立体几何截面问题
立体几何截面问题的十种题型(原卷版)

第21讲 立体几何截面问题10类【题型一】 做截面的基本功:补全截面方法【典例分析】在长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2,AD=3,点E 、F 分别是AB 、AA 1的中点,点E 、F 、C 1∈平面α,直线A 1D 1⋂平面α=P ,则直线BP 与直线CD 1所成角的余弦值是3378 A 22 C B 3 D 、、、、【变式演练】1.如图,在正方体1111ABCD A B C D -中,M 、N 、P 分别是棱11C D 、1AA 、BC 的中点,则经过M 、N 、P 的平面与正方体1111ABCD A B C D -相交形成的截面是一个( )A .三角形B .平面四边形C .平面五边形D .平面六边形2.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,则过三点A 、D1、E 的截面过( )A .AB 中点 B .BC 中点 C .CD 中点 D .BB1中点3.如图正方体1111ABCD A B C D -,棱长为1,P 为BC 中点,Q 为线段1CC 上的动点,过A 、P 、Q 的平面截该正方体所得的截面记为Ω.若1CQ CC λ→→=,则下列结论错误的是( )A.当12λ∈⎛⎫⎪⎝⎭,时,Ω为四边形B.当12λ=时,Ω为等腰梯形C.当3,14λ⎛⎫∈ ⎪⎝⎭时,Ω为六边形D.当1λ=时,Ω6【题型二】截面形状的判断【典例分析】一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是()A.B.C.D.【变式演练】1.如图,正四棱锥P ABCD-的高为12,2AB=E,F分别为PA,PC的中点,过点B,E,F的截面交PD于点M,截面EBFM将四棱锥分成上下两个部分,规定BD为主视图方向,则几何体CDAB FME-的俯视图为()A .B .C .D .2.用一个平面去截正方体,所得截面不.可能是( ) A .直角三角形 B .直角梯形 C .正五边形 D .正六边形3.在正方体1AC 中,M 为AB 中点,N 为BC 中点,P 为线段1CC 上一动点(不含C )过M 、N 、P 与正方体的截面记为α,则下面三个判断,其中正确判断的序号有______. ①当P 为1CC 中点时,截面α为六边形;①当112CP CC <时,截面α为五边形; ①当截面α为四边形时,它一定是等腰梯形;【题型三】 平行关系确定截面【典例分析】在三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB ,CD 都平行,则截面MNPQ 的周长等于( ) A .2a B .4aC .aD .无法确定【变式演练】1.在正方体1111ABCD A B C D -中,与AC 平行,且过正方体三个顶点的截面是___________和___________.2.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( ) A .0条 B .1条 C .2条 D .4条3.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得的几何体,截面为ABC .已知AA 1=4,BB 1=2,CC 1=3.在边AB 上是否存在一点O ,使得OC ①平面A 1B 1C 1.【题型四】 垂直关系确定的截面【典例分析】已知正三棱柱(底面为正三角形的直棱柱)111ABC A B C -的体积为6323AB =D 是11B C 的中点,点P 是线段1A D 上的动点,过BC 且与AP 垂直的截面α与AP 交于点E ,则三棱锥P BCE -的体积的最小值为 A 3B .32C .2D .52【变式演练】1.如图,ABCD A B C D ''''-为正方体,任作平面α与对角线AC '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则( )A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值2.