北师大版数学八年级上册4.2 一次函数与正比例函数

合集下载

八年级数学上册 4.2《一次函数与正比例函数》典型例题素材 (新版)北师大版

八年级数学上册 4.2《一次函数与正比例函数》典型例题素材 (新版)北师大版

一次函数与正比例函数?典型例题例1 以下函数中,哪些是一次函数?哪些是正比例函数?〔1〕3x y -=; 〔2〕x y 8-=; 〔3〕)81(82x x x y -+=;〔4〕x y 81+=.例2 判断以下函数关系中,哪些是y 关于x 的一次函数〔以下各题中的0k ≠且为常数〕?〔是一次函数的打√,假设不是打×〕〔1〕3y k x =- 〔 〕〔2〕(2)y k x =+ 〔 〕〔3〕23y x x =+ 〔 〕〔4〕3y kx =+ 〔 〕〔5〕23y x k =+ 〔 〕〔6〕5y k = 〔 〕.例3 m y +与n x -成正比例〔其中m ,n 是常数〕〔1〕求证:y 是x 的一次函数;〔2〕如果1-=x 时,15-=y ,7=x 时,1=y ,求这个一次函数的解析式.例4 列出以下函数关系式,判别其中哪些为一次函数、正比例函数.〔1〕正方形周长p 和一边的长a .〔2〕圆的面积A 与半径R .〔3〕长a 一定时矩形面积y 与宽x .〔4〕15斤梨售价20元.售价y 与斤数x .〔5〕定期存100元本金,月利率1.8%,本息y与所存月数x.〔6〕水库原存水Q立方米,现以每小时a立方米的流量开闸放水,同时上游以每小时b立方米的流量向水库注水,求这时水库的蓄水量M与时间t的函数关系.例5 、某工厂有煤m吨,每天烧煤n吨.现煤烧3天后余102吨,烧煤8天后余煤72吨,问烧煤15天后余煤多少吨?例6 y-3与x成正比例函数,且x=2时,y=7.〔1〕求y与x之间的函数关系式.〔2〕求当x=2时y的值.〔3〕求当y=-3时x的值.例7 如图,温度计上表示摄氏温度与华氏温度的刻度,能否用函数解析式表示摄氏温度与华氏温度的关系?如果今天的气温是摄氏32℃,那么华氏是多少度?参考答案例1 解:〔1〕3x y -=即为x y 31-=,其中31-=k ,0=b ,所以3x y -=是一次函数,也是正比例函数.〔2〕x y 8-=,因为x8-不是整式,所以不能化为b kx +的形式,所以x y 8-=不是一次函数,当然也就不能是正比例函数了.〔3〕)81(82x x x y -+=经过恒等变形,转化为x y =,其中1=k ,0=b .所以)81(82x x x y -+=是一次函数,也是正比例函数.〔4〕x y 81+=,即为18+=x y ,其中8=k ,1=b .所以,x y 81+=是一次函数,但不是正比例函数.说明:判断函数是一次函数、正比例函数,首先看每个函数解析式能否通过恒等变形,转化为b kx y +=的形式,如果x 的次数是1,且0≠k ,那么是一次函数,否那么就不是一次函数;在一次函数中,如果常数项0=b ,那么它就是正比例函数.例2 答案: √ √ ╳ √ √ ╳.说明:此题考查一次函数的概念,要理解一次函数的概念。

北师大版八年级上册数学《一次函数与正比例函数》一次函数说课课件教学

北师大版八年级上册数学《一次函数与正比例函数》一次函数说课课件教学
回赶.在回家的路上,爸爸的手机响了,
原来是信息提示.
爸爸看着手机说:“我的劳务报酬税后
没有减少很多.”
情境中有我们熟悉的哪个数学问题?请你说出来并帮忙解决
下面这个问题.
理解新知
自2019年1月1日起,我国居民个人劳务报酬所得税预扣预缴税款的计算
方法是:每次收入不超过800元的,预扣预缴税款为0;每次收入超过
(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹
簧长度,并填入下表:
x/kg
0
1
2
3
4
5
y/cm
3
3.5
4
4.5
5
5.5
情景引

