数学《无理数指数幂》教案

合集下载

4.1.2无理数指数幂及其运算性质课件(人教版)

4.1.2无理数指数幂及其运算性质课件(人教版)

6 3
= 3
3
20
4.1.2无理数指数幂及其运算性质 课堂小结
1、无理数指数幂 2、实数指数幂的运算性质
21
谢谢您的凝听
5
4.1.2无理数指数幂及其运算性质 温故知新 知识点二 根式的性质 性质1 (n>1,且n∈N*):
( n a) n a
6
4.1.2无理数指数幂及其运算性质 温故知新 知识点二 根式的性质 性质2 (n>1,且n∈N*):
当n是奇数时,n an a 当n是偶数时,n an a
7
4.1.2无理数指数幂及其运算性质 温故知新
11
4.1.2无理数指数幂及其运算性质 研探新知 知识点一 无理数指数幂 一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的 实数. 有理数指数幂的运算性质同样适用于无理数指数幂.
12
4.1.2无理数指数幂及其运算性质 研探新知 知识点二 实数指数幂的运算性质(适用于有理数、无理数) (1)aras=ar+s(a>0,r,s∈Q). (2)(ar)s=ars(a>0,r,s∈Q). (3)(ab)r=arbr(a>0,b>0,r∈Q).
第四章 指数函数与对数函数
4.1.2无理数指数幂及其运算性质 教学目标
1. 理解无理数指数幂的概念; 2. 掌握实数指数幂和根式之间的互化、化简、求值; 3. 掌握实数指数幂的运算性质; 4. 能利用已知条件求值.
2
4.1.2无理数指数幂及其运算性质 重点难点
重点: ①掌握并运用实数指数幂的运算性质; ②能利用已知条件求值. 难点: 能利用已知条件求值.
知识点三 分数指数幂的意义
正分数指 数幂
m
规定:a n n am (a>0, m, n∈ N *,且 n>1)