正方体1111ABCD A B C D -,的棱长为4,已知1AC ⊥平面α,1AC β⊂,则关于α、β截此正方体所得截面的判断正确的是( )A .α截得的截面形状可能为正三角形B .1AA 与截面α6C .α截得的截面形状可能为正六边形D .β截得的截面形状可能为正方形3.已知正方体1111ABCD A B C D -的棱长为2,M 为1AA 的中点,平面α过点1D 且与CM 垂直,则( ) A .CM BD ⊥ B .//BD 平面αC .平面1//C BD 平面α D .平面α截正方体所得的截面面积为92【题型五】 求截面周长【典例分析】如图,在正方体1111ABCD A B C D -中,4AB =,E 为棱BC 的中点,F 为棱11A D 的四等分点(靠近点1D ),过点,,A E F 作该正方体的截面,则该截面的周长是___________.【变式演练】1.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )A .2+25B .225133+C .2513+D .13252+2.已知在棱长为6的正方体ABCD A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.3.已知直三棱柱111ABC A B C -的侧棱长为2,AB BC ⊥,2AB BC ==.过AB 、1BB 的中点E 、F 作平面α与平面11AAC C 垂直,则所得截面周长为( ) A .26B 26C .326D .3226【题型六】 求截面面积【典例分析】已知正四棱柱1111ABCD A B C D -中,1124BE BB ==,143AB AA =,则该四棱柱被过点1A ,C ,E 的平面截得的截面面积为______.【变式演练】1.正方体1111ABCD A B C D -的棱长为2,E 是棱1DD 的中点,则平面1AC E 截该正方体所得的截面面积为( ) A .5 B .25C .46D .62.在棱长为a 的正方体1111ABCD A B C D -中,E 为1AA 的中点,则过B 、1C 、E 三点的平面截正方体1111ABCD A B C D -所得的截面面积为( )A 2310 B .298aC 232 D 2103.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面为___________,其面积为___________.【题型七】 球截面【典例分析】正三棱锥P ABC -242PA AB ==E 在棱PA 上,且3PE EA =,已知点P A B C 、、、都在球O 的表面上,过点E 作球O 的截面α,则α截球O 所得截面面积的最小值为___________.【变式演练】1.已知三棱锥A BCD -的所有棱长均相等,四个顶点在球O 的球面上,平面α经过棱AB ,AC ,AD 的中点,若平面α截三棱锥A BCD -和球O 所得的截面面积分别为1S ,2S ,则12S S =( ) A 33B 33C .38πD .364π2.某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥所有顶点都在半径为3的球O 上,当该四棱锥的体积最大时,底面正方形所在平面截球O 的截面面积是( ) A .π B .4πC .8πD .9π3.已知球O 是正三棱锥A -BCD (底面是正三角形,顶点在底面的射影为底面中心)的外接球,BC =3,AB =23点E 在线段BD 上,且BD =3BE .过点E 作球O 的截面,则所得截面面积的最小值是( ) A .2π B .3πC .4πD .5π【题型八】 截面分体积【典例分析】已知正四棱柱中11A C 、11B D 的交点为1O ,AC 、BD 的交点为2O ,连接12O O ,点O 为12O O 的中点.过点O 且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1101111ABCD A B C D -的体积为______________.【变式演练】1.正方体1111ABCD A B C D -中,E ,F 分别是棱11B C ,11C D 的中点,则正方体被截面BEFD 分成两部分的体积之比为___________.2.