一次函数与正比例函数
概念生

练习巩

课堂小

某弹簧的自然长度为3cm,在弹簧弹性限度内,所挂物体的质量x每增
加1kg,弹簧长度y增加0.5cm.
z=6x
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/
很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
若小美想给妈妈买康乃馨.设买花的费用z元,买花及包装的
总费用y元,所买康乃馨数量x支.
60 ,它的实际意义是什么?
应用新知
2.(1)当m为何值时,函数y=(m+1) + 1为一次函数?
(2)当m为何值时,函数y= + − 1为正比例函数?
解:(1)因为函数y=(m+1)x m + 1为一次函数,
所以 =1,且m+1≠0,

北师大版数学八年级上册4.2一次函数与正比例函数公开课教案

北师大版数学八年级上册4.2一次函数与正比例函数公开课教案

北师大版数学八年级上册4.2一次函数与正比例函数公开课教案课题:一次函数与正比例函数? 教学目标:知识和技能目标:1、经历一次函数概念的抽象过程,体会模型思想,发展符合意义2.理解正比例函数和初等函数的概念,能根据给定条件写出正比例函数和简单初等函数表达式的过程和方法目标1、经历一般规律的探索过程、发展学生的抽象思维能力。

2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

情感与态度目标1.通过函数与变量的关系、初等函数与初等方程的关系培养学生的数学思维。

2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力?重点:将实际问题表示为程度的函数?困难:能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.? 教学过程:一、课前复习1.函数一般来说,在一个特定的变化过程中,有两个变量X和Y。

如果给定一个X值并相应地确定一个Y值,那么我们称Y为X.2的函数。

函数表达式:①图象法、②列表法、③分析法(关系法)二、情境引入问题1:弹簧的自然长度为3厘米。

在弹簧极限范围内,悬挂物体的质量X每增加1kg,弹簧长度y就会增加0.5cm(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:x/kgy/cm012345(2)你能写出x与y之间的关系式吗?答案(1)3、3.5、4、4.5、5、5.5;(2)y=3+0.5x.查询2:一辆车的油箱中有100升汽油,每50公里消耗9升汽油(1)填写下表:该车的行驶距离为05010150202200X/km,油箱中剩余汽油为Y/L(2)。

你能写出X和y之间的关系吗?(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?答案(1)100、91、82、73、64、46;(2)x与y之间的关系式为y=100-0.18x;(3)行驶距离x不能无限增加,因为汽油只有100升,每行驶50km耗油9l,行驶560km后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零.思考:这些函数的形式是自变量x和一个常数的K次和归纳:一次函数的定义一般来说,如果两个变量X和y之间的关系可以表示为y=KX+B(k,B是常数,k≠ 0),则y是X的主函数(X是自变量,y是因变量),尤其是当B=0时,y是X的正比例函数。

八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

《一次函数与正比例函数》教案一、教材分析(一)教材的地位和作用《一次函数与正比例函数》八年级上册第四章第二节的内容,一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。

同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。

三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。

(二)教学目标知识与技能目标:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.过程与方法目标:(1)经历一次函数概念的抽象过程,体会模型思想,从实际问题中得到函数关系式,并感受它们之间的一种依存关系。

(2)能根据所给的实际生活背景,列出简单的一次函数关系式。

情感态度与价值观目标:通过具体问题的解决,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.在探索过程中体验成功的喜悦,树立学习的自信心.教学重点、难点:重点:从具体情境中列出相应的一次函数表达式,从而抽象出一次函数的概念。

难点:根据具体情境所给的信息确定一次函数的表达式二、教法与学法:在本节课的教学中我准备采用的教学方法主要是引导——自学交流的方式。

根据学生的理解能力和生理特征,一方面运用现实生活实例,引发学生的兴趣,使他们的注意力集中到解决现实生活问题上,另一方面通过学生小组合作交流、展示,尽可能充分发挥学生的主动性。

通过本节课的学习,使学生学会在独立思考的基础上与同伴进行交流、讨论,培养学生的合作意识,感受数学源于生活有应用于生活。

三、教学过程设计下面是我说课的重点,也就是教学过程的设计,整节课我共设为六个环节:第一个环节是复习回顾:1、什么叫函数:在某个变化过程中,有两个 x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是 ,y是 .2、函数的三种表达方式有:、、。