2020学年新教材高中数学4.1指数4.1.2无理数指数幂及其运算性质教学案新人教A版必修第一册

2020学年新教材高中数学4.1指数4.1.2无理数指数幂及其运算性质教学案新人教A版必修第一册

4.1.2 无理数指数幂及其运算性质(教师独具内容)课程标准:1.了解指数幂由有理数扩充到无理数的过程.2.理解指数幂的运算性质.3.能进行指数幂(实数幂)的运算.教学重点:1.指数幂由有理数扩充到无理数的过程.2.实数指数幂的运算. 教学难点:无理数指数幂的意义的理解.【知识导学】知识点一 无理数指数幂(1)对于无理数指数幂,我们只需要了解两点:①它是一个确定的实数;②它是有理数指数幂无限逼近的结果.(2)定义了无理数指数幂之后,幂的指数就由原来的有理数范围扩充到了实数范围. 知识点二 实数指数幂的运算性质(1)a r a s =□01a r +s (a >0,r ,s ∈R ). (2)(a r )s =□02a rs (a >0,r ,s ∈R ). (3)(ab )r =□03a r b r (a >0,b >0,r ∈R ). 【新知拓展】对于实数a >0,r ,s 有a r÷a s=ar -s成立.这是因为a r÷a s=a r as =a r ·a -s =a r -s.教材中没有给出此性质,但是它可以由已有公式推导出来.(1)在进行幂和根式的化简时,一般原则是:先将负指数幂化为正指数幂,将小数化为分数,将根式化为分数指数幂,将底数(较大的整数分解质因数)化成指数幂的形式,再利用幂的运算性质在系数、同底数幂间进行运算,达到化简和求值的目的.(2)化简指数幂的几个常用技巧如下: ①⎝ ⎛⎭⎪⎫b a -p =⎝ ⎛⎭⎪⎫a bp (ab ≠0); ②a =(a 1m)m,anm=(a 1m)n(a 使式子有意义);1.判一判(正确的打“√”,错误的打“×”) (1)α,β是实数,当a >0时,(a α)β=(a β)α.( )(2)当a >0,b >0时,(a 12 +b -12 )(a 12 -b -12 )=a -b -1.( ) (3)当a >0时,(a -a -1)2=(a +a -1)2-2.( ) (4)[(3)-2] 12 = 3.( ) (5)(3-2) 12 ×(3)-2=19.( )答案 (1)√ (2)√ (3)× (4)× (5)√ 2.做一做(请把正确的答案写在横线上) (1)化简:(3-3)3=________.(2)已知5α=3,5β=2,则 ①5α+β=________; ②5α-β=________;③5-3α=________;④5α2=________.答案 (1)127 (2)①6 ②32 ③127④3题型一 利用指数幂的运算性质化简与求值金版点睛指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.题型二条件求值问题金版点睛解决条件求值问题的一般方法——整体代入法对于条件求值问题,一般先化简代数式,再将字母取值代入求值.但有时字母的取值不知道或不易求出,这时可将所求代数式恰当地变形,构造出与已知条件相同或相似的结构,从而通过“整体代入法”巧妙地求出代数式的值.利用“整体代入法”求值常用的变形公式如下(其中a>0,b>0):1.3a ·6-a 等于( ) A.--a B .-a C.-a D.a答案 A解析 3a ·6-a =a 13 ·(-a ) 16 =-(-a ) 13 ·(-a ) 16 =-(-a ) 12 =--a .2.⎝ ⎛⎭⎪⎫1681 -14的值是( ) A.23 B.32 C.481 D .-814 答案 B解析 ⎝ ⎛⎭⎪⎫1681-14 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-14 =⎝ ⎛⎭⎪⎫23-1=32.答案 A解析 原式=[2×(-3)÷4]×a -3-1+4·b -23+1+53 =-32a 0b 2=-32b 2.4.化简(3+2)2018·(3-2)2019=________.答案3- 2解析 (3+2)2018·(3-2)2019=[(3+2)(3-2)]2018·(3-2)=12018·(3-2)=3-2.。

无理数指数幂高一上学期数学湘教版(2019)必修第一册

无理数指数幂高一上学期数学湘教版(2019)必修第一册
3
2
解析:( 5 3 )2 3 =(5 )2 3 =2
3
×2
2
3
=53=125.
题型探究 课堂解透
题型1 无理数指数幂的运算
3
例1 (1)(3

(2)
(a>0).
2
6 ∙ 3

2 2 )3 2 ;
解析:
2
3
(1)原式=(3 2 ·2 )3 2 =(3 2 )3 2 2
(2)原式=
幂的不足近似值和过剩近似值,这两个值可以无限逼近一个实数aα(a
>0,α是无理数).
(2)0的正无理数指数幂为0,0的负无理数指数幂没有意义.
要点三
幂运算基本不等式
对任意的正数u和正数a,若a>1,则au>1;若a<1,则au<1.
对任意的负数u和正数a,若a>1,则au<1;若a<1,则au>1.

=a
+ℎ


u
u+h
u+2h
证明:由a ,a ,a
都是正数,且
au-au+h>0,
+2ℎ
au+h-au+2h au·ah-au+h·ah ah·(au-au+h)
所以 u u+h =

=ah<1,
u
u+h
u
u+h
a -a
a -a
a -a
所以au+h-au+2h<au-au+h.
课堂十分钟
3
)2 3 ;
(m>0)
解析:
3
(1)原式=(
(2)原式=(
3− 2 2 3


3 6
)
3

4.1指数(第2课时)(教案)

4.1指数(第2课时)(教案)

可以看出:5√2可以由√2的不足近似值和过剩近似值进行无限逼近.
追问3:如何在数轴上找到与5√2对应的点?
无论是认识√2还是认识5√2,为了认识这些数的意义,我们在数轴上先选取这个数附近一个小区间内的数,通过不断缩小区间的长度,让区间端点的值从区间的左右两个方向,即从左侧不断增大的方向(单调递增),以及从右侧不断减小的方向(单调递减),逐渐向中间逼近,在“单调有界数列必有极限”的基本事实支持下,想象并判定√2,5√2不仅在数轴上确实存在,而且唯一. 这个过程可以用下图表示:
一般地,无理数指数幂aα(a>0,α为无理数)是一个确定的实数.进一步拓展到实数:任何正数的实数指数幂是一个确定的实数.
注意:在指数幂a x中,通常要限定a>0这个条件. 这是为了保证后续的指数函数y=a x对于任意实数x都有意义.因为只有正数的任何实数次幂才都有意义。