如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:23.三棱锥D ABC -中,E 、F 、G 、H 分别是棱DA 、DB 、BC 、AC 的中点,截面EFGH 将三棱锥分成两个几何体:AB EFGH -、CD EFGH -,其体积分别为1V 、2V ,则12:V V =( ) A .1:1 B .1:2C .1:3D .1:4【题型九】 不规则截面(曲线形截面)【典例分析】如图,一个底面半径为R 的圆柱被与其底面所成角为()090θθ︒<<︒的平面所截,截面是一个椭圆,当θ为30时,这个椭圆的离心率为( )A .12B 3C .13D 3【变式演练】1.古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究曲线,如图①,用一个不垂直于圆锥的轴的平面截圆锥,当圆锥与截面所成的角不同时,可以得到不同的截口曲线,它们分别是椭圆、抛物线和双曲线.图①,在底面半径和高均为1的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,F 是线段EO 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的圆锥曲线的一部分,则该曲线为____________,,M N 是该曲线上的两点且//MN CD ,若MN 经过点F ,则MN =__________.2.如图,用一个平面去截圆锥,得到的截口曲线是椭圆.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面相切.椭圆截面与两球相切于椭圆的两个焦点1F ,2F .过椭圆上一点P 作圆锥的母线,分别与两个球相切于点,M N .由球和圆的几何性质可知,1PN PF =,2PM PF =.已知两球半径分为别1和3,椭圆的离心率2,则两球的球心距离为_______________.3.如图①,用一个平面去截圆锥,得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家Ger min al dandelin (1794-1847)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面,截面相切,两个球分别与截面相切于E ,F ,在截口曲线上任取一点A ,过A 作圆锥的母线,分别与两个球相切于C ,B ,由球和圆的几何性质,可以知道,AE =AC ,AF =AB ,于是AE +AF =AB +AC =BC .由B ,C 的产生方法可知,它们之间的距离BC 是定值,由椭圆定义可知,截口曲线是以E ,F 为焦点的椭圆.如图①,一个半径为2的球放在桌面上,桌面上方有一个点光源P ,则球在桌面上的投影是椭圆.已知12A A 是椭圆的长轴,1PA 垂直于桌面且与球相切,15PA =,则椭圆的离心率为__________.【题型十】 截面最值【典例分析】已知长方体1111ABCD A B C D -中,12BB AB BC ==,点E 在线段1CC 上,()101EC CC λλ=≤≤,平面α过线段1AA 的中点以及点1,B E ,若平面α截长方体所得截面为平行四边形,则实数λ的取值范围是( ) A .[]0,1 B .11,42⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【变式演练】1.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C 6D 22.在如图所示的直三棱柱111ABC A B C -中,14AA =,AB AC ⊥,过点1A 作平面α分别交棱AB ,AC 于点D ,E ,且AF DE ⊥,160AA F ∠=°,则截面1A DE △面积的最小值为( )A .163B .323C .363D .4833.如图所示,在长方1111ABCD A B C D -中,13,4,5AB AD AA ===,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,则四棱锥11B BED F -的体积为___________,截面四边形1BED F 的周长的最小值为___________.