当22m in{,}k a b >时,表示椭圆; 当2222m in{,}m ax{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式AB =或1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax,0∆>,α为直线A B 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A BA B++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy C y D x Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y y A x x B C y y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径13(1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb . P A B 、、三点共线⇔||AP AB ⇔A =⇔(1O P t OA t O B=-+.||AB CD ⇔AB、CD 共线且A BC D 、不共线⇔A B t C D = 且A B C D 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使M P x M A y M B =+,或对空间任一定点O ,有序实数对,x y ,使O P O M x M A y M B =++. 119.对空间任一点O 和不共线的三点A 、B 、C ,满足O P x O A y O B =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB、A C 共面⇔AD x AB y AC =+ ⇔(1)O D x y O A xO B yO C =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使O P xO A yO B zO C =++.121.射影公式已知向量AB=a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB = 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---. 124.空间的线线平行或垂直14设111(,,)a x y z =r ,222(,,)b x y z =r,则 a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体A B C D 中, A C 与B D 所成的角为θ,则 2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r分别表示异面直线a b ,的方向向量)128.直线A B 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若A B C ∆所在平面若β与过若A B 的平面α成的角θ,另两边A C ,BC 与平面α成的角分别是1θ、2θ,A B 、为A B C ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠= 时,有22212sin sin sin θθθ+=.130.若A B C ∆所在平面若β与过若A B 的平面α成的角θ,另两边A C ,BC 与平面α成的角分别是1θ、2θ,''A B 、为A B O ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠= 时,有22212sin sin sin θθθ+=.131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量). 132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212si ns insi n s i n2s ins i ncϕθθθθθϕ=+-; 1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则 ,A Bd=||AB ==.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA,向量b =P Q).136.异面直线间的距离15||||C D n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||A B n d n ⋅=(n为平面α的法向量,A B 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =d =d ='E AAF ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,A F n =,E F d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a=+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos SS θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E m V =.146.球的半径是R ,则 其体积343V R π=,其表面积24S R π=. 147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a12,4.148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).1613V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+; (2)1mmn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n nn n n nA A A ++=-; (5)11m m m n n n A A m A -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m nC =m nmmA A =mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质(1)m n C =mn n C - ; (2) mn C +1-m nC =mn C 1+.注:规定10=n C .155.组合恒等式 (1)11m m nnn m CCm--+=;(2)1m mn n nC C n m -=-;(3)11mm n n n C C m--=; (4)∑=nr r n C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C . (6)nn n r n n n n C C C C C 2210=++++++ .(7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C .(9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 .(10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系 m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh h h A A 1+种.。

