人教版初中数学七年级上册数轴

合集下载

初中数学人教七年级上册第一章有理数数轴 PPT

初中数学人教七年级上册第一章有理数数轴 PPT
3、选取适当的长度作为单位长度,直线上从原点向右 ,每隔一个单位长度取一个点,依次表示1,2,…;从 原点向左,用类似方法依次表示-1,-2,-3,……。
※分数和小数也可以用数轴上的点表示,如从原点向 右3.5个单位长度的点表示小数3.5,从原点向左 个单位 长度的点表示分数
共同归纳
(1)数轴的三要素:原点、正方向、单位长度. (2)数轴的规范画法:是条直线,数字在下,字母在上.
-3 -2 -1 0 1 2 3
动手画一个数轴,然后进行交流讨论. 思考: 1.数轴的规范画法. 2.数轴必须满足什规范画法: 3
2
2
3.5 -4 -3 -2 -1 0 1 2 3 4
1、画一条水平直线,在直线上取一点0,叫原点;
2、通常规定直线上从原点向右(或上)的方向为正方 向,从原点向左(或下)的方向为负方向;
正确地画出一条数轴的方法可概括为:
一画
二找
三定
四取
-3 -2 -1 0 1 2 3
课堂练习 判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
(1) 错
(2) 错
2
(3) 错
(4)

1 -1
(5)

1
(6) 对
01
(7) 错
-2 -1 1
(8) 错
-1-2-3 0 1 2 3
(9) 错
例题演示
课堂练习
1.写出数轴上点A、B、C、D、E所表示的数:
EB
AC D
A:0 C:1 E:-3
B:-2 D:2.5
巩固练习
2.借助数轴回答下列问题: (1)写出到原点的距离小于3的整数 ±1,±2,0.
-3 -2 -1 0 1 2 3

初中数学人教版七年级上册第一单元第2-2课《数轴》省级名师优质课教案比赛获奖教案示范课教案公开课教案

初中数学人教版七年级上册第一单元第2-2课《数轴》省级名师优质课教案比赛获奖教案示范课教案公开课教案

初中数学人教版七年级上册第一单元第2-2课《数轴》省级名师优质课教案比赛获奖教案示范课教案公开课教案
【省级名师教案】
1教学目标
1.目标
(1)了解数轴的概念,会用数轴上的点表示有理数;
(2)体会数轴三要素和有理数集(实数集)中0、1和数的符号之间的对应关系,从而体会数形结合思想.
2.目标解析
达成目标(1)的标志是:学生知道数轴是一条规定了原点、方向和单位长度的直线;给定一个有理数,学生能在数轴上找到表示它的点;能画出数轴,并用数轴上的点表示有理数.
目标(2)是“内容所蕴含的思想方法”,学生需要体会的是在“用点表示数”时,数轴“三要素”保证了点与数的“一一对应”——给一个数,就有唯一确定的点与之对应;反之,给一个点,就有唯一的数与之对应.但本节课只要能体会有理数与数轴上点的对应性,不要刻意强调“给一个点,不一定有一个有理数与之对应”.
2学情分析
学生第一次遇到用形表示数的问题,困难在于其中蕴含的思想.可以借鉴引入负数时的经验,也要借鉴学生的生活经验.但在基本思想上,还是要借助于具体情境,教师先讲解,学生获得体验后进行模仿式举例.
本节课中,“三要素”及其对于确定“数轴上的点”的意义(根据“三要素”,可以在数轴上找到唯一确定的点,否则“存在性”“唯一性”就做不到),有理数集(实数集)中0,1以及数的符号等与数轴上的相关要素的对应性,都需要教师引导.
3重点难点
教学重点是:体会数轴的三要素;体会用数轴上的点表示数的合理性,感受其中的数形结合思想.
教学难点是:数轴“三要素”与有理数集(实数集)中0,1以及数的符号的对应性.。