【课后练习】1(宁夏银川市第六中学上学期第一次8月考).如图,在四面体ABCD 中,截面PQMN 是正方形,则在下列说法中,错误的为( )A .AC BD =B .//AC 截面PQMNC .AC BD ⊥ D .异面直线PM 与BD 所成的角为45°2.如图:PAB △为圆锥的轴截面,2AB =,60PAB ∠=︒,点E 为PA 的中点,过点E 作既与直线PB 平行又与平面PAB 垂直的截面,该平面与圆锥底面上的圆周交于F ,G 两点,记直线EF 与圆锥底面所成的角为α,记直线PA 与截面所成的角为β,则α与β的关系为( )A .αβ<B .αβ=C .αβ>D .以上都有可能3.(北京数学高考)如图,在正方体1111ABCD A B C D -中,M 、N 、P 、Q 分别是所在棱的中点,则下列结论不正确的是( )A .点1C 、1D 到平面PMN 的距离相等B .PN 与QM 为异面直线C .90PNM ∠=D .平面PMN 截该正方体的截面为正六边形4.(安徽省六安市第一中学上学期开学考)如图,在四面体ABCD 中,若截面PQMN 是正方形且//PQ AC ,则在下列说法中,错误的为( )A .AC BD ⊥B .//AC 截面PQMNC .AC BD = D .异面直线PM 与BD 所成的角为45°5.(北京市北京二中高三12月份月考)如图,正方体111ABCD A B C D-的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S . ①当102CQ 时,S 为四边形;①当34CQ 时,S 与11C D 的交点R 满足113C R ; ①当314CQ时,S 为六边形;①当1CQ =时,S 6 则下列选项正确的是( )A .①①①B .①①①C .①①①D .①①①6.(百师联盟高三上学期开学摸底联考(全国1卷))如图,在正方体1111ABCD A B C D -中,点P 为线段11A C 上的动点(点P 与1A ,1C 不重合),则下列说法不正确的是( )A .BD CP ⊥B .三棱锥C BPD -的体积为定值C .过P ,C ,1D 三点作正方体的截面,截面图形为三角形或梯形 D .DP 与平面1111D C B A 所成角的正弦值最大为137.如图,正方体1111ABCD A B C D -中,点E ,F ,分别是AB ,BC 的中点,过点1D ,E ,F 的截面将正方体分割成两个部分,记这两个部分的体积分别为()1212,V V V V <,则12:V V =( )A .13B .35C .2547 D .798.用过圆锥的轴的平面去截圆锥得到的截面,叫做圆锥的轴截面,圆锥的轴截面是以图锥的两条母线为腰的等腰三角形,这个等腰三角形的顶角,叫做圆锥的顶角.已知过圆锥SO 的两条母线的截面三角形有无穷多个,这些截面中,面积最大的恰好是圆锥SO 的轴截面,则圆锥SO 的顶角的取值范围是( )A .()0,πB .0,2π⎛⎤⎥⎝⎦C .(π2,π)D .0,2π⎛⎫⎪⎝⎭9.(重庆市西南大学附属中学高三下学期第四次月考)已知圆锥体积为163π,高为4,过顶点P 作截面α,若平面α与底面所成的锐二面角的余弦值为13,圆锥被平面α截得的两个几何体设为,S Q .若,S Q 的体积为12,V V (其中12V V <),则12:V V =___________.10.已知四面体ABCD ,分别在棱AD ,BD ,BC 上取()*1,3n n N n +∈≥等分点,形成点列{}n A ,{}n B ,{}n C ,过k A ,k B ,()1,2,,k C k n =⋅⋅⋅作四面体的截面,记该截面的面积为k M ,则( )A .数列{}k M 为等差数列B .数列{}k M 为等比数列C .数列k M k ⎧⎫⎨⎬⎩⎭为等差数列D .数列k M k ⎧⎫⎨⎬⎩⎭为等比数列。
高考数学:立体几何截面问题

高考数学:立体几何截面问题一、引言立体几何是高考数学的重要组成部分,其中截面问题是一个重要的考点。
截面问题涉及到三维空间中的几何形状、位置关系以及函数关系等多个方面,需要学生具备较高的空间想象能力和逻辑推理能力。