高中数理化公式大全

高中数理化公式大全

高中数理化公式大全数学公式:1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n)a^0b^n2. 三角函数的关系式:sin(a + b) = sin(a)cos(b) +cos(a)sin(b), cos(a + b) = cos(a)cos(b) - sin(a)sin(b), tan(a +b) = (tan(a) + tan(b))/(1 - tan(a)tan(b))3. 对数函数的性质:log(ab) = log(a) + log(b), log(a^n) = nlog(a), log(1/a) = -log(a)4.圆的周长和面积:C=2πr,A=πr^25. 三角形的边长和面积:a^2 = b^2 + c^2 - 2bccosA, A =(1/2)bh6.角度和弧度的转换:1弧度=180/π度,1度=π/180弧度7.等差数列通项公式:an = a1 + (n-1)d8.等比数列通项公式:an = a1 * r^(n-1)物理公式:1.牛顿第一定律:物体仅在外力作用下才会改变其运动状态2. 牛顿第二定律:F = ma,力的大小等于质量乘以加速度3.牛顿第三定律:作用力与反作用力大小相等、方向相反、作用在不同的物体上4.动能定理:W=ΔK,功等于动能的增量5.万有引力定律:F=G(m1m2/r^2),两个物体间的引力等于G乘以两物体质量的乘积除以距离的平方6.电流定律:I=Q/t,电流等于电量除以时间7.电阻定律:U=IR,电压等于电流乘以电阻8.热传导定律:Q=kAtΔT/L,导热量等于热导率乘以传热面积乘以传热时间乘以温度差除以传热长度化学公式:1.摩尔质量公式:M=m/n,摩尔质量等于质量除以物质的摩尔数2.平衡常数公式:K=[C]^c[D]^d/[A]^a[B]^b,平衡常数等于反应物浓度的乘积除以生成物浓度的乘积3.摩尔浓度公式:C=n/V4.离子平衡公式:Kw=[H+][OH-],离子平衡常数等于氢离子浓度乘以氢氧根离子浓度5. 溶解度积公式:Ksp = [A+][B-],溶解度积常数等于阳离子浓度乘以阴离子浓度6.核反应速率公式:r=k[N]^a,核反应速率等于速率常数乘以核素浓度的幂次这些公式只是数理化领域的一部分,数学、物理、化学的公式非常庞大,但以上公式可以帮助高中学生加深对数理化知识的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式大全(最全面,最详细)高中数学公式大全抛物线: y = ax *+ bx + c就是 y 等于 ax 的平方加上 bx 再加上 ca > 0 时开口向上a < 0 时开口向下c = 0 时抛物线经过原点b = 0 时抛物线对称轴为 y 轴还有顶点式 y = a ( x+h) * + k就是 y 等于 a 乘以( x+h)的平方 +k-h 是顶点坐标的 xk 是顶点坐标的 y 一般用于求最大值与最小值抛物线标准方程 :y^2=2px 它表示抛物线的焦点在 x 的正半轴上 , 焦点坐标为 (p/2,0) 方程为 x=-p/2由于抛物线的焦点可在任意半轴 , 故共有标准方程准线y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积 =4/3(pi )(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 (一)椭圆周长计算公式椭圆周长公式: L=2πb+4(a -b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长( a)与短半轴长( b)的差。

(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长( a)与短半轴长( b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率 T,但这两个公式都是通过椭圆周率 T 推导演变而来。