新人教版初中数学《数轴》教学课件1

新人教版初中数学《数轴》教学课件1

7.画数轴,并在数轴上表示下列各数: 3,-1.5,0,12,-4.
知识点三:数轴上的点与有理数之间的关系 8.数轴上原点及原点左边的点表示( C) A.正数 B.负数 C.非正数 D.非负数 9.在数轴上,下列说法正确的是( D) A.-3在-4的左边 B.-100在100的右边 C.0.1在0的左边 D.1在-1的右边
17.在数轴上,点A表示的数是-3,与点A距离2个单位长度的点表示的 数为__-__1_或__-__5_.
18.小红在做作业时,不小心将两滴墨水滴在数轴上,如图所示,根据 图中标出的数值,判断墨水盖住的整数有哪几个?
解:墨水盖住的整数为:-12,-11,-10,-9,-8,11,12,13, 14,15,16,17

3.读了本文,我明白了在当今世俗的 喧嚣中 应保持 自己内 心的宁 静,不 为世俗 所扰。 文中的 菜农能 够在喧 闹的菜 市场沉 浸于书 本的美 好中, 沉浸于 内心的 宁静中 。在生 活中, 我不会 因某次 月考的 成功而 骄傲。 而要保 持内心 的宁静 ,继续 努力前 行。

Hale Waihona Puke 4.概括文章的主要内容。通篇阅读, 分出层 次,梳 理情节 ,全盘 把握, 根据题 干要求 找出事 件的中 心内容 ,用自 己的语 言简洁 概括。 如可概 括为“我” 见到菜 农后发 生的几 件事及 对他态 度的变 化,由 此表达 了对菜 农的敬 佩之情 。
19.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A, 再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.
(1)画出数轴并标出A,B,C三点在数轴上的位置; (2)写出A,B,C三点表示的数; (3)根据点C在数轴上的位置,C点可以看作是蚂蚁从原点出发,向哪个方向 爬了几个单位长度得到的?

人教版初中七年级上册数学数轴教案三篇

人教版初中七年级上册数学数轴教案三篇

【导语】规定了原点,正⽅向和单位长度的直线叫数轴。

其中,原点、正⽅向和单位长度称为数轴的三要素。

⽆忧考准备了以下内容,供⼤家参考!篇⼀ ⼀、教学⽬标 【知识与技能】 了解数轴的概念,能⽤数轴上的点准确地表⽰有理数。

【过程与⽅法】 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】 在数与形结合的过程中,体会数学学习的乐趣。

⼆、教学重难点 【教学重点】 数轴的三要素,⽤数轴上的点表⽰有理数。

【教学难点】 数形结合的思想⽅法。

三、教学过程 (⼀)引⼊新课 提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计⼀样可以⽤来表⽰数的轴,它就是我们今天学习的数轴。

(⼆)探索新知 学⽣活动:⼩组讨论,⽤画图的形式表⽰东西向马路上杨树,柳树,汽车站牌三者之间的关系: 提问1:上⾯的问题中,“东”与“西”、“左”与“右”都具有相反意义。

我们知道,正数和负数可以表⽰具有相反意义的量,那么,如何⽤数表⽰这些树、电线杆与汽车站牌的相对位置呢? 学⽣活动:画图表⽰后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进⾏解答。

教师给出定义:在数学中,可以⽤⼀条直线上的点表⽰数,这条直线叫做数轴,它满⾜:任取⼀个点表⽰数0,代表原点;通常规定直线上向右(或上)为正⽅向,从原点向左(或下)为负⽅向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的? 师⽣共同总结:“原点”是数轴的“基准”,表⽰0,是表⽰正数和负数的分界点,正⽅向是⼈为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习 如图,写出数轴上点A,B,C,D,E表⽰的数。

