课时跟踪检测(十五)大题考法——圆锥曲线中的最值、范围、证明问题
高考数学(理)圆锥曲线综合最值、范围、证明问题

专题 圆锥曲线综合应用(2)- 最值、范围、证明问题一、 高考题型特点:最值、范围、证明问题是高考圆锥曲线大题中的常考题型,难度中等偏上。
二、重难点:1.求解圆锥曲线中的最值问题主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.2.圆锥曲线中的范围问题: (1)解决这类问题的基本思路是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适 的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.3.圆锥曲线中的证明问题常以椭圆、抛物线为载体,借助设而不求法,考查数形结合思想、方程思想、化归与转化能力、逻辑思维能力、运算求解能力. 三、易错注意点:本部分对学生的能力要求较高,解题中主要数形结合及各种方法的综合应用,同时对数学推理运算能力有很高的要求。
四、典型例题:例1.(2019全国卷III )已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()()2222121212||11421AB t x t x x x x t =+-=++-=+.设12,d d 分别为点D ,E 到直线AB 的距离,则21221,1d t d t =+=+.因此,四边形ADBE 的面积()(22121||312S AB d d t t =+=++设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,42S =因此,四边形ADBE 的面积为3或42例2.(2019全国卷II )已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得212x k =+.记212u k=+,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k,方程为()2k y x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k =+.从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ k =+221||uk k PG +=, 所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 例3.(2016年山东)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的离心率是3,抛物线E :22x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a ,所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为2,),(0)2m Pm m >(, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又2200222(14)m m y mx m -=-=+, 于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为1(,)4M m -. 所以点M 在定直线41=y -上.(ii )在切线l 的方程为2=2m mx -y 中,令0x =,得22m y =-,即点G 的坐标为2(0,)2m G -,又2(,)2m P m ,1(0,)2F , 所以4)1+(=×21=S 21m m GF m ;再由32222(,)412(41)m m D m m -++,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t -当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为21()24P . 例4.(2016年全国卷II)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【解析】(I )设11(,)M x y ,则由题意知10y >.当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 由已知及椭圆的对称性知,直线AM 的倾斜角为4π. 因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =. 所以AMN △的面积为21112121442227749AMN S AM ∆==⨯⨯⨯=. (Ⅱ)由题意知3,0,(,0)t k A t >>,则直线AM 的方程为(y k x t =+,联立(2213x y t y k x t ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x tk x t k t +++-=解得x t =23t tk tx -=所以2223611t tk t t AM k t k -=+=+由题意MA NA ⊥,所以AN 的方程为1()y x t k=-+, 同理可得26(1)||k t k AN +=由2AM AN =,得22233k tk k t=++,即3(2)3(21)k t k k -=- 当32k =时上式成立,因此23632k kt k -=-. 