关于变频器的电动机与变压器噪声方面的问题
变频器噪音与振动控制

变频器噪音与振动控制在现代工业生产中,变频器作为广泛应用的电力调节设备,具有调速范围广、效率高等优点,被广泛运用于各个行业。
然而,随之而来的问题是变频器噪音与振动的产生与控制。
本文将就变频器噪音与振动的原因进行分析,并提出相应的控制措施。
1. 变频器噪音产生的原因变频器噪音是由于变频器内部电子元件的工作产生的机械振动和电磁振动所引起的,主要原因如下:1.1 机械振动:变频器内部电磁铁芯的磁力变化,导致电磁线圈和铁芯之间的相对运动,从而产生机械振动。
同时,在变频器工作时,电机也会产生机械振动,进一步增加了噪音的产生。
1.2 电磁振动:当变频器内部电子元件工作时,会产生电磁场的变化,这种电磁变化会引起导线和线圈之间的电磁相互作用,产生电磁振动。
2. 变频器噪音与振动的危害变频器噪音与振动不仅仅会对生产操作人员造成心理和生理不适,更会对生产设备和产品质量造成一定的影响,具体如下:2.1 工作环境影响:变频器噪音与振动会严重干扰工作环境,降低工作人员的工作效率和舒适度。
2.2 设备寿命影响:变频器噪音与振动会对设备内部的电子元件产生机械应力,从而缩短设备的使用寿命。
2.3 产品质量影响:变频器噪音与振动会对生产物品的质量产生负面影响,例如在精密加工中,噪音与振动会导致加工精度下降,产品质量无法得到保证。
3. 变频器噪音与振动控制措施为了减少变频器的噪音与振动,采取以下控制措施是必要的:3.1 设备安装优化:变频器在安装时,应选用坚固的设备支架,减少设备松动引起的振动,同时采用隔振垫或隔振橡胶进行隔振,减少振动传递。
3.2 冷却系统优化:合理设计变频器的冷却系统,确保电子元件工作温度不过高,避免过热引起电子元件的振动。
3.3 电磁屏蔽措施:通过采用电磁屏蔽材料和电磁屏蔽构造,减少电磁振动引起的噪音。
3.4 电容滤波器的应用:在变频器输出端并联电容滤波器,有效抑制谐波振动和共模噪音的产生。
3.5 维护与检修:定期检查变频器的工作状态,确保设备内部连接牢固,减少意外松动引起的振动与噪音。
如何解决变频器的噪声问题

如何解决变频器的噪声问题在工业领域,变频器作为电机驱动的重要设备,广泛应用于各个行业。
然而,变频器在使用过程中会产生噪声,给人们的工作和生活带来一定的干扰,因此如何解决变频器的噪声问题成为了一个热门话题。
1. 噪声的产生原因要解决噪声问题,首先需要了解噪声的产生原因。
变频器在正常工作时,会产生交流电磁场、射频辐射以及机械振动等信号,这些信号中的高频分量会产生噪声。
此外,变频器的内部电路也可能引起磁场的共振,在高频噪声方面产生一定的贡献。
2. 利用机械隔振减少噪声机械隔振是常用的减小噪声的方法之一。
通过将变频器与其它设备相互隔离,减少它们之间的机械共振,从而得到更好的噪声效果。
不同的隔振材料会有不同的效果,常用的有橡胶、泡沫塑料和聚氨酯等。
3. 电磁屏蔽技术电磁屏蔽技术是常用的抑制高频噪声的方法之一。
通过在变频器的电路板附近添加合适的屏蔽材料,阻断高频噪声的传播路径。
而需要注意的是,不当的屏蔽会导致变频器内部的热量积累,从而影响设备的寿命。
4. 降低电源干扰由于电源干扰是变频器噪声的一个重要来源,因此降低电源干扰是减少噪声的有效方法之一。
通常采用的方法是在变频器和电源之间添加线性或非线性滤波器,以阻断电源中谐波的传递。
5. 采用空气动力学设计为了减少变频器机械振动所导致的噪音,可以通过采用空气动力学设计来优化变频器的外形。
优化的目标是减小空气流动的噪声,例如将变频器的出风口与进风口相隔得越远越好,因为这样可以减小空气经过出风口时产生的噪声。
以上是解决变频器噪声的几种方法,而要选择何种方法则需要根据实际情况进行分析,并选择最为适合的方法。
同时,对于厂家和用户来说,也需要对变频器的生产和使用进行规范,从根本上减少噪声的产生。
这样才能更好地保障人们的工作和生活质量,为实现工业的可持续发展作出贡献。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言随着现代工业的发展,变频器作为一种重要的电力调节设备,在工业生产中得到广泛应用。