(四)⼩结作业 提问:今天有什么收获? 引导学⽣回顾:数轴的三要素,⽤数轴表⽰数。

课后作业: 课后练习题第⼆题;思考:到原点距离相等的两个点有什么特点?篇⼆ ⼀、教学内容分析1.2有理数1.2.2数轴。

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)1.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t 秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?2.已知两点A、B在数轴上,AB=9,点A表示的数是a,且a与(﹣1)3互为相反数.(1)写出点B表示的数;(2)如图1,当点A、B位于原点O的同侧时,动点P、Q分别从点A、B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P、Q所表示的数;(3)如图2,当点A、B位于原点O的异侧时,动点P、Q分别从点A、B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当|OM﹣ON|=2时,求动点P、Q运动的速度.3.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).4.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).6.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q 分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.7.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?8.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.9.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.10.已知,数轴上两点A,B表示的数分别是9和﹣6,动点P从点A出发,以每秒3个单位的速度沿数轴向点B运动,运动到点B停止;(1)在数轴上表示出A,B两点,并直接回答:线段AB的长度是;(2)若满足BP=2AP,求点P的运动时间;(3)在点P运动过程中,若点M为线段AP的中点,点N为线段BP的中点,请计算线段MN的长度,并说出线段MN与线段AB的数量关系;(4)若另一动点Q同时从B点出发,运动的速度是每秒2个单位,几秒钟后,线段PQ 长度等于5?参考答案1.解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.2.解:(1)∵a与(﹣1)3互为相反数∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示,②当点A、点B在原点的异侧时,点B所表示的数为1﹣9=﹣8,如图2所示,故点B所表示的数为10或﹣8;(2)当点A、B位于原点O的同侧时,点B表示的数是10设点Q的运动速度为x,则点P的速度为2x∵3秒后两动点相遇∴3(x+2x)=9解得:x=1∴点Q的运动速度为1,则点P的速度为2运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9解得:t=;∴点P表示的数为:1+2×=,点Q表示的数为:10﹣=;②相遇后,再运动y秒,P、Q两点相距2,由题意有:y+2y=2解得:y=∴点P表示的数为:1+3×2+×2=,点Q表示的数为:10﹣3×1﹣×1=;(3)根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度∴点Q的运动速度为:9÷5=1.8设点P的速度为v,∵|OM﹣ON|=2∴|9+1﹣(5v+1)|=2解得:v=或∴点P的速度为或.3.解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时,依题意列式,得3t+2t=18﹣4,解得t=2.8;当点A在点B右侧时,3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合,根据题意列方程,可得=0,解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点,由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.4.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.5.解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.则12÷2+x÷1=(20﹣12)÷1+(12﹣x)÷2,解得x=,12÷2+÷1=6+5=11.答:t的值是11,相遇点M所对应的数是.(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍有2种可能:①动点Q在OB上,动点P在BO上,相遇前,则:12+(t﹣12÷2)=[20﹣12+2(t﹣8÷1)],解得:t=.②动点Q在OA上,动点P在BC上,相遇后,则:12+12+2(t﹣18)=[8+12+(t﹣8÷1﹣12÷2)],解得:t=26.综上所述:当t为或26时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍.故答案为:26.6.(1)解:∵|a+2|+(b﹣8)2=0,∴a=﹣2,b=8,∴AB=8﹣(﹣2)=10;(2)解:2x+8=x﹣2,∴x=﹣10,∴C在数轴上对应的数为﹣10,设点P对应的数为y,由题意可知,点P不可能位于点A的左侧,所以存在以下两种情况:①点P在点B的右侧,∴(y﹣8)+[y﹣(﹣2)]=y﹣(﹣10),∴y=16,②当点P在A、B之间,∴(8﹣y)+[y﹣(﹣2)]=y﹣(﹣10),∴y=0,综上所述,点P对应的数是16或0;(3)证明:设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣8t,点N对应的数是8+5t,∵P是ME的中点,∴P点对应的数是=﹣1﹣t,又∵Q是ON的中点,∴Q点对应的数是=4+t,∴MN=(8+5t)﹣(﹣2﹣8t)=10+13t,OE=t,PQ=(4+t)﹣(﹣1﹣t)=5+6t,∴===2(定值).∴在运动过程中,的值不变,这个值是2.7.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.8.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.9.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.10.解:(1)如图所示:线段AB的长度是9﹣(﹣6)=9+6=15,故答案为:15;(2)设AP=3t,则BP=6t,可得3t+6t=15,∴t=;(3)∵AP=3t,∴BP=15﹣3t,∵点M为线段AP的中点,点N为线段BP的中点,∴MP=AP=t,PN=(15﹣3t),则MN=MP+PN=t+(15﹣3t)=,∴MN=AB;(4)设BQ=2t,当Q在AB上时,①15﹣2t﹣3t=5,解得t=2;②2t+3t﹣15=5,解得t=4;当Q在AB外时,2t+(15﹣3t)=5,解得t=4;此时,点P不在线段AB外(舍去)综上所述,当2秒或4秒时,线段PQ的长度等于5.。