因为3t >,即236332k k k ->-,整理得()()231202k k k +-<- 即3202k k -<-,解得322k <<. 五、强化提升训练:1.(2019·广东佛山模拟)已知中心在坐标原点,焦点在x 轴上的椭圆M 的离心率为12,椭圆上异于长轴顶点的任意点A 与左、右两焦点F 1,F 2构成的三角形中面积的最大值为 3.(1)求椭圆M 的标准方程;(2)若A 与C 是椭圆M 上关于x 轴对称的两点,连接CF 2与椭圆的另一交点为B ,求证:直线AB 与x 轴交于定点P ,并求PA →·F 2C →的取值范围.【解析】(1)由题意知c a =12,12·2c ·b =3,a 2=b 2+c 2,解得c =1,a =2,b = 3.所以椭圆M 的标准方程是x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),C (x 1,-y 1),直线AB :y =kx +m .将y =kx +m ,代入x 24+y 23=1得,(4k 2+3)x 2+8kmx +4m 2-12=0.则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3.因为B ,C ,F 2共线,所以kBF 2=kCF 2,即kx 2+m x 2-1=-kx 1+mx 1-1, 整理得2kx 1x 2+(m -k )(x 1+x 2)-2m =0,所以2k 4m 2-124k 2+3-(m -k )8km4k 2+3-2m =0,解得m =-4k .所以直线AB :y =k (x -4),与x 轴交于定点P (4,0).因为y 21=3-34x 21,所以PA →·F 2C →=(x 1-4,y 1)·(x 1-1,-y 1)=x 21-5x 1+4-y 21=74x 21-5x 1+1=74⎝⎛⎭⎪⎫x 1-1072-187.因为-2<x 1<2,所以PA →·F 2C →的取值范围是⎣⎢⎡⎭⎪⎫-187,18.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.【解析】(1)由题意知e =c a =32,2b =2,又a 2=b 2+c 2,所以b =1,a =2, 所以椭圆C 的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0.则Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1. ①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,所以4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,则(4k 2-5)x 1x 2+4km (x 1+x 2)+4m 2=0,所以(4k 2-5)·4m 2-14k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0,化简得m 2+k 2=54. ② 由①②得0≤m 2<65,120<k 2≤54.因为原点O 到直线l 的距离d =|m |1+k2,所以d 2=m 21+k 2=54-k 21+k 2=-1+941+k2, 又120<k 2≤54,所以0≤d 2<87,解得0≤d <2147. 所以原点O 到直线l 的距离的取值范围为⎣⎢⎡⎭⎪⎫0,2147.3.若F 1,F 2分别是椭圆E :x 25+y 2=1的左、右焦点,F 1,F 2关于直线x +y -2=0的对称点是圆C 的一条直径的两个端点.(1)求圆C 的方程;(2)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 取最大值时,求直线l 的方程.【解析】(1)因为F 1(-2,0),F 2(2,0),所以圆C 半径为2,圆心C 是原点O 关于直线x +y -2=0的对称点.设C (p ,q ),由⎩⎪⎨⎪⎧q p =1,p 2+q2-2=0得p =q =2,所以C (2,2).所以圆C 的方程为(x -2)2+(y -2)2=4.(2)设直线l 的方程为x =my +2,则圆心C 到直线l 的距离d =|2m |1+m2,所以b =222-d 2=41+m2,由⎩⎪⎨⎪⎧x =my +2x 2+5y 2=5得(5+m 2)y 2+4my -1=0,设直线l 与椭圆E 交于两点A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-4m 5+m 2,y 1·y 2=-15+m2, a =|AB |=1+m2y 1+y 22-4y 1y 2=25m 2+1m 2+5,ab =85m 2+1m 2+5=85m 2+1+4m 2+1≤25,当且仅当m 2+1=4m 2+1,即m =±3时等号成立.所以当m =±3时,ab 取最大值.此时直线l 的方程为x ±3y -2=0.4.(2019·梅州一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为点F 1,F 2,其离心率为12,短轴长为2 3.(1)求椭圆C 的标准方程;(2)过点F 1的直线l 1与椭圆C 交于M ,N 两点,过点F 2的直线l 2与椭圆C 交于P ,Q 两点,且l 1∥l 2,证明:四边形MNPQ 不可能是菱形.