本文将从多个方面介绍截面问题的相关知识,以帮助考生更好地理解和掌握该知识点。
二、截面的定义与性质1.截面的定义:截面是指通过一个平面与三维空间中的几何体相交,所得到的交线或交面的几何形状。
2.截面的性质:截面具有与原几何体相同的形状和大小,但位置关系可能不同。
截面的形状和大小取决于平面与几何体的相对位置和方向。
三、截面与平面几何的关系1.平面几何的基本图形在三维空间中仍然适用,如线段、三角形、四边形等。
2.截面是平面几何图形在三维空间中的表现形式,可以通过平面的移动和旋转来改变截面的形状和大小。
四、截面与立体几何的关联1.立体几何的基本概念和定理在解决截面问题时同样适用,如平行、垂直、平行四边形等。
2.截面问题是立体几何中的一个特殊情况,可以通过特殊情况来推导一般情况,也可以通过一般情况来推导特殊情况。
五、截面的形状与大小1.截面的形状取决于平面与几何体的相对位置和方向。
不同的位置关系可以得到不同的截面形状,如圆形、椭圆形、长方形等。
2.截面的大小取决于平面与几何体的交线长度或交面积大小。
不同的平面位置可以得到不同的截面大小。
六、截面与空间几何的关系1.空间几何的基本概念和定理在解决截面问题时同样适用,如距离、角度、面积等。
2.截面问题是空间几何中的一个特殊情况,可以通过特殊情况来推导一般情况,也可以通过一般情况来推导特殊情况。
3.截面问题可以转化为空间几何问题来解决,也可以通过空间几何问题来推导截面问题的解决方法。
七、截面的对称性1.截面问题中常常涉及到对称性,如轴对称、中心对称等。
2.对称性可以帮助我们简化问题,找到解决问题的关键点。
3.对称性也可以帮助我们判断截面的形状和大小,以及确定平面与几何体的相对位置和方向。
高考数学立体几何截面问题

高考数学立体几何截面问题在高考数学立体几何中,截面问题是一个重要的考点。
本文将从以下几个方面对截面问题进行讲解:截面的形状和性质、截面与几何体的关系、截面与投影的关系以及截面与面积的关系。
一、截面的形状和性质1.截面的形状截面是指通过一个平面与一个几何体相交,所得的交线。
截面的形状可能是一个点、一条直线、一个平面多边形或一个圆。
在解决立体几何问题时,我们需要根据题目所给的条件,判断出截面的形状,并进一步解决问题。
2.截面的性质截面的性质包括以下几点:(1)截面是平面图形,其形状取决于几何体和截面的位置关系。
(2)截面与几何体的边界相交,但不穿过几何体的内部。
(3)截面与几何体的表面平行,因此可以运用平行投影的知识来研究截面的性质。
二、截面与几何体的关系1.截面与正方体的关系正方体的截面有三种情况:三角形、矩形和五边形。
当截面与正方体的中心轴平行时,可以得到一个正方形;当截面与正方体的中心轴垂直时,可以得到一个三角形;当截面与正方体的中心轴斜交时,可以得到一个矩形或五边形。
长方体的截面也有三种情况:三角形、矩形和五边形。
当截面与长方体的中心轴平行时,可以得到一个矩形;当截面与长方体的中心轴垂直时,可以得到一个三角形;当截面与长方体的中心轴斜交时,可以得到一个梯形或不规则四边形。
三、截面与投影的关系1.投影的定义及性质投影是指将一个几何体投射到一个平面上的结果。
投影的性质包括以下几点:(1)投影是直线与平面相交的结果。
(2)投影的长度等于被投影线段的长度。
(3)投影的方向与被投影线段的方向相同或相反。
2.截面与投影的关系截面与投影之间存在一定的关系。
如果一个几何体在一个平面上的投影是一个多边形,那么这个多边形的形状就取决于该几何体的形状以及它与平面的相对位置。
因此,在解决立体几何问题时,我们需要通过判断几何体在某一平面上的投影来推断出它的形状和性质。
四、截面与面积的关系1.面积的定义及计算方法面积是指一个平面图形所占的面积大小。
立体几何中的 截面问题

立体几何中的截面问题立体几何中的截面问题⒈引言立体几何是研究空间之中各种几何体的形态、位置、运动和性质的数学学科。
在立体几何中,截面问题是一个重要的研究方向。
本文将介绍截面问题的基本概念、解题方法以及应用领域。
⒉基本概念⑴截面的定义截面是指将一个立体体积由一个或多个平面切割所得到的平面图形。
⑵截面的种类常见的截面包括平行截面、垂直截面、倾斜截面等。