3、已知一个长方形的面积为y,长为5,宽为x,则长方形的面积表示为y= . 设计意图:复习函数的概念及其表达方式。

北师大版八年级数学上册第四章 一次函数 一次函数与正比例函数

北师大版八年级数学上册第四章 一次函数 一次函数与正比例函数

课堂检测
基础巩固题
4.已知y与x-3成正比例,当x=4时,y=3. (1)写出y与x之间的函数关系式,并指出它是什么函数; (2)求x=2.5时,y的值.
解 :(1)设y=k(x-3), 把 x=4,y=3 代入上式,得 3= k(4-3), 解得 k=3, 所以y=3(x-3), 所以y=3x-9, y是x的一次函数. (2)当x=2.5时,y=3×2.5 - 9= -1.5.
一次函数的简单应用
课后作业
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
吗?如果是,请指出相应的k与b的值.
A
解: (1)因为BC边上的高AD也是BC边上的中线,
所以BD= 1.x 在Rt△ABD中,由勾股定理,得
2
B
h AD AB2 BD2 x2 1 x2 3 x,
4
2
即 h 3 x.
2
所以h是x的一次函数,且 k 3 ,b 0.
2
DC
课堂检测
拓广探索题
函数是一次函数
关系式为:y=kx+b (k,b为常数,k≠0)
特别地,当b=0时,称y是x的正比例函数.
函数是正比例函数
关系式为:y=kx (k为常数,k≠0)
探究新知
思考 一次函数的结构特征有哪些?
答:一次函数的结构特征: (1)k≠0 . (2)x 的次数是1. (3)常数项b可以为一切实数.
探究新知
方法点拨
1.判断一个函数是一次函数的条件: 自变量是一次整式,一次项系数不为零; 2.判断一个函数是正比例函数的条件: 自变量是一次整式,一次项系数不为零, 常数项为零.
巩固练习
变式训练
下列函数中哪些是一次函数,哪些又是正比例函数?

4.2 一次函数与正比例函数 北师大版数学八年级上册知识考点梳理课件

4.2 一次函数与正比例函数 北师大版数学八年级上册知识考点梳理课件






思路点拨
返回目录
4.2 一次函数与正比例函数
返回目录
解题通法 根据正比例函数的定义确定字母的值时 ,


题 需使比例系数和自变量的指数同时符合条件.





解 入 28 元,如果超额生产一个零件,增加收入 1.5元. 写
读 出该工人在超额完成的情况下一天的收入 y(元)与他生产
的零件个数 x(个)的函数关系式:______________.
[答案] y=1.5x-2
4.2 一次函数与正比例函数
返回目录
重 ■题型 应用函数的定义确定字母的值


4.2 一次函数与正比例函数
● 考点清单解读
● 重难题型突破
4.2 一次函数与正比例函数






返回目录
■考点一 一次函数与正比例函数的定义
若两个变量 x,y 间的对应关系可以表示成
定义
y=kx+b(k,b 为常数,k≠0) 的形式, 则称 y
是 x 的一次函数.特别地,当 b=0 时,称 y 是 x
是不是不为 0.
4.2 一次函数与正比例函数
返回目录
下列函数 :①y = -2x + 1,②y= ,③y=