【解析】(1)由已知,得c a =12,b =3,又c 2=a 2-b 2,故解得a 2=4,b 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:由(1),知F 1(-1,0),如图, 易知直线MN 不能平行于x 轴,所以令直线MN 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧3x 2+4y 2-12=0x =my -1得(3m 2+4)y 2-6my -9=0,所以y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.此时|MN |=1+m2[y 1+y 22-4y 1y 2].同理,令直线PQ 的方程为x =my +1,P (x 3,y 3),Q (x 4,y 4), 此时y 3+y 4=-6m 3m 2+4,y 3y 4=-93m 2+4,此时|PQ |=1+m2[y 3+y 42-4y 3y 4],故|MN |=|PQ |.所以四边形MNPQ 是平行四边形.若平行四边形MNPQ 是菱形,则OM ⊥ON ,即OM →·ON →=0,于是有x 1x 2+y 1y 2=0. 又x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1, 所以有(m 2+1)y 1y 2-m (y 1+y 2)+1=0, 整理得到-12m 2-53m 2+4=0, 即12m 2+5=0,上述关于m 的方程显然没有实数解, 故四边形MNPQ 不可能是菱形.5.已知动圆C 过定点F 2(1,0),并且内切于定圆F 1:(x +1)2+y 2=12. (1)求动圆圆心C 的轨迹方程;(2)若曲线y 2=4x 上存在两个点M ,N ,(1)中曲线上有两个点P ,Q ,并且M ,N ,F 2三点共线,P ,Q ,F 2三点共线,PQ ⊥MN ,求四边形PMQN 的面积的最小值.【解析】(1)设动圆的半径为r ,则|CF 2|=r ,|CF 1|=23-r ,所以|CF 1|+|CF 2|=23>|F 1F 2|,由椭圆的定义知动圆圆心C 的轨迹是以F 1,F 2为焦点的椭圆,且a =3,c =1,所以b =2,动圆圆心C 的轨迹方程是x 23+y 22=1.(2)当直线MN 的斜率不存在时,直线PQ 的斜率为0,易得|MN |=4,|PQ |=23,四边形PMQN 的面积S =4 3.当直线MN 的斜率存在时,设直线MN 的方程为y =k (x -1)(k ≠0),联立方程得⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,消元得k 2x 2-(2k 2+4)x +k 2=0,设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=4k 2+2,x 1x 2=1,|MN |=1+k2⎝ ⎛⎭⎪⎫4k 2+22-4=4k 2+4.因为PQ ⊥MN ,所以直线PQ 的方程为y =-1k(x -1),由⎩⎪⎨⎪⎧ y =-1k x -1,x 23+y 22=1,得(2k 2+3)x 2-6x +3-6k 2=0. 设P (x 3,y 3),Q (x 4,y 4),则⎩⎪⎨⎪⎧ x 3+x 4=62k 2+3,x 3x 4=3-6k 22k 2+3,|PQ |=1+1k 2⎝ ⎛⎭⎪⎫62k 2+32-4×3-6k 22k 2+3=43k 2+12k 2+3. 则四边形PMQN 的面积S =12|MN ||PQ |=12⎝ ⎛⎭⎪⎫4k 2+443k 2+12k 2+3=83k 2+12k 22k 2+3.令k 2+1=t ,t >1,则S =83t 2t -12t +1=83-1t 2-1t +2=83-⎝ ⎛⎭⎪⎫1t +122+94. 因为t >1,所以0<1t <1,易知-⎝ ⎛⎭⎪⎫1t +122+94的范围是(0,2),所以S >832=4 3. 综上可得S ≥43,S 的最小值为4 3.6.(2019·安庆二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(2,2). (1)求椭圆C 的标准方程;(2)设A 、B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记△ABM ,△ABN 的面积为S 1,S 2,求|S 1-S 2|的最大值.【解析】(1)根据题意可得:c a =22,4a 2+2b 2=1,a 2=b 2+c 2, 解得:a 2=8,b =2.故椭圆C 的标准方程为:x 28+y 24=1. (2)由(1)知F (2,0),当直线l 的斜率不存在时,S 1=S 2,于是|S 1-S 2|=0;当直线l 的斜率存在时,设直线l :y =k (x -2)(k ≠0),设M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =k x -2,x 28+y 24=1,得(1+2k 2)x 2-8k 2x +8k 2-8=0. ∴x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-81+2k2,于是|S 1-S 2|=12×42×|y 1+y 2|=22|k (x 1+x 2)-4k |=22⎪⎪⎪⎪⎪⎪k ×8k 21+2k 2-4k =82|k |1+2k 2=821|k |+2|k |≤8222=4.