平行截面是指与立体体积的底面平行的截面,垂直截面是指与立体体积的底面垂直的截面,倾斜截面是指与立体体积的底面既不平行也不垂直的截面。
⒊解题方法⑴平行截面的求解方法平行截面与底面平行,因此可以通过计算底面的面积和位于底面高度上的平行截面与底面的比例关系来求解平行截面的面积。
⑵垂直截面的求解方法垂直截面与底面垂直,因此可以通过计算底面的面积和垂直截面的高度来求解垂直截面的面积。
⑶倾斜截面的求解方法倾斜截面与底面既不平行也不垂直,因此求解倾斜截面的面积需要考虑其与底面的夹角以及截面的形状。
可以通过投影的方法或截面形状的几何关系来求解倾斜截面的面积。
⒋应用领域⑴建筑设计在建筑设计中,截面问题常常用于计算建筑物的横截面积,从而确定建筑物的结构稳定性和负荷承受能力。
⑵工程力学在工程力学中,截面问题常常用于计算结构件的截面形状和尺寸,从而确定结构件的刚度和强度。
⑶生物学在生物学中,截面问题常常用于计算生物体的截面积,从而确定生物体的体积和表面积,进而研究生物体的生理功能和生物学特性。
附件:本文档涉及的附件包括:⒈示例图片:包括平行截面、垂直截面和倾斜截面的示意图。
⒉计算表格:包括计算平行截面、垂直截面和倾斜截面面积的示例表格。
法律名词及注释:⒈立体几何:是数学学科中研究空间中各种几何体的形态、位置、运动和性质的学科。
⒉截面:把立体体积由一个或多个平面切割所得到的平面图形。
立体几何中的 截面问题

立体几何中的截面问题本文档旨在介绍立体几何中的截面问题,包括截面的定义、性质、计算方法等方面的内容。
通过对截面问题的介绍和详细解析,读者可以更好地理解和应用相关知识。
1、截面的定义在立体几何中,截面是指一个平面和立体图形相交而形成的曲线或平面部分。
截面可以是二维的曲线,也可以是三维的平面。
截面问题主要研究在不同情况下的截面形状、面积、体积等性质。
2、截面的性质截面的性质取决于所截图形的性质以及截面的位置和方向。
主要包括以下几个方面:2.1 几何形状:截面可以是点、线段、圆、椭圆、抛物线等各种几何形状。
2.2 面积:截面的面积可能是有限的,也可能是无限的。
2.3 体积:截面可以用来计算图形的体积,从而解决与立体几何有关的问题。
2.4 位置和方向:不同位置和方向的截面可以得到不同的结果,需要根据具体问题进行分析和计算。
3、截面的计算方法根据截面的性质和具体问题的要求,有多种不同的计算方法可以用来求解截面问题。
常用的计算方法包括以下几种:3.1 几何分析法:通过几何分析截面的形状和性质,利用几何定理和方法计算截面的面积、体积等。
3.2 数学建模法:将截面问题转化为数学模型,利用数学方法和计算机技术进行计算和求解。
3.3 数值模拟法:通过数值模拟和计算机仿真,模拟和计算截面问题的解答。
3.4 实验测量法:通过实际测量和实验,获取截面的相关数据和性质进行计算和分析。
附件:本文档无附件。
法律名词及注释:1、立体几何:研究三维空间中点、线、面等几何图形的性质和变换的数学学科。
2、截面:一个平面和立体图形相交而形成的曲线或平面部分。
立体几何截面问题

立体几何截面问题立体几何截面问题是指在三维空间中,分析和解决物体的表面形状及其横截面以及相应交点的问题。
这一问题与传统的几何学有很大的不同,它是一种更加复杂的几何问题,具有较强的实际应用性。
在三维空间中,立体几何截面问题可以概括为如下几个方面:1、立体几何截面中各种物体形状的表面积、体积及曲率的计算。
可以看到,物体的表面积、体积及曲率都是立体几何截面中重要的概念。
物体的表面积可以表示物体的大小,而体积则可以表示物体的体积,曲率则可以表示物体的表面形状。
2、立体几何截面中物体的位置关系及相应交点的求解。
在立体几何截面中,物体的位置关系及相应的交点是关键的概念,因此,对于物体的位置关系及相应的交点的求解也是重要的工作。
3、立体几何截面中物体的对称性及其属性的分析。
物体的对称性及其属性的分析也是立体几何截面中重要的内容,可以帮助我们更好地理解物体的外观特征。
4、立体几何截面中物体的多边形化及其格式化。
物体的多边形化是指将物体表面上的所有点通过直线连接起来,形成一个简单的多边形,以便更加直观地表示物体的形状。
格式化则是指将物体的多边形表示法转换为更加精确的数学表达式,以便更加方便地分析物体的特征。