解 (x-3),④y=2x2+1中,一次函数有 _____ 个,正比例函

数有 ______ 个.
4.2 一次函数与正比例函数






[解题思路]
[答案] 3 1

北师大版八年级上册第四章2一次函数与正比例函数教学设计

然后,我会引导学生学习一次函数的图像绘制方法,教他们如何观察图像,分析图像与函数性质之间的关系。在这个过程中,我会使用多媒体教学工具,动态展示一次函数图像的变化,让学生更直观地理解一次函数的性质。
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组针对一个实际问题展开讨论。例如,小组讨论题目可以是:“某商店举行打折活动,原价为100元,打8折后的价格为多少?试用一次函数表示这个关系。”通过小组合作,让学生在实践中掌握一次函数的应用。
3.合作交流(15分钟):
学生分组讨论,交流各自发现的一次函数与正比例函数的性质,教师点评,总结归纳。
4.知识讲解(15分钟):
针对重点和难点,教师进行详细讲解,结合图像和实例,帮助学生深入理解一次函数与正比例函数的关系。
5.实践应用(20分钟):
设计ห้องสมุดไป่ตู้际问题时,让学生独立解决,巩固所学知识,提高学生的应用能力。
6.拓展延伸(10分钟):
针对学有余力的学生,设计拓展性问题,培养学生的创新意识和解决问题的能力。
7.总结反思(5分钟):
教师与学生共同总结本节课的学习内容,学生反思自己的学习过程,教师给予评价和反馈。
四、教学内容与过程
(一)导入新课,500字
在导入新课时,我将采用生活实例的方式,激发学生的兴趣和思考。首先,我会向学生提出一个简单的问题:“同学们,你们在生活中遇到过这样的问题吗?比如,坐出租车时,费用是如何计算的?在商店购物时,打折后的价格是如何得出的?”通过这个问题,让学生感受到数学与生活的紧密联系,引导他们思考这些实际问题背后的数学原理。
三、教学重难点和教学设想
(一)教学重难点
1.知识重点:一次函数与正比例函数的概念、表达式、图像特点及其在实际问题中的应用。

北师大版八年级数学上册:4.2《一次函数与正比例函数》教学设计

北师大版八年级数学上册:4.2《一次函数与正比例函数》教学设计一. 教材分析《一次函数与正比例函数》是北师大版八年级数学上册第4章的内容,主要介绍了正比例函数和一次函数的定义、性质和应用。

本节课的内容是学生进一步学习函数的基础,对于学生理解函数的概念、掌握函数的性质、提高解决问题的能力具有重要意义。

二. 学情分析学生在七年级时已经学习了比例和方程,对比例的概念和方程的解法有一定的了解。

但他们对函数的概念和性质还不够清晰,特别是对于函数图像的理解和应用。

因此,在教学过程中,需要引导学生将已有的知识与函数内容相结合,通过实例和练习让学生感受函数的意义和应用。

三. 教学目标1.知识与技能:使学生理解正比例函数和一次函数的定义,掌握它们的性质和图象特征,能运用一次函数和正比例函数解决实际问题。

2.过程与方法:通过实例和问题,培养学生的观察、分析和解决问题的能力,提高学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神,使学生感受数学与生活的密切联系。

四. 教学重难点1.重点:正比例函数和一次函数的定义、性质和图象特征。

2.难点:一次函数和正比例函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题情境,引导学生观察、分析和解决问题;通过案例教学,让学生感受数学与生活的联系;通过小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关案例和问题,以便在教学中进行案例分析和问题讨论。

2.准备一次函数和正比例函数的图象和性质的PPT,以便进行讲解和展示。

3.准备一些练习题,以便进行课堂练习和巩固。

七. 教学过程1.导入(5分钟)通过一个实际问题引出函数的概念,例如:某商品的原价是100元,打8折后的价格是多少?让学生思考和讨论,引导学生认识到函数是数学建模的基础。

2.呈现(10分钟)介绍正比例函数和一次函数的定义、性质和图象特征,通过PPT展示相关图象,让学生直观地感受函数的性质。

4.2 一次函数与正比例函数(课件)北师大版数学八年级上册

所以y=x+2 1是一次函数,但不是正比例函数.
(3)y=3x2-x(3x-2)
知1-练
解:因为y=3x2-x(3x-2)=2x,k=2,b=0,
所以它是一次函数,也是正比例函数.
(4)
y=-
3 x
因为 y=- 3x中, - 3x不是整式,所以它不是一次函数 .
知1-练
方法点拨:判断函数是否为一次函数的方法 : 先 看函数关系式是否是整式的形式,再 将函数关系式进行恒等变形,然后看 它是否符合一次函数关系式 y=k x+b(k , b 为常数, k ≠ 0)的结构特征 .
为y=kx+b(k,b是常数,k ≠ 0).
特别提醒
知1-讲
◆一次函数y=kx+b(k ≠0) 的结构特征:
(1)k ≠ 0;
(2)自变量x的次数是1;
(3) 常数项b可以是任意实数.
◆函数是一次函数⇔函数关系式为y=kx+b(k,b
是常数,k ≠ 0).
知1-练
例1 下列函数中,哪些是一次函数?哪些又是正比例函数?
2. 一次函数与正比例函数的关系
知1-讲
(1)正比例函数y=kx(k 为常数, k ≠ 0)是一次函数y=kx+
b(k, b 为常数, k ≠ 0)中b=0的特例,即正比例函数
都是一次函数,但一次函数不一定是正比例函数.
(2)若已知y与x成正比例,则可设函数关系式为y=kx
(k ≠ 0);若已知y是x的一次函数,则可设函数关系式
知2-练
(3)一棵树现在高 50 cm,每个月长高 2 cm, x 个月 后这棵树的高度为 y( cm) .
解:由题意,得 y=2x+50, 所以 y 是 x 的一次函数,但不是 x 的正比例函数 .