当且仅当k =±22时等号成立,此时|S 1-S 2|的最大值为4. 综上,|S 1-S 2|的最大值为4.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,右焦点为F ,且该椭圆过点⎝⎛⎭⎪⎫1,-32. (1)求椭圆C 的方程;(2)当动直线l 与椭圆C 相切于点A ,且与直线x =433相交于点B 时,求证:△FAB 为直角三角形. 【解析】(1)由题意得c a =32,1a 2+34b 2=1,又a 2=b 2+c 2,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)由题意可得直线l 的斜率存在,设l :y =kx +m ,联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0, 判别式Δ=64k 2m 2-16(4k 2+1)(m 2-1)=0,得m 2=4k 2+1>0.设A (x 1,y 1),则x 1=-8km 24k 2+1=-8km 2m 2=-4k m ,y 1=kx 1+m =-4k 2m +m =1m ,即A ⎝ ⎛⎭⎪⎫-4k m ,1m . 易得B ⎝ ⎛⎭⎪⎫433,433k +m ,F (3,0), 则FA →=⎝ ⎛⎭⎪⎫-4k m -3,1m ,FB →=⎝ ⎛⎭⎪⎫33,433k +m , FA →·FB →=33⎝ ⎛⎭⎪⎫-4k m -3+1m ⎝ ⎛⎭⎪⎫433k +m =-43k 3m -1+43k 3m +1=0, 所以FA →⊥FB →,即△FAB 为直角三角形,得证.8.(2019·朝阳区模拟)过椭圆W :x 22+y 2=1的左焦点F 1作直线l 1交椭圆于A ,B 两点,其中A (0,1),另一条过F 1的直线l 2交椭圆于C ,D 两点(不与A ,B 重合),且D 点不与点(0,-1)重合.过F 1作x 轴的垂线分别交直线AD ,BC 于E ,G .(1)求B 点坐标和直线l 1的方程;(2)求证:|EF 1|=|F 1G |.【解析】(1)由题意可得直线l 1的方程为y =x +1.与椭圆方程联立,由⎩⎪⎨⎪⎧ y =x +1x 22+y 2=1可求B ⎝ ⎛⎭⎪⎫-43,-13. (2)证明:当l 2与x 轴垂直时,C ,D 两点与E ,G 两点重合,由椭圆的对称性,|EF 1|=|F 1G |. 当l 2不与x 轴垂直时,设C (x 1,y 1),D (x 2,y 2),l 2的方程为y =k (x +1)(k ≠1).由⎩⎪⎨⎪⎧ y =k x +1x 22+y 2=1消去y ,整理得(2k 2+1)x 2+4k 2x +2k 2-2=0. 则x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1. 由已知,x 2≠0,则直线AD 的方程为y -1=y 2-1x 2x ,令x =-1, 得点E 的纵坐标y E =x 2-y 2+1x 2. 把y 2=k (x 2+1)代入得y E =x 2+11-k x 2. 由已知,x 1≠-43, 则直线BC 的方程为y +13=y 1+13x 1+43⎝ ⎛⎭⎪⎫x +43, 令x =-1,得点G 的纵坐标y G =y 1-x 1-13⎝ ⎛⎭⎪⎫x 1+43.把y 1=k (x 1+1)代入得y G =x 1+1k -13x 1+4. y E +y G =x 2+11-k x 2+x 1+1k -13x 1+4 =1-k [x 2+13x 1+4-x 2x 1+1]x 2·3x 1+4 =1-k [2x 1x 2+3x 1+x 2+4]x 2·3x 1+4把x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1代入到2x 1x 2+3(x 1+x 2)+4中, 2x 1x 2+3(x 1+x 2)+4=2×2k 2-22k 2+1+3×⎝ ⎛⎭⎪⎫-4k 22k 2+1+4=0. 即y E +y G =0, 即|EF 1|=|F 1G |.。
(高中段)大题考法第二课时题点突破圆锥曲线中的最值、范围、证明问题

题型二 范围问题 [典例] (2018·浙江高考)如图,已知点 P 是 y 轴左侧(不 含 y 轴)一点,抛物线 C:y2=4x 上存在不同的两点 A,B 满 足 PA,PB 的中点均在 C 上. (1)设 AB 中点为 M,证明:PM 垂直于 y 轴; (2)若 P 是半椭圆 x2+y42=1(x<0)上的动点,求△PAB 面 积的取值范围.
所以△PAB 面积的取值范围是6 2,15围问题的 5 种常用解法
(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值 范围.
(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个 参数之间的等量关系.
(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围. (5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域, 从而确定参数的取值范围.
(2)设直线 MN 的方程为 y=kx+12(k<0),M(x1,y1),N(x2,y2).
联立y=kx+12, y2=x,
消去 x 可得 ky2-y+12=0,
则y1+y2=1k, y1y2=21k.