然而,变频器在工作过程中会产生一定的电磁干扰,给周围的电子设备和系统带来不利影响。
本文将详细介绍变频器产生的干扰原因及解决方案。
二、变频器产生的干扰原因1. 高频噪声:变频器内部的开关器件工作频率较高,会产生高频噪声,对周围的电子设备造成干扰。
2. 电磁辐射:变频器在工作时会产生电磁辐射,这种辐射会干扰周围的电子设备的正常工作。
3. 电源谐波:变频器的输入端需要接入电源,其工作过程中会产生电源谐波,对电网和其他设备造成干扰。
4. 地线干扰:变频器的接地电流会通过接地线路传播,对周围的设备产生干扰。
三、解决方案1. 电磁屏蔽:在变频器周围设置电磁屏蔽罩,有效阻挡变频器产生的电磁辐射,减少对周围设备的干扰。
2. 滤波器:通过在变频器输入端安装滤波器,可以有效抑制电源谐波,减少对电网和其他设备的干扰。
3. 线缆绝缘:使用具有良好绝缘性能的线缆,可以减少变频器产生的地线干扰,保护周围设备的正常工作。
4. 接地措施:合理设置变频器的接地电流路径,避免接地电流通过其他设备产生干扰,同时保证变频器的接地电阻符合要求。
5. 滤波电容器:在变频器输出端并联安装滤波电容器,可以有效吸收高频噪声,减少对周围设备的干扰。
6. 屏蔽电缆:使用屏蔽电缆连接变频器和其他设备,可以有效防止电磁干扰的传播。
四、结论变频器作为一种重要的电力调节设备,在工业生产中发挥着重要作用。
然而,变频器产生的干扰问题也不可忽视。
通过采取合适的解决方案,如电磁屏蔽、滤波器、线缆绝缘等措施,可以有效降低变频器产生的干扰,保证周围设备的正常工作。
在今后的工程实践中,应根据具体情况选择合适的解决方案,确保变频器的稳定运行和周围设备的正常工作。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案摘要:变频器具有很多的优越性,但它对电网的谐波干扰和电磁辐射干扰也越来越受到人们的关注,本文主要介绍谐波、电磁辐射的标准和危害及其减弱或消除的方法。
1 引言采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而得到越来越多的应用。
但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。
变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。
2 谐波和电磁辐射对电网及其它系统的危害(1)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率.(2) 谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。
(3) 谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
(4) 谐波或电磁辐射干扰会导致继电保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。
(5)电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。
一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因.但对系统容量小的系统,谐波产生的干扰就不能忽视。
3 有关谐波的国际及国家标准现行的有关标准主要有:国际标准IEC61000—2—2,IEC61000-2—4,欧洲标准EN61000-3-2,EN61000-3—12,国际电工学会的建议标准IEEE519—1992,中国国家标准GB/T14549—93《电能质量共用电网谐波》。
变压器运行常见声音及解决方案

电压问题:电压高,会使变压器过励磁,响声增大且尖锐,直接严重影响变压器的噪音。
判断方法:先看看低压输出电压,不能看低压柜上的电压表,该电压表只起指示作用,应该采用较为准确的万用表进行测量。