【初中数学】+数+轴+考点梳理及难点突破+课件+人教版(2024)数学七年级上册

【初中数学】+数+轴+考点梳理及难点突破+课件+人教版(2024)数学七年级上册
第一章 有理数
考点梳理及难点突破
1.2.2 数 轴
● 考点清单解读
● 重难题型突破
● 易错易混分析
● 方法技巧点拨
返回目录






■考点一
数轴的定义及画法
规定了原点、正方向和单位长度的直线叫作数
定义
轴;原点将数轴(原点除外)分成两部分,其
中正方向一侧的部分叫作数轴的正半轴;另一
侧的部分叫作数轴的负半轴
A. 文具店
B. 玩具店
C. 文具店西 40 m 处
D. 玩具店西 60 m 处
返回目录
解题通法
根据运动的方向和距离在数轴上表示出每


题 次运动结束的位置,运用转化思想将复杂的实际问题转化
型 成数学问题,借助数轴上的点与有理数的对应关系简单直

破 观地解答.
返回目录
易 ■忘记分类讨论,导致漏解图示三要素原点、正方向和单位长度
返回目录
续表






步骤
(1)画:画一条水平(或竖直)
的直线
(2)取:在直线上任取一个点
画法
表示数0,这个点叫作原点
(3)定:通常规定直线上从原
点向右(或上)为正方向,用
箭头表示出来
图示
返回目录






续表
步骤
画法
(4)选:选取适当的长度为单
位长度
图示
返回目录
明跑步用的时间是9 000÷250=36(min).
答:小明跑步一共用了 36 min.
返回目录
变式衍生 文具店、书店和玩具店依次坐落在一条东西

人教版七年级数学上册 1.2.2 数轴 说课稿

人教版七年级数学上册 1.2.2 数轴 说课稿

七年级数学上“数轴”说课稿一:教材分析:《数轴》是七年级数学上册第一章第二节“有理数”中第二课时内容。

本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。

数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二:教学目标:根据新课标的要求及七年级学生的认知水平我制定的教学目标如下:1. 使学生理解数轴的三要素,会画数轴;2. 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示;3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

三:教学重难点:教学重点:正确理解数轴的概念和有理数在数轴上的表示方法;教学难点: 建立有理数与数轴上的点的对应关系(数与形的结合)四、教法学法1.说教法:我主要以“三疑三探教学模式”教学法为主,利用多媒体教学技术生动形象展示出数轴的相关知识,从而引导学生自主探索,学会数形结合的数学思想。