易知 P(1,1),A(x1,x1),Bx1,xy21, 则 S1=12(y1-x1)(1-x1),S2=12x1-xy21x1,
因此SS21=y1-x1x-1xy121-x1x1=y1-y21y-12yy1122-y21y21,
因为y1y+1y2y2=2,则 y2=2y1y-1 1,
yy122=
y12 y1
=y1(2y1-1),
2y1-1
由此可得SS21=1-y12y21=y112-1 1,
因为 y1∈0,12,
2021年高考数学二轮复习课时跟踪检测 15圆锥曲线中的定点定值存在性问题大题练 理数(含答案解析)

参考答案
A 卷——大题保分练
a 1.解:(1)由题意得,c= 3, =2,a2=b2+c2,
b
∴a=2,b=1,
x2 ∴椭圆 C 的标准方程为 +y2=1.
4
(2)证明:当直线 l 的斜率存在时,设直线 l 的方程为 y=kx+m(m≠1),M(x1,y1),N(x2,
1 4.已知椭圆 C 的中心在原点,离心率等于 ,它的一个短轴端点恰好是抛物线 x2=8 3y 的
2 焦点. (1)求椭圆 C 的方程; (2)如图,已知 P(2,3),Q(2,-3)是椭圆上的两点,A,B 是椭圆上位于直线 PQ 两侧的动 点.
1 ①若直线 AB 的斜率为 ,求四边形 APBQ 面积的最大值;
2.设抛物线 C:y2=4x 的焦点为 F,过 F 且斜率为 k(k>0)的直线 l 与 C 交于 A,B 两点, |AB|=8. (1)求 l 的方程; (2)求过点 A,B 且与 C 的准线相切的圆的方程.
x2 y2 3.如图,椭圆 C: + =1(a>b>0)的左顶点与上顶点分别为 A,B,右焦点为 F,点 P 在椭
a2 b2 圆 C 上,且 PF⊥x 轴,若 AB∥OP,且|AB|=2 3. (1)求椭圆 C 的方程; (2)已知 Q 是 C 上不同于长轴端点的任意一点,在 x 轴上是否存在一点 D,使得直线 QA 与
1 QD 的斜率乘积恒为- ,若存在,求出点 D 的坐标,若不存在,说明理由.
2
( ) x2 y2
1)2=0,
4m2-4
-8km
∴(k2+1)
+k(m-1)
高考数学第一轮复习:《圆锥曲线中的最值、范围、证明专题》

高考数学第一轮复习:《圆锥曲线中的最值、范围、证明专题》圆锥曲线中的最值、范围问题是高考中的热点问题,常涉及不等式恒成立,求函数的值域问题,综合性比较强,题型可以是选择题、填空题和解答题的形式出现,而证明题多出现在解答题中,难度较大,分值为13分左右,常作为压轴题出现.建立目标函数求最值已知椭圆x 24+y 22=1上的两个动点P ,Q ,设P (x 1,y 1),Q (x 2,y 2)且x 1+x 2=2.(1)求证:线段PQ 的垂直平分线经过一个定点A ;(2)设点A 关于原点O 的对称点是B ,求|PB |的最小值及相应的P 点坐标. (1)证明:∵P (x 1,y 1),Q (x 2,y 2),且x 1+x 2=2.当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4x 22+2y 22=4得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2. 设线段PQ 的中点N (1,n ), ∴k PQ =y 1-y 2x 1-x 2=-12n ,∴线段PQ 的垂直平分线方程为y -n =2n (x -1), ∴(2x -1)n -y =0,该直线恒过一个定点A ⎝ ⎛⎭⎪⎫12,0.当x 1=x 2时,线段PQ 的中垂线也过定点A ⎝ ⎛⎭⎪⎫12,0.综上,线段PQ 的垂直平分线恒过定点A ⎝ ⎛⎭⎪⎫12,0.(2)解:由于点B 与点A 关于原点O 对称, 故点B ⎝ ⎛⎭⎪⎫-12,0.∵-2≤x 1≤2,-2≤x 2≤2,∴x 1=2-x 2∈[0,2], |PB |2=⎝ ⎛⎭⎪⎫x 1+122+y 21=12(x 1+1)2+74≥94, ∴当点P 的坐标为(0,±2)时,|PB |min =32.【反思归纳】 (1)本题是圆锥曲线中的综合问题,涉及到了定点问题以及最值问题.求圆锥曲线的最值问题是高考考查的一个重要问题,通常是先建立一个目标函数,然后利用函数的单调性、函数的图象、函数的有界性或基本不等式等求最值,本题是建立二次函数、利用二次函数的图象求最值.(2)本题的第一个易错点是,表达不出线段PQ 的中垂线方程,原因是想不到引入参数表示PQ 的中点.