解决方法:现在城市里的10kV电压普遍偏高,根据低压侧输出电压,这时应该把分接档放在适合档位。
在保证低压供电质量的前提下,尽量把高压分接向上调(低压输出电压降低),以此消除变压器的过励磁现象,同时降低变压器的噪音。
2、风机、外壳、其他零部件的共振问题:风机、外壳、其他零部件的共振将会产生噪音,一般会误认为是变压器的噪音。
1)外壳:用手按一下外壳铝板(或钢板),看噪音是否变化,如发生变化就说明,外壳在共振。
2)风机:用干燥的长木棍顶一下每个风机的外壳,看噪音是否变化,如发生变化就说明,风机在共振。
3)其他零部件:用干燥的长木棍顶一下变压器每个零部件(如:轮子、风机支架等),看噪音是否变化,如发生变化就说明零部件在共振。
解决方法:1)看外壳铝板(或钢板)是否松动,有可能安装时踩变形,需要紧一下外壳的螺丝,将外壳的铝板固定好,对变形的部分进行校正。
2)看风机是否松动,需要紧一下风机的紧固螺栓,在风机和风机支架之间垫一小块胶皮,可以解决风机振动问题。
3)如变压器零部件松动,则需要固定。
3、安装的问题:安装不好会加剧变压器振动,放大变压器的噪音。
1)变压器基础不牢固或不平整(一个角悬空),或者底板太薄。
2)用槽钢把变压器架起来,会增加噪音。
解决方法:1)由安装单位对原安装方式进行改造。
2)变压器小车下面加防震胶垫,可解决部分噪音。
母线桥架振动的问题:由于并排母线有大电流通过,因漏磁场使母线产生振动。
母线桥架的振动将严重影响变压器的噪音,使变压器的噪音增大15dB以上,比较难判断,一般用户和安装单位会误认为是变压器的噪音。
1)噪音随负荷大小变化而变化。
2)用木棍用力顶母线桥架,如果噪音发生变化就认为是母线桥架在共振。
3)母线在桥架内振动,用木棍顶没有用。
变频器使用中的常见故障及抗干扰措施

过载ቤተ መጻሕፍቲ ባይዱ障
总结词
过载故障是指变频器的输出电流超过其 额定电流,导致变频器过载保护动作。
VS
详细描述
过载故障可能是由于负载过重、电机故障 、传动系统故障等因素引起的。处理此类 故障的方法是检查负载和电机是否正常, 如果电机或传动系统存在故障,需要相应 维修或更换部件;如果变频器过载是由于 负载过重引起的,可以尝试减轻负载或更 换更大容量的变频器。
解决方案
首先应检查电机的负载是否在额定范围内,以及环境温度和通风状况是否正常 。如果问题仍未解决,可以尝试更换更大容量的电机或者采取其他措施来加强 散热。
电机振动问题
原因
电机振动可能是由于机械故障、电磁干扰、电源波动等问题引起的。
解决方案
首先应检查电机的机械安装是否稳固,以及电磁干扰和电源波动是否在可接受范 围内。如果问题仍未解决,可以尝试在电机和变频器之间加入减震垫或者采取其 他减震措施。
02
CATALOGUE
变频器抗干扰措施
电源抗干扰措施
隔离变压器
采用隔离变压器来隔离电源干 扰,是抑制电源干扰的一种常
用方法。
电源滤波器
使用电源滤波器可以滤掉电源中的 杂波,以减少对变频器的干扰。
屏蔽层
对电源导线进行屏蔽,可以有效地 防止电磁干扰。
信号抗干扰措施
01
02
03
屏蔽层
对信号线进行屏蔽处理, 以防止信号线受到外部电 磁干扰。
定期检查变频器的接地和屏蔽线,确保其与大地连接良好,防止干扰信号影响变频 器运行。
变压器噪声处理方案

变压器噪声处理方案变压器是电力系统中常用的电力设备,它的工作过程中会产生一定的噪声。
噪声问题不仅会对变压器自身造成损害,还会对周围环境和人体健康造成影响,因此对变压器噪声进行有效的处理是非常重要的。
一、噪声的来源变压器噪声主要来自以下几个方面:1. 磁场噪声:由于变压器工作时磁场的变化导致铁芯振动,进而产生噪声;2. 冷却器噪声:变压器的冷却器通常采用风扇或水泵,其工作时产生的噪声也是主要的噪声来源;3. 绝缘材料噪声:变压器的绝缘材料在电场作用下会产生振动,从而产生噪声;4. 接地噪声:变压器的接地引起的杂散振动也是噪声的来源之一。