常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径*短半径*PAI* 高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asin α+sin( α+2π /n)+sin( α+2π*2/n)+sin( α+2π*3/n)+ in[ α+2π*(n -1)/n]=0 cos α+cos( α+2π/n)+cos( α+2π*2/n)+cos( α+2π*3/n)+ os[ α+2π*(n -1)/n]=0 以及sin^2( α)+sin^2( α - 2π/3)+sin^2( α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-+s+c16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1 )*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48 *cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sin α=2tan( α/2)/[1+tan^2( α/2)]cosα=[ 1 - tan^2( α/2)]/[1+tan^2(α/2)]tan α=2tan( α/2)/[1 - tan^2( α/2)]半角公式sin(A/2 )= √((1 -cosA)/2)sin(A/2)=-√((1 -cosA)/2)cos(A/2 )= √((1+cosA)/2)cos(A/2)=- √((1+cosA)/2)tan(A/2 )= √((1 -cosA)/((1+cosA))tan(A/2)=- √((1 -cosA)/((1+cosA))cot(A/2)= √((1+cosA)/((1 -cosA))cot(A/2)=- √((1+cosA)/((1 -cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 某些数列前 n 项和1+2+3+4+5+6+7+8+9⋯+ +n=n(n+1)/21+3+5+7+9+11+13+15⋯+ +(2n -1)=n22+4+6+8+10+12+14+⋯+(2n )=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+⋯+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+⋯n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+ ⋯+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角 B是边 a和边 c 的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b| ≤|a|+|b| |a - b| ≤|a|+|b||a| ≤ b<=>- b≤ a≤b|a- b| ≥|a| -|b| - |a| ≤a≤ |a|一元二次方程的解 - b+√(b2 -4ac)/2a -b- √(b2 -4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r >0 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中 ,S' 是直截面面积, L 是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长 =(长 +宽)×2 正方形的周长 =边长×4 长方形的面积 =长×宽正方形的面积 =边长×边长三角形的面积已知三角形底 a,高 h,则 S= ah/2 已知三角形三边 a,b,c, 半周长 p, 则 S=√[p(p - a)(p - b)(p- c)] (海伦公式)( p=(a+b+c)/2 ) 和:(a+b+c)*(a+b-c)*1/4已知三角形两边 a,b, 这两边夹角 C,则 S=absinC/2 设三角形三边分别为 a、 b、c,内切圆半径为 r 则三角形面积 =(a+b+c)r/2设三角形三边分别为 a、 b、c,外接圆半径为 r 则三角形面积 =abc/4r已知三角形三边 a、 b、c, 则 S=√{1/4[c^2a^2 -((c^2+a^2- b^2)/2)^2]} ( “三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |为三阶行列式 , 此三角形 ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f), 这里 ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式 : S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中 Ma,Mb,Mc为三角形的中线长 .平行四边形的面积 =底×高梯形的面积 =(上底 +下底)×高÷2直径=半径× 2 半径 =直径÷2圆的周长 =圆周率×直径 =圆周率×半径×2圆的面积 =圆周率×半径×半径长方体的表面积 =(长×宽 +长×高+宽×高)×2长方体的体积 = 长×宽×高正方体的表面积 =棱长×棱长×6正方体的体积 =棱长×棱长×棱长圆柱的侧面积 =底面圆的周长×高圆柱的表面积 =上下底面面积 +侧面积圆柱的体积 =底面积×高圆锥的体积 =底面积×高÷3 长方体(正方体、圆柱体) 的体积 =底面积×高平面图形名称符号周长 C和面积 S正方形 a —边长 C =4aS =a2长方形 a 和 b-边长 C =2(a+b)S =ab三角形 a,b,c -三边长h - a边上的高s -周长的一半A,B,C -内角其中 s=(a+b+c)/2 S =ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于 180°18推论 1 直角三角形的两个锐角互余19推论 2 三角形的一个外角等于和它不相邻的两个内角的和20推论 3 三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理 (sas) 有两边和它们的夹角对应相等的两个三角形全等23角边角公理 ( asa) 有两角和它们的夹边对应相等的两个三角形全等24推论 (aas) 有两角和其中一角的对边对应相等的两个三角形全等25边边边公理 (sss) 有三边对应相等的两个三角形全等26斜边、直角边公理 (hl) 有斜边和一条直角边对应相等的两个直角三角形全等27定理 1 在角的平分线上的点到这个角的两边的距离相等28定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等( 即等边对等角)31推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论 3 等边三角形的各角都相等,并且每一个角都等于 60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论 1 三个角都相等的三角形是等边三角形36推论 2 有一个角等于 60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理 1 关于某条直线对称的两个图形是全等形43定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边 a、 b 的平方和、等于斜边 c 的平方,即 a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长 a、b、 c 有关系 a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于 360°49四边形的外角和等于 360°50多边形内角和定理 n 边形的内角的和等于( n-2 )×180°51推论任意多边的外角和等于 360°52平行四边形性质定理 1 平行四边形的对角相等53平行四边形性质定理 2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理 3 平行四边形的对角线互相平分56平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60矩形性质定理 1 矩形的四个角都是直角61矩形性质定理 2 矩形的对角线相等62矩形判定定理 1 有三个角是直角的四边形是矩形63矩形判定定理 2 对角线相等的平行四边形是矩形64菱形性质定理 1 菱形的四条边都相等65菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积 =对角线乘积的一半,即 s=( a× b)÷267菱形判定定理 1 四边都相等的四边形是菱形68菱形判定定理 2 对角线互相垂直的平行四边形是菱形69正方形性质定理 1 正方形的四个角都是直角,四条边都相等70正方形性质定理 2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理 1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l= (a+b)÷ 2 s=l ×h83(1) 比例的基本性质如果 a:b=c:d, 那么 ad=bc 如果ad=bc, 那么 a:b=c:d84(2) 合比性质如果 a/ b=c/d,那么(a ±b) /b=(c±d) / d85(3) 等比性质如果 a/ b=c/d=⋯=m/n(b+d+⋯+n≠0), 那么 (a+c+ ⋯+m)/(b+d+⋯+n)=a/ b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边 (或两边的延长线) 所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理 1 两角对应相等,两三角形相似( asa )92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理 2 两边对应成比例且夹角相等,两三角形相似( sas)94判定定理 3 三边对应成比例,两三角形相似( sss )95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理 2 相似三角形周长的比等于相似比98性质定理 3 相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

相关文档
最新文档