第二个易错点是,易忽视P 点坐标的取值范围.实质上是忽视了椭圆的范围.【即时训练】 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫-3,12,椭圆E 的一个焦点为(3,0).(1)求椭圆E 的方程;(2)若直线过点M (0,2)且与椭圆E 交于A ,B 两点,求|AB |的最大值. 解析:(1)依题意,设椭圆E 的左、右焦点分别为F 1(-3,0),F 2(3,0). 则|PF 1|+|PF 2|=4=2a ,∴a =2,c =3,∴b 2=1, ∴椭圆E 的方程为x 24+y 2=1.(2)当直线的斜率存在时是,设l :y =kx +2,A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =kx +2x 24+y 2=1得(1+4k 2)x 2+82kx +4=0.由Δ>0得4k 2>1.由x 1+x 2=-82k 1+4k 2,x 1x 2=41+4k 2得|AB |=1+k2(x 1+x 2)2-4x 1x 2=2-6⎝ ⎛⎭⎪⎫11+4k 22+11+4k 2+1. 设t =11+4k2,则0<t <12,∴|AB |=2-6t 2+t +1=2-6⎝ ⎛⎭⎪⎫t -1122+2524≤566. 当直线的斜率不存在时是,|AB |=2<566, ∴|AB |的最大值为566.利用基本不等式求最值已知中心在原点O ,一个焦点为F (3,0)的椭圆被直线y =x -1截得的弦的中点的横坐标为45.(1)求此椭圆的方程;(2)设直线l :y =kx +m (k ≠0,m >0)与椭圆交于P ,Q 两点,且以PQ 为对角线的菱形的一个顶点为M (-1,0),求△OPQ 面积的最大值及此时直线的方程.解析:(1)设所求椭圆方程为x 2a 2+y 2b 2=1,由题意知c 2=a 2-b 2=3,① 设直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点为E ,由⎩⎪⎨⎪⎧x 21a 2+y 21b2=1x 22a 2+y 22b 2=1,两式相减得:x 21-x 22a 2+y 21-y 22b 2=0,两边同除以x 21-x 22,得b 2a 2+(y 1+y 2)(y 1-y 2)(x 1+x 2)(x 1-x 2)=0,即b 2a 2+k OE ·k AB =0.因为椭圆被直线y =x -1截得的弦的中点E 的横坐标为45,所以E ⎝ ⎛⎭⎪⎫45,-15,所以k OE =-14,k AB =1,所以b 2a 2-14=0,即a 2=4b 2,②由①②可得a 2=4,b 2=1, 所以所求椭圆的方程为x 24+y 2=1.(2)设P (x 1,y 1),Q (x 2,y 2),PQ 的中点为N (x 0,y 0),联立⎩⎨⎧y =kx +m x 24+y 2=1,消y 可得:(1+4k 2)x 2+8kmx +4m 2-4=0,此时Δ=16(4k 2+1-m 2)>0,即4k 2+1>m 2① 又x 0=x 1+x 22=-4km 1+4k 2,y 0=y 1+y 22=m1+4k 2, PQ 为对角线的菱形的一顶点为M (-1,0),由题意可知MN ⊥PQ ,即y 0-0x 0-(-1)=-1k ,整理可得:3km =1+4k 2 ②由①②可得k 2>15,m >0,∴k >0,∴k >55,设O 到直线的距离为d ,则S△OPQ=12d ·|PQ |=12·m 1+k21+k 216(4k 2+1-m 2)1+4k2=2(4k 2+1)(5k 2-1)9k 2=2920+1k 2-1k 4,当1k 2=12时,△OPQ 的面积取最大值1,此时k =2,m =322, ∴直线方程为y =2x +322.【反思归纳】 (1)基本不等式是几个正数和与积的转化的依据,不但可直接解决和与积的不等问题,而且通过结合不等式性质、函数单调性等还可解决其他形式的不等式.如:和与平方和、和与倒数和、和与根式和、和与两数之积的和等.(2)分析问题中的数量关系,引入未知数,并用它表示其他的变量,把要求最值的变量设为函数.(3)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.