如果底数是0,
a3
通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?。

高中数学第4章指数函数与对数函数4.1指数4.1.2无理数指数幂及其运算性质教学案第一册数学教学案

高中数学第4章指数函数与对数函数4.1指数4.1.2无理数指数幂及其运算性质教学案第一册数学教学案

4.1.2 无理数指数幂及其运算性质(教师独具内容)课程标准:1.了解指数幂由有理数扩充到无理数的过程.2.理解指数幂的运算性质.3.能进行指数幂(实数幂)的运算.教学重点:1.指数幂由有理数扩充到无理数的过程.2.实数指数幂的运算.教学难点:无理数指数幂的意义的理解.【知识导学】知识点一 无理数指数幂(1)对于无理数指数幂,我们只需要了解两点:①它是一个确定的实数;②它是有理数指数幂无限逼近的结果.(2)定义了无理数指数幂之后,幂的指数就由原来的有理数范围扩充到了实数范围.知识点二 实数指数幂的运算性质(1)a r a s =□01a r +s (a >0,r ,s ∈R ). (2)(a r )s =□02a rs (a >0,r ,s ∈R ). (3)(ab )r =□03a r b r (a >0,b >0,r ∈R ). 【新知拓展】对于实数a >0,r ,s 有a r ÷a s =a r -s 成立.这是因为a r ÷a s =a ras =a r ·a -s =a r -s .教材中没有给出此性质,但是它可以由已有公式推导出来.(1)在进行幂和根式的化简时,一般原则是:先将负指数幂化为正指数幂,将小数化为分数,将根式化为分数指数幂,将底数(较大的整数分解质因数)化成指数幂的形式,再利用幂的运算性质在系数、同底数幂间进行运算,达到化简和求值的目的.(2)化简指数幂的几个常用技巧如下:①⎝ ⎛⎭⎪⎫b a -p =⎝ ⎛⎭⎪⎫a b p (ab ≠0); ②a =(a 1m )m ,a n m =(a 1m )n (a 使式子有意义); 1.判一判(正确的打“√”,错误的打“×”)(1)α,β是实数,当a >0时,(a α)β=(a β)α.( )(2)当a >0,b >0时,(a 12 +b -12 )(a 12 -b -12 )=a -b-1.( )(3)当a >0时,(a -a -1)2=(a +a -1)2-2.( ) (4)[(3)-2] 12 = 3.( )(5)(3-2) 12 ×(3)-2=19.( ) 答案 (1)√ (2)√ (3)× (4)× (5)√2.做一做(请把正确的答案写在横线上)(1)化简:(3-3)3=________. (2)已知5α=3,5β=2,则①5α+β=________; ②5α-β=________; ③5-3α=________;④5α2 =________.答案 (1)127 (2)①6 ②32 ③127④3 题型一 利用指数幂的运算性质化简与求值金版点睛指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.题型二 条件求值问题金版点睛解决条件求值问题的一般方法——整体代入法对于条件求值问题,一般先化简代数式,再将字母取值代入求值.但有时字母的取值不知道或不易求出,这时可将所求代数式恰当地变形,构造出与已知条件相同或相似的结构,从而通过“整体代入法”巧妙地求出代数式的值.利用“整体代入法”求值常用的变形公式如下(其中a >0,b >0):1.3a ·6-a 等于( )A.--aB .-a C.-a D.a 答案 A解析 3a ·6-a =a 13 ·(-a ) 16 =-(-a ) 13 ·(-a )16 =-(-a ) 12 =--a .2.⎝ ⎛⎭⎪⎫1681 -14 的值是( ) A.23 B.32 C.481 D .-814答案 B解析 ⎝ ⎛⎭⎪⎫1681-14 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-14 =⎝ ⎛⎭⎪⎫23-1=32. 答案 A解析 原式=[2×(-3)÷4]×a -3-1+4·b -23+1+53 =-32a 0b 2=-32b 2. 4.化简(3+2)2018·(3-2)2019=________.答案 3-2解析(3+2)2018·(3-2)2019=[(3+2)(3-2)]2018·(3-2)=12018·(3-2)=3- 2.。