通过以上几点,我们可以清楚地看到,立体几何截面问题的研究非常复杂,其中涉及到的概念也是十分广泛的,因此,解决这一问题需要综合运用几何学、代数学及其他学科的知识。
立体几何截面的研究有着重要的实际意义。
它可以被应用于工程设计、建筑设计、机械设计等多个领域。
例如,在工程设计中,立体几何截面可以帮助我们更加清晰地了解物体的表面形状,从而使我们能够更好地设计出合理的工程结构;在建筑设计中,立体几何截面可以帮助我们更清楚地认识建筑物的外形,从而使我们得以更好地设计出更加美观的建筑;在机械设计中,立体几何截面可以帮助我们更清楚地认识机械部件的形状,从而能够更加精确地设计出符合要求的机械部件。
总之,立体几何截面问题是一个非常复杂的问题,它既能够提高我们对物体形状的理解,又能够为工程设计、建筑设计、机械设计等提供有效的指导。
立体几何中的 截面问题

立体几何中的截面问题立体几何中的截面问题⒈简介立体几何是研究物体的形状、尺寸和空间关系的一门学科。
在立体几何中,截面问题是一个重要的研究方向。
截面问题指的是在一个立体物体中,通过给定的切割平面,研究切割所得的平面图形与原立体物体的关系。
⒉切割平面的表示方法在研究截面问题时,我们通常将切割所用的平面表示为一个方程。
常见的表示方法有点法式、一般式和截距式等。
⑴点法式点法式是通过给定平面上的一点和法向量来表示平面的方程。
设平面上一点为P(x0, y0, z0),法向量为n(n1, n2, n3),则平面的点法式为:n1(x ●x0) + n2(y ●y0) + n3(z ●z0) = 0⑵一般式一般式将平面的方程表示为一个二次齐次方程,形式为Ax +By + Cz + D = 0。
其中A、B、C是平面的法向量的坐标,D是一个与平面有关的常数。
⑶截距式截距式是通过平面与坐标轴交点的位置来表示平面的方程。
设平面与x轴、y轴、z轴的交点分别为(x0, 0, 0),(0, y0, 0),(0, 0, z0),则平面的截距式为:x/x0 + y/y0 + z/z0 = 1⒊平面与立体物体的相交及分类当给定切割平面后,它可能与立体物体相交于不同的方式。
根据相交情况的不同,我们将平面与立体物体的相交分为以下几类:⑴完全相交当切割平面与立体物体完全相交时,即切割平面穿过了立体物体的内部,并将其分成两个或多个部分。
⑵部分相交当切割平面与立体物体部分相交时,即切割平面与立体物体的边界相交。
⑶不相交当切割平面与立体物体不相交时,即切割平面与立体物体没有交点。
⒋截面图形的性质通过研究切割平面与立体物体的相交情况,可以得到截面图形的一些性质。
⑴形状截面图形的形状与切割平面的位置和方向有关。
在同一个立体物体中,不同位置和方向的切割平面可能得到不同形状的截面图形。
⑵面积截面图形的面积可以通过计算得到。
对于平面图形,常用的计算方法有面积公式和积分法。
强基专题--立体几何中的截面问题

强基专题3 立体几何中的截面问题
[跟进训练]
1.(2021·重庆模拟)在三棱锥 P-ABC 中,PA,PB,PC 两两垂直,
PA=3,PB=4,PC=5,点 E 为线段 PC 的中点,过点 E 作该三棱
锥外接球的截面,则所得截面圆的面积不可能为( )
A.6π
B.8π
C.10π
D.12π
1234 5
(2)当π2<θ<π时,0<α<θ<π,此时sin θ<1,sin α可以取到最 大值1,
此时过圆锥母线的截面面积最大,最大值为S=12l2.
1234 5
强基专题3 立体几何中的截面问题
综上所述,过圆锥母线的截面面积的最大值与轴截面顶角θ的范 围有关,
当0<θ≤π2时,轴截面面积最大,最大值为S=12l2sin θ. 当π2<θ<π时,过圆锥母线的截面面积最大,最大值为S=12l2.
同理 FG∥EH,所以四边形 EFGH 为平行四边形,又 AD⊥BC, 所以四边形 EFGH 为矩形.
1234 5
强基专题3 立体几何中的截面问题
由相似三角形的性质得BECF=AACF,FACC=AFDG, 所以BECF+FAGD=AACF+FACC,BC=AD=2, 所以 EF+FG=2,所以四边形 EFGH 的周长为定值 4,S 四边形 EFGH =EF×FG≤EF+2 FG2=1, 所以四边形 EFGH 的面积有最大值 1.故选 B.]