【即时训练】 过抛物线x 2=2y 上两点A 、B 分别作切线,若两条切线互相垂直,则线段AB 的中点到抛物线准线的距离的最小值为( )(A)12 (B)1 (C)32(D)2解:抛物线的方程即:y =x 22,则y ′=x ,设A (x 1,y 1),B (x 2,y 2), 则过A ,B 两点切线的斜率为:k 1=x 1,k 2=x 2,由题意可得:x 1x 2=-1, 由题意可知抛物线的直线方程为x =-12, 则线段AB 的中点到抛物线准线的距离为: y 1+y 22+12=14(x 21+x 22+2)≥14(2|x 1x 2|+2)=1, 当且仅当x 1=-x 2=1时等号成立.据此可得线段AB 的中点到抛物线准线的距离的最小值为1. 故选B.利用判别式构造不等关系求范围已知A ,B ,C 是椭圆M :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC →·BC→=0,|BC →|=2|AC →|.(1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP→|=|DQ →|,求实数t 的取值范围.解:(1)因为|BC→|=2|AC →|且BC 过(0,0),则|OC |=|AC |.因为AC →·BC →=0,所以∠OCA =90°, 即C (3,3). 又因为a =23,设椭圆的方程为x 212+y 212-c 2=1,将C 点坐标代入得312+312-c2=1,解得c 2=8,b 2=4. 所以椭圆的方程为x 212+y 24=1.(2)由条件D (0,-2),当k =0时,显然-2<t <2;当k ≠0时,设l :y =kx +t ,⎩⎨⎧x 212+y 24=1,y =kx +t ,消得(1+3k 2)x 2+6ktx +3t 2-12=0由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0),则x 0=x 1+x 22=-3kt 1+3k 2,y 0=kx 0+t =t1+3k 2, 所以H -3kt 1+3k 2,t 1+3k 2,由|DP →|=|DQ →|,所以DH ⊥PQ ,即k DH=-1k .所以t1+3k 2+2-3kt 1+3k 2-0=-1k , 化简得t =1+3k 2,②所以t>1,将①代入②得,1<t<4.所以t的范围是(1,4),综合t∈(1,2).【反思归纳】解决圆锥曲线中的取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等式关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其变量的函数,求其他值域,从而确定参数的取值范围.【即时训练】已知两点F1(-1,0)及F2(1,0),点P在以F1,F2为焦点的椭圆C上,且|PF1|,|F1F2|,|PF2|构成等差数列.(1)求椭圆C的方程;(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.解析:(1)依题意,设椭圆C的方程为x2a2+y2b2=1.∵|PF1|,|F1F2|,|PF2|构成等差数列,∴2a=|PF1|+|PF2|=2|F1F2|=4,a=2.又∵c=1,∴b2=3.∴椭圆C的方程为x24+y23=1.(2)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2-12=0.由直线l与椭圆C仅有一个公共点知,Δ=64k2m2-4(4k2+3)(4m2-12)=0,化简得:m2=4k2+3,设d1=|F1M|=|-k+m|k2+1,d2=|F2M|=|k+m|k2+1,当k≠0时,设直线l的倾斜角为θ,则|d1-d2|=|MN|·|tan θ|,∴|MN|=|d1-d2k|,S=12|d1-d2k|(d1+d2)=|d21-d222k|=2|m|k2+1=2|m|m2-34+1=8|m|+1|m|,∵m2=4k2+3,∴当k≠0时,|m|>3,|m|+1|m|>3+13=433,S<2 3.当k=0时,四边形F1MNF2是矩形,S=2 3.所以四边形F1MNF2面积S的最大值为2 3.利用直接法进行证明已知椭圆C:x2a2+y2b2=1(a>b>0)经过点A⎝⎛⎭⎪⎫12,354,且两个焦点F1,F2的坐标依次为(-1,0)和(1,0).(1)求椭圆C 的标准方程;(2)设E ,F 是椭圆C 上的两个动点,O 为坐标原点,直线OE 的斜率为k 1,直线OF 的斜率为k 2,若k 1·k 2=-1,证明:直线EF 与以原点为圆心的定圆相切,并写出此定圆的标准方程.