数学《无理数指数幂》的教案

数学《无理数指数幂》的教案

数学《无理数指数幂》的教案
课前预习学案
一、预习目标
理解无理数指数幂得实际意义。

二、预习内容
教材52页至53页的意义解读。

三、提出疑惑
同学们,你们通过自主学习,还有哪些疑惑请写在下面的横线上—————————
课内探究学案
一、学习目标
1.能熟练进行根式与分数指数幂间的互化。

2.理解无理数指数幂的概念。

学习重点:实数指数幂的的运算及无理数指数幂的理解
学习难点:无理数指数幂的理解
二、学习过程
1.解释的意义,理解分数指数幂与根式的互化。

探究的实际意义。

2.反思总结
得出结论:一般地,无理数指数幂(是无理数)是一个确定的实数。

有理数指数幂的运算同样适用于无理数指数幂。

3.当堂检测
(1)参照以上过程,说明无理数指数幂的意义。

(2)计算下列各式○1○2
课后练习与提高
1.化简下列各式
(1)(2)
2.下列说法错误的是()
a.根式都可以用分数指数幂来表示
b.分数指数幂不表是相同式子的乘积,而是根式的一种新的写法
c.无理数指数幂有的不是实数
d.有理数指数幂的运算*质适用于无理数指数幂。

《无理数指数幂及其运算性质》示范公开课教学设计【高中数学人教版】

《无理数指数幂及其运算性质》示范公开课教学设计【高中数学人教版】

《无理数指数幂及其运算性质》教学设计◆教学目标1.通过类比无理数的形成过程,理解无理数指数幂的意义.2.掌握无理数指数幂的运算性质,并通过初步应用提升数学运算核心素养.◆教学重难点◆教学重点:实数指数幂的运算及其性质.教学难点:对无理数指数幂的理解,用有理数指数幂逼近无理数指数幂.◆课前准备PPT课件,计算器,GGB课件.◆教学过程(一)新知探究1.提出问题,引发思考问题1:上节课我们将a x(a>0)中指数x的取值范围从整数拓展到了有理数.那么,当指数x是无理数时,a x还有没有意义?如果有意义,其意义是什么?说说你的理由.师生活动:学生分组讨论交流.设计意图:明确本节课研究的重点,激发学生的探究欲望.追问1:在初中的学习中,我们通过有理数认识了一些无理数.请回忆初中时,是如何确定无理数√2的大小的?师生活动:学生回答,教师进行补充讲解.预设的答案:初中时,我们发现√2的不足近似值x(有理数)和过剩近似值y(有理数),都趋向于同一个确定的数,这个确定的数就是√2,以此来逐渐逼近√2的精确值.设计意图:类比无理数的发现和确定过程,为研究无理数指数幂提供方法上的支持.追问2:类似的,我们也可以通过有理数指数幂来认识无理数指数幂.你能设计一个方案来解释无理数指数幂5√2的意义吗?师生活动:学生讨论交流,然后提出方案,由教师进行补充和完善,最后予以实施.预设的答案:根据√2的不足近似值x(有理数)和过剩近似值y(有理数),利用计算工具计算相应的5x,5y的近似值,并填入表1.是一个确定的实数.追问3:通过表1可以看出,当√2的不足近似值x和过剩近似值y逐渐逼近√2时,5x和5y都趋向于同一个数,这个数就是5√2.也就是说5√2是一串逐渐增大的有理数指数幂和另一串逐渐减小的有理数指数幂逐步逼近的结果,它是一个确定的实数.那么这个逐渐逼近的过程在数轴上是怎么体现的呢?请同学们将上表中不同的5x和5y的值画到数轴的对应位置上.师生活动:学生自行完成,等学生完成后,教师展示GGB动态演示.预设的答案:教师展示GGB课件“4.1指数第二课时-数轴显示有理数指数幂逼近无理数指数幂”,并演示动画效果.教师可以将图象逐步放大,直观展示上述逼近过程.设计意图:用数轴表示数值,可以从宏观、整体上把握变化的趋势,定量地研究问题,从形的角度认识到5√2是一个确定的实数.利用GGB动画演示,加深学生对于无理数指数幂的理解,达到提升学生直观想象核心素养的目的.追问4:参照以上过程,你能再给出一个无理数指数幂,如2√3,说明它也是一个确定的实数吗?师生活动:学生自行完成.设计意图:进一步通过以有理数逼近无理数的方法,学生体会其中蕴含的极限思想.36 (2);()36636233333(2)22222---===;()3333332222(2)(2)e e e eee b ba b b⎤÷=÷⎥⎦这些题目的求解过程与我们上节课的例4的求解有哪些异同?。