2.说学法:以“小组合作”的探讨式学习方法,引导学生先进行自主探究,有疑问在小组讨论解决,进而培养学生良好的学习习惯。

五:教学过程设计:分为(一)作业前置(二)引入新课,设疑自探(三)解疑合探(四)质疑再探,重难点点拨(五)拓展训练(六)课堂小结(七)布置作业等步骤(一)作业前置:1、下列各数中,哪些是正数?哪些是负数?7,-9.24,910,-301,427,31.25,0.正数有:负数有:2.有理数按照“正负分类”可以分为几类?3.如何用“几何图形”来直观的表示正数和负数,生活中有哪些利用正负数描述事物的例子?通过学生课前完成作业前置来复习旧知,并联系新课,对数轴的认识。

人教版初中七年级数学第一单元有理数《数轴》教案

人教版初中七年级数学第一单元有理数《数轴》教案

人教版初中七年级数学第一单元有理数数轴一、教学目标(一)学习目标1.理解数轴的意义和数轴上的点与有理数的对应关系;2.会正确画出数轴,会根据数轴上的点读出所表示的有理数,会用数轴上的点表示给定的有理数;3.掌握从数与形两方面考虑问题的方法,能够用数轴解决现实生活中的实际问题。

(二)学习重点理解数轴上的点与有理数的对应关系(三)学习难点用数轴上的点表示有理数,并用数轴解决现实生活中的实际问题。

二、教学设计(一)课前设计1.预习任务(1)规定了原点、正方向、单位长度的一条直线叫作数轴;(2)所有的有理数都可以用数轴上的点来表示,数轴上的原点表示的数是0;(3)一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a 的点在原点的左边,与原点的距离是a 个单位长度。

2.预习自测(1)下列表示的数轴,正确的是( )【知识点】数轴-2 0 -1 2 1 -1 -2 0 1 2 3 -3 -1 0 1 2 3-2 0 2 AB C D【解题过程】解:单位长度不统一,故A 错误;-1、-2标反了,故B 错误;没有正方向,故D 错误,所以应选C【思路点拨】根据数轴的三要素即可判断.【答案】 C(2)在数轴上,原点及原点右边的数是( )A .正数B .负数C .整数D .非负数【知识点】数轴【解题过程】解:在数轴上,原点及原点右边表示的数是非负数。