北师大版八上数学4.2一次函数与正比例函数知识精讲

知识点总结变量和常量在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。

函数一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

自变量取值范围的确定方法1、自变量的取值范围必须使解析式有意义。

当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。

2、自变量的取值范围必须使实际问题有意义。

函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

正比例函数一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.正比例函数图象和性质一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴正比例函数解析式的确定——待定系数法1.设出含有待定系数的函数解析式y=kx(k≠0)2.把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程3.解方程,求出系数k4.将k的值代回解析式一次函数一般地,形如y=kx+b(k、b是常数,k≠0)函数,叫做一次函数. 当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数.一次函数的图象及性质一次函数y=kx+b的图象是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k≠0)(2)必过点:(0,b)和(-b/k,0)(3)走向:k>0,图像从左往右斜向上;k<0,图像从左往右斜向下;b>0,交y轴正半轴;b=0,交原点;b<0,交y轴负半轴;k>0,b>0;<=>直线经过第一、二、三象限k>0,b<0;<=>直线经过第一、三、四象限K<0,b>0;<=>直线经过第一、二、四象限K<0,b<0;<=>直线经过第二、三、四象限(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位.直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2(2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2确定一次函数解析式的方法(1)根据已知条件写出含有待定系数的函数解析式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数解析式中得出结果.一次函数建模函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线. 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义. 从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型;(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义. 解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数.用函数观点看方程(组)与不等式一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.一次函数与二元一次方程组(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=-(a/b)x++c/b的图象相同.(2)二元一次方程组a1x+b1y=c1,a2x+b2y=c2;的解可以看作是两个一次函数y=(a1/b1)x+c1/b1和y=-(a2/b2)x+c2/b2的图像交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八年级上册 4.2 一次函数与正比例函数 1.下列函数中,是一次函数但不是正比例函数的是( ).
A.3
x y =- B.3y x
=- C.12
x y += D.2212x y x
+=
2.若函数23y x b =+-是正比例函数,则b = .
3.某学生的家离学校2km ,他以16
km/min 的速度骑车到学校,写出他与学校的距离s (km )和骑车的时间t(min)的函数关系式为 ,s 是t 的 函数.
4.如图,在三角形ABC中,∠B与∠C的平分线交于点P,
设∠A=x,∠BPC=y,当∠A变化时,求y与x之间的函数关
系式,并判断y是不是x的一次函数.
5.将长为13.5cm,宽为8cm的长方形白纸,按照图所示的方法粘合起来,粘合部分宽为1.5cm.
(1)求5张白纸粘合后的长度;
(2)设x张白纸粘合后的总长度为y cm,求y与x之间的函数关系式.
6.现从A ,B 向甲、乙两地运送蔬菜,A ,B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.
(1)设A 地到甲地运送蔬菜x 吨,请完成下表:
(2)设总运费为W 元,请写出W 与x 的函数关系式.
(3)怎样调运蔬菜才能使运费最少?
答案:
1. C.
2. 23
b =
. 3. 126
s t =-,(012t ≤≤);一次函数. 4. 1902y x =+,(0180)x <<;y 是x 的一次函数. 5. 61.5cm ;13.5 1.5(1)12 1.5y x x x =--=+.
6.(1)
运往甲地(单位:吨) 运往乙地(单位:吨) A x B
(2)由题意,得 5030146015451W x x x x =+-+-+-()()()
整理得,51275W x =+.
(3)∵A ,B 到两地运送的蔬菜为非负数, ∴0,140,150,
10.
x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ 解不等式组,得114x ≤≤ 在51275W x =+中,W 随x 增大而增大, ∴当x 最小为1时,W 有最小值 1280元.
运往甲地(单位:吨) 运往乙地(单位:吨) A x 14x - B 15x - 1x -。

相关文档
最新文档