高中教育数学必修第一册湘教版《4.1.2 无理数指数幂》教学课件

高中教育数学必修第一册湘教版《4.1.2 无理数指数幂》教学课件
幂的不足近似值和过剩近似值,这两个值可以无限逼近一个实数aα(a
>0,α是无理数).
(2)0的正无理数指数幂为0,0的负无理数指数幂没有意义.
要点三
幂运算基本不等式
对任意的正数u和正数a,若a>1,则au>1;若a<1,则au<1.
对任意的负数u和正数a,若a>1,则au<1;若a<1,则au>1.
2
A. B.6
3
3
C.
2
−2 的值为(
A
D.2
1
1
2 − 2
1
1
2 + 2
(2)已知x+y=12,xy=9,且x<y,则
3
-3
=________.
)
题型3 实数指数幂比较大小
例4 已知a>1,h>0,对任意的实数u,
求证:
(1)au+2h-au+h>au+h-au;
(2)(1+h)100>1+100h.
(4)2 2∈R.( √ )
2.(2 2 )2 2 =(
)
A.4 2
B.8
答案:D
解析:(2 2 )2 2 =2
2×2 2
=24=16.
C.8
2
D.16

3

6

2
3.化简: =________.(a>0)

3

6
解析: =

+
3 6

2
= .
125
4.计算:( 5 3 )2 3 =________.
解析:( 5
3
3
3 )2 3 =(5 2 )2 3 =2 2 ×2 3 =53=125.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学《无理数指数幂》教案Teaching plan of "irrational number exponential power"
数学《无理数指数幂》教案
前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。

便于学习和使用,本文档下载后内容可按需编辑修改及打印。

课前预习学案
一、预习目标
理解无理数指数幂得实际意义。

二、预习内容
教材52页至53页的意义解读。

三、提出疑惑
同学们,你们通过自主学习,还有哪些疑惑请写在下面
的横线上—————————
课内探究学案
一、学习目标
1.能熟练进行根式与分数指数幂间的互化。

2.理解无理数指数幂的概念。

学习重点:实数指数幂的的运算及无理数指数幂的理解
学习难点:无理数指数幂的'理解
二、学习过程
1.解释的意义,理解分数指数幂与根式的互化。

探究
的实际意义。

2.反思总结
得出结论:一般地,无理数指数幂(是无理数)是一
个确定的实数。

有理数指数幂的运算同样适用于无理数指数幂。

3.当堂检测
(1)参照以上过程,说明无理数指数幂的意义。

(2)计算下列各式○1 ○2
课后练习与提高
1.化简下列各式
(1)(2)
2.下列说法错误的是()
A.根式都可以用分数指数幂来表示
B.分数指数幂不表是相同式子的乘积,而是根式的一种新的写法
C.无理数指数幂有的不是实数
D.有理数指数幂的运算性质适用于无理数指数幂
-------- Designed By JinTai College ---------。

相关文档
最新文档