【思路点拨】根据数轴的概念即可求解;【答案】D(3)在数轴上表示-3,0,5,4,21-的点中,在原点左边的点有( ) A .0个 B .1个 C .2个 D .3个【知识点】数轴【解题过程】在数轴上表示-3,0,5,4,21-的点中,在原点左边的点有-3,21- 【思路点拨】根据数轴的概念知,在原点左边的点表示负数即可求解.【答案】C(4)如图,在数轴上,A 、B 、C 、D 、E 各表示什么数?【知识点】数轴【解题过程】解:由图可知:A 表示-1,B 表示1.5,C 表示-1.5,D 表示-3.5,E 表示3.【思路点拨】可先观察该点在原点的左侧或是右侧,判断其正负,再看该点到原点的距离即可判断.【答案】A 表示-1,B 表示1.5,C 表示-1.5,D 表示-3.5,E 表示3.(二)课堂设计1.知识回顾(1)什么叫正数?什么叫负数? -3-4-2-1 2 3A B C D E(2)整数和分数统称什么数?整数包括哪些数?分数包括哪些数?2.问题探究探究一理解数轴的意义★●活动①探究:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.师问:(1)用什么可表示马路?方向呢?(2)可以以什么地方为基准点?为什么?(分组讨论,交流合作,动手操作)师生合作画出对应的图形师问:能否用数简明地表示这些树、电线杆与汽车站牌的相对位置关系呢?生答:问题中,由于“东”与“西”、“左”与“右”都是具有相反意义,所以可以用正、负数来表示它们。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通过本节课的学习,我们需要掌握: 1.数轴的概念:规定了原点、正方向、单位长度的 直线. 2.数轴的画法:一画、二定、三方向、四单位. 3.用数轴上的点表示数.
-3 -2 -1 0 1 2 3
正方向
思考:你认为数轴上最重要的是哪几个要素?
数轴的三要素
原点 正方向 单位长度
画数轴的四个步骤: ⒈画直线. ⒉在直线上取一点作为原点. ⒊确定正方向,并用箭头表示. ⒋根据需要选取适当的单位长度.
一画 二定 三方向 四单位
【例题】
(1)画出数轴并表示下列有理数.
在数轴上,表示数-2, 2.6, ,0, ,-1,
的点中,在原点左边的点有 4 个.
2.在数轴上点A表示- 4,如果把原点O向负方向移动1.5个
单位,那么在新数轴上点A表示的数是( C )
A.
B. -4
C.
D.
3.数轴上表示-2的点在原点的 左 侧,距原 点的距离是 2个单位长度 ,表示6的点在原点 的 右 侧,距原点的距离是 6个单位长度 . 4.判断 数轴上的两个点可以表示同一个有理数.( × )
-2.5 -2
1.5 2
-4 -3 -2 -1 0 1 2 3 4
(2)写出数轴上点A,B,C,D,E 表示的数.
EB
AC
D
-4 -3 -2 -1 0 1 2 3 4
点A表示0,点B表示-2,点C表示1,点D表示2.5,点E表示-3,
(3)观察数轴上点的特点:数轴上表示数3的点在原点的右 边,与原点的距离是3个单位长度;表示数-2的点在原点的 左边,与原点的距离是2个单位长度.
二、画出数轴,并用数轴上的点表示下列各数:
,-5,0,5,-4,-
3|2
3|2
3|2
3|2
解:
-
-5 -4 -3 -2 -1 0 1 2 3 4 5
三、指出数轴上A,B,C,D各点分别表示什么数.
A DC
B
-2 -1 0 1 2 3
解:点A表示 -2; 点B表示2;
点C表示0;
点D表示-1;
1.填空:
人教版初中数学七年级 上册数轴
2020/8/26
1.掌握数轴的三要素,能正确画出数轴. 2.能将已知数在数轴上表示出来,能说出数轴上已 知点所表示的数. 3.运用数形结合的思想方法解决问题,能够准确画 出数轴,并在数轴上表示出相应的有理数以及在数 轴上读出点所表示的有理数.
在一条东西方向的马路上,有一个汽车站,汽车站以东 3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站以 西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画 图表示这一情境.
5.数轴上的点A到原点的距离是6,则点A表示的数为
()
A. 6或-6
B. 6
C.-6
D. 3或-3
解析:选A.数轴上距离原点6个单位长度的数有两个.
6.下列说法正确的是( B ) A.数轴上的点都表示整数 B.数轴上表示5与-5的点分别在原点的两侧,
并且到原点的距离都等于5个单位长度 C.数轴包括原点与正方向两个要素 D.数轴上的点只能表示正数和零


线

西
杆 槐树 站 柳树 杨树 东
-4.8 -3 0 3
7.5
【思考】
怎样用数简明地表示这些树、电线杆与汽车站的相对位 置关系 (方向、距离)?Biblioteka 请读出下面温度计所表示的温度
5℃
0℃
-10 ℃
数轴:在数学上,可以用一条直线上的点表示数,这条直线叫做 数轴.它满足以下要求: (1)在直线上任取一个点表示数0,这个点叫做原点; (2)通常规定直线上从原点向右(或上)为正方向,从原点向左 (或下)为负方向; (3)选取适当的长度为单位长度,直线上从原点向右,每隔一个 单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似 方法依次表示-1,-2,-3,….
-4 -3 -2 -1 0 1 2 3 4
一般地,设a是一个正数,则数轴上表示数a的点在原点的
__右____边,与原点的距离是__a____个单位长度;表示数-a 的点在原点的__左___边,与原点的距离是___a__个单位长度.
【跟踪训练】
一、判断下面所画数轴是否正确,并说明理由.
原点、正方向和单位长度一个也不能少.
相关文档
最新文档