二、噪声的危害1. 对变压器自身的影响:噪声会引起变压器的振动,从而导致设备的松动、磨损和损坏,降低设备的可靠性和使用寿命;2. 对周围环境的影响:变压器噪声会扰乱周围居民的正常生活,严重影响居住环境的舒适性;3. 对人体健康的影响:长期暴露在高噪声环境中会引起人体的听觉疲劳、神经衰弱、失眠等问题,严重时还会引发心血管疾病。
三、噪声处理方案为了降低变压器噪声,可以采取以下几种处理方案:1. 优化设计:在变压器的设计过程中,可以通过优化结构和材料,减少噪声的产生。
例如采用低噪声的铁芯材料,增加绝缘材料的厚度等;2. 隔声措施:在变压器周围设置隔声墙或隔声罩,以阻隔噪声的传播;3. 振动控制:采用减振措施,如增加减振垫等,降低变压器的振动;4. 冷却器噪声控制:采用低噪声的冷却器,或者在冷却器周围设置隔音罩,减少冷却器噪声的传播;5. 接地措施:采用有效的接地装置,减少接地引起的噪声;6. 维护管理:定期对变压器进行维护保养,及时发现并处理变压器噪声问题,保证设备的正常运行。
以上是常用的变压器噪声处理方案,通过采取这些措施可以有效地降低变压器噪声,保护设备和环境的安全和健康。
在实际应用中,需要根据具体情况选择合适的处理方案,并结合工程实践进行综合应用,以达到最佳的噪声控制效果。
变频器载波频率对电动机噪音的影响

变频器的输出电压、电流中含有一定分量的高次谐波,使电动机气隙的高次谐波磁通增加,所以噪声变大。
其特征为:
(1)由于变频器输出的较低的高次谐波分量与转子固有频率的谐振,使转子固有频率附近的噪音增大。
(2)由于变频器输出的高次谐波使铁心、机壳、轴承座等的谐振,在固有频率附近的噪音增大。
(3)噪音与载波频率大小有直接关系,当载波频率高时相对噪音就小。
(4)经测试得到当电动机在变频运行时,比在工频50Hz运行时,噪声只大2dB可见影响不很大,其绝对值约在70dB附近。
(5)采用变频电动机能降低相同运行参数时的噪音6-10dB。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城/。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于变频器的电动机与变压器噪声方面的问题
由于交流异步电动机主磁极的磁通是按照正弦规律来设计和运行的。
为了使电动机的运行性能优良,电动机变频调速技术通常采用正弦波脉冲宽度调制的方法,简称SPWM方法。
由于在SPWM电压脉冲序列中,各个脉冲的幅度相等而脉冲的宽度不相等。
宽度的变化取决于两个比较电压Ura(正弦波参考电压)和Ut(三角波电压。
即所谓的载波频率电压)的交点及交点间的时间距离。
在这个脉冲序列中,占空比按照正弦规律变化,因此脉冲序列的瞬时电压平均值是按正弦规律变化的。
所谓SPWM就是用幅值相等而宽度不等的矩形脉冲序列去逼近和等效我们所需的正弦交流信号。
要想获得好的SPWM波形,正弦波参考信号Ura的大小与载波信号Ut的大小存在一定的关联,参考信号的频率与载波信号的频率关系决定着半个周期内SPWM的脉冲数目。
为表征这种关系,调制度M和载波比N的定义如下:
M=Urm/Utm
N=ft/fr
式中 Urm是参考信号的最大值。
Utm是载波信号的最大值。
Ft是载波信号的频率。
Fr是参考信号的频率。
通常,M的值在0.1~0.9之间比较合适。
N的值在理论上是越大越好,但实际受到大功率开关器件的开关频率的限制。
所以,开关器件的性能如何对变频器的调速性能有较大影响。
实际应用时,变频器是采用双极性脉宽调制的方法。
特征是参考信号和载波信号均为有正有负的双极性信号。
变频器输出的交流电的电压大小的调节是由改变参考信号的电压大小来实现的,输出交流电的频率调节则是由改变参考控制波的频率来实现的,并且这两个频率同样大小。
由于在SPWM方式下,当需要调节频率进行变频调速时,如果只调节参考控制信号的频率,就会带来谐波增大影响系统正常工作的问题;在低频低速时,半个周期内的脉冲数目或载波比不增加的话,就会带来转矩脉动等问题。
为了解决以上的问题,变频器电路则采用了不同的调制方式:
1.同步调制方式。
2.异步调制方式。
3.分段同步调制方式。
三种方式,各有利弊:
同步调制方式:在调制时,保持载波比N=ft/fr不变,即在参考控制信号的频率Fr改变时,同步地改变三角波载波频率Ft。
这种方式在变频器输出电压每个周期内的三角波数目是固定的,因此所产生的SPWM 脉冲数也是固定不变的。
优点是:在变频器输出频率变化的整个范围内,可以保持输出波形的正负半周对称,半周内波形左右对称,有利于谐波的消除。
并能够严格做到变频器输出三相波形之间具有相差120°电角度的对称关系。
缺点是:在变频器低频输出时,由于一个周期内的脉冲数(载波比N)太少,低次谐波分量比较大,电机会产生转矩脉动和噪声。
频率越低,转矩脉动和转速脉动就越严重。
异步调制方式:为解决同步调制方式下低频转矩脉动问题,应考虑低频时增加三角波载波的数目,使SPWM脉冲数增加。
即频率越低而SPWM 脉冲数越多的调制方式。
此时,采用固定不变的三角波频率,在调速时会使得载波比N的变化。
优点是:低速运行时,变频器输出电压每个周期内的SPWM脉冲数相应增加,可减小电动机的转矩脉动和噪声,使变频调速系统具有较好的低频特性。
缺点是:由于三角波载波频率Ft保持不变,当参考控制电压频率Fr连续调节时,不可能在整个变频范围内保证载波比N为一个整数,特别是能被3整除的数,因而不能保证变频器输出电压正负半周,半周内左右之间以及三相之间的对称关系,使得电动机运行时谐波成分大为增加。
分段同步调制方式:为综合利用同步调制和异步调制的优点,克服两者的不足,在技术处理层面上可采用分段同步调制方式,这种方式有较多的实际应用。
简单地说,分段同步调制方式就是段与段之间异步方式,段内同步方式。
采用这种方式的优点是:可以消除变频器输出电压波形不对称所造成的不良影响,并改善变频调速系统的低频运行特性。
缺点是:在载波比N切换时,可能出现电压的突变甚至振荡。
在载波比切换时应注意的问题是:切换时不出现电压的突变;应在切换的临界点处留出一个滞后区,以避免不同载波比时出现振荡。
但在实际应用中,往往忽视了这些问题。
主要表现在以下几个方面:
1.用户对变频器的应用了解较少,一切听设计部门的意见。
2.设计部门的现场实际经验比较少,对实际工况预计不足。
3.设备配套部门只是根据设计部门的设计进行装配,现场调试仅限于空载试车。
4.负荷试车时又不会按实际工况进行有关参数的重新设定。
以至造成用户在实际使用中针对出现的问题无从下手。
主要表现的问题:
1.低速时带不动负载,电动机脉动运转,电动机与变压器有噪声。
2.调速过程中发生脉动以及电动机与变压器有噪声。
3.速度越高电动机与变压器噪声越大。
以上问题主要发生在未加电抗器的设备上,对于电抗器选配不合适的设备也存在此类问题。
有些设备在改变载波频率后有所改善,但却不能彻底解决问题。
电抗器的问题解决才是根本。
关于变频器电抗器的选择问题
1.额定交流电流的选择
额定交流电流是从发热方面设计电抗器的长期工作电流,同时应该考虑足够的高次谐波分量。
即输出电抗器实际流过的电流是变频器电机负载的输出电流。
2.电压降
电压降是指50HZ时,对应实际额定电流时电抗器线圈两端的实际电压降。
通常选择电压降在4V~8V左右。
3.电感量的选择
电抗器的额定电感量也是一个重要的参数!若电感量选择不合适,会直接影响额定电流下的电压降的变化,从而引起故障。
而电感量的大小取决于电抗器铁芯的截面积和线圈的匝数与气隙的调整。
输出电抗器电感量的选择是根据在额定频率范围内的电缆长度来确定,然后再根据电动机的实际额定电流来选择相应电感量要求下的铁芯截面积和导线截面积,才能确定实际电压降。
4.对应额定电流的电感量与电缆长度:
电缆长度额定输出电流电感量
300米 100A 46μH
200A 23μH
250A 16μH
300A 13μH
600米 100A 92μH
200A 46μH
250A 34μH
300A 27μH
理想的电抗器在额定交流电流及以下,电感量应保持不变,随着电流的增大,而电感量逐渐减小。
当额定电流大于2倍时,电感量减小到额定电感量的0.6倍。
当额定电流大于2.5倍时,电感量减小到额定电感量的0.5倍。
当额定电流大于4倍时,电感量减小到额定电感量的0.35倍。