1 2
l2sin θ.截面VCD的面积S′=12l2sin α.在△V强基专题3 立体几何中的截面问题
(1)当0<θ≤π2时,0<α<θ≤π2,sin α<sin θ⇒S′<S,此时过圆 锥母线的截面面积最大为轴截面面积S=12l2sin θ.
截面形状及相应面积的求法 (1)结合线、面平行的判定定理与性质定理求截面问题; (2)结合线、面垂直的判定定理与性质定理求正方体中截面问题; (3)猜想法求最值问题:“要灵活运用一些特殊图形与几何体的 特征,“动中找静”,如正三角形、正六边形、正三棱锥等; (4)建立函数模型求最值问题:①设元;②建立二次函数模型; ③求最值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中的截面问题剖析
用平面去截一个几何体,截面的情况可以帮助我们更好地认识几何体,对于一个几何体不同切截方式,所以得截面可能出现不同的情况.
以正方体为例:平面截正方体的截面图形
三角形:
四边形
五边形
六边形
类型一:与截面有关的求值问题
1、在棱长为2的正方体1111ABCD A B C D -中,M 是棱11A D 的中点,过1C ,B ,M 作正方体的截面,则这个截面的面积为( )
A .352
B .358
C .92
D .98
2、
体积为216的正方体1111ABCD A B C D -中,点M 是线段11D C 的中点,点N 在线段11B C 上,//MN BD ,则正方体1111ABCD A B C D -被平面AMN 所截得的截面面积为( )
A.
27172 B .21172 C .15172 D .13172
正三棱柱111ABC A B C -中,所有棱长均为2,点,E F 分别为棱111,BB A C 的中点,若过点,,A E F 作一截面,则截面的周长为( )
A .425133+
B .225133
+ C .2513+ D .13252
+
反馈练习: 1、在棱长为2的正方体1111D C B A ABCD -中,E 是正方形C C BB 11的中心,M 为11D C 的中点,过M A 1的平面α与直线DE 垂直,则平面α截正方体1111D C B A ABCD -所得的截面面积为( )
A .23
B .26
C .225
D .3
2、如图,在正方体````ABCD A B C D -中,平面垂直于对角线AC ,且平面截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S ,周长为l ,则( )
A .S 为定值,l 不为定值
B .S 不为定值,l 为定值
C .S 与l 均为定值
D .S 与l 均不为定值
类型二:与截面有关的最值问题
1、已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )
A .433
B .332
C .423
D .2
3
2、如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为( )
A .22
B .1
C .2
D .2
反馈练习:
1、如图,已知四面体ABCD 为正四面体,22AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为______________
2、有一容积为33a cm 的正方体容器1111ABCD A B C D -,在棱AB 、1BB 和面对角线1BC 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则其可装水的最大容积是( )
A .3312a cm
B .3378a cm
C .331112a cm
D .334748
a cm
类型三:与球有关的截面问题
1、已知正四面体A BCD -的棱长为62,M ,N 分别是AC ,AD 上的点,过MN 作平面α,使得AB ,CD 均与α平行,且AB ,CD 到α的距离分别为2,4,则正四面体A BCD -的外接球被α所截得的圆的面积为( )
A .11π
B .18π
C .26π
D .27π
2、已知圆锥1SO 的顶点和底面圆周均在球O 的球面上,且该圆锥的高为8,母线12SA =,点B 在SA 上,且3SB BA =,则过点B 的平面被该球O 截得的截面面积的最小值为( ) A .27π
B .36π
C .54π
D .81π
反馈练习:
1、已知正三棱锥A BCD -的外接球是球O ,正三棱锥底边3BC =,侧棱23AB =,点E 在线段BD 上,且BE DE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是( ) A .9,34ππ⎡⎤⎢
⎥⎣⎦ B .[]2,3ππ C .11,44ππ⎡⎤⎢⎥⎣⎦ D .9,44ππ⎡⎤⎢⎥⎣⎦
2、如图所示,正方体ABCD ﹣A 1B 1C 1D 1的棱长为6,则以正方体ABCD ﹣A 1B 1C 1D 1的中心为顶点,以平面AB 1D 1截正方体外接球所得的圆为底面的圆锥的全面积为 .。