解析:(Ⅰ)由椭圆定义得2a =⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫354-12+⎝ ⎛⎭⎪⎫12-12+⎝ ⎛⎭⎪⎫354-02=4, 即a =2,又c =1,所以b 2=3,得椭圆C 的标准方程为x 24+y 23=1 (Ⅱ)设直线EF 的方程为y =kx +b ,E (x 1,y 1),F (x 2,y 2),直线EF 的方程与椭圆方程联立,消去y 得(3+4k 2)x 2+8kbx +4b 2-12=0, 当判别式Δ=3+4k 2-b 2>0时,得x 1+x 2=-8kb3+4k 2,x 1x 2=4b 2-123+4k 2设k 1·k 2=m ,因为点E ,F 在直线y =kx +b 上,得(kx 1+b )(kx 2+b )=mx 1x 2, 整理得(k 2-m )x 1x 2+bk (x 1+x 2)+b 2=0,即(k 2-m )4b 2-123+4k 2+bk ⎝ ⎛⎭⎪⎫-8kb 3+4k 2+b 2=0,化简得b 2=12k 2-12m 3-4m原点O 到直线EF 的距离d =|b |1+k 2,d 2=b 21+k 2=12k 2-12m(3-4m )k 2+3-4m , 由已知有d 是定值,所以有13-4m =-m 3-4m,解得m =-1即当k 1·k 2=-1时,直线EF 与以原点为圆心的定圆相切,此时d =127,定圆的标准方程为x 2+y 2=127. 【反思归纳】 圆锥曲线中的证明问题多涉及证明定值、点在定直线上等,有时也涉及一些否定性命题,证明方法一般是采用直接法或反证法.【即时训练】 已知抛物线W :x 2=y ,曲线l :y =k |x |-2(k >0)与抛物线W 相交于A 、B 、C 、D 四点,AB ∥CD ,|AB |<|CD |,AD 在y 轴右侧.(1)求k 的取值范围;(2)证明:直线AC 与BD 相交于点E ,并求出定点E 的坐标. 解:(1)由题意,设A (x 1,y 1),D (x 2,y 2),结合图形由对称知,直线AD :y =kx -2(k >0)与抛物线W 有两个交点A 、D 由⎩⎪⎨⎪⎧y =kx -2y =x 2得x 2-kx +2=0所以Δ=k 2-8>0,k >22,(2)由对称知可设该定点为E (0,t ),由韦达定理得:x 1+x 2=k ,x 1x 2=2, 因为直线AC 与BD 相交于E (0,t ),所以k EA =k EC , 又因为k ED =-k EC ,所以k EA +k ED =0 所以k EA +k ED =y 1-t x 1+y 2-tx 2=kx 1-(2+t )x 1+kx 2-(2+t )x 2=2k -(2+t )(x 1+x 2x 1x 2)=0所以2k -(2+t )k2=0,t =2所以定点E (0,2).课时作业1.设椭圆M :y 2a 2+x 2b 2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且内切于圆x 2+y 2=4.(1)求椭圆M 的方程;(2)若直线y =2x +m 交椭圆于A ,B 两点,且P (1,2)为椭圆上一点,求△P AB 的面积的最大值.解:(1)由双曲线的离心率为2,得椭圆的离心率e =c a =22. 易知圆x 2+y 2=4的直径为4,所以2a =4.由⎩⎪⎨⎪⎧ 2a =4,c a =22,b 2=a 2-c2得⎩⎪⎨⎪⎧a =2,c =2,b =2,故椭圆M 的方程为y 24+x 22=1. (2)设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =2x +m ,x 22+y 24=1,得4x 2+22mx +m 2-4=0.由Δ=(22m )2-16(m 2-4)>0,得-22<m <2 2. ∵x 1+x 2=-22m ,x 1x 2=m 2-44, ∴|AB |=1+2·|x 1-x 2|=3·(x 1+x 2)2-4x 1x 2=3·12m 2-m 2+4=3·4-m 22. 又点P 到直线AB 的距离d =|m |3,则S△P AB=12|AB |d =12×3×4-m 22·|m |3=124m 2-m 42=122m 2(8-m 2)≤122·m 2+(8-m 2)2=2,当且仅当m =±2∈(-22,22)时取等号.故△P AB 的面积的最大值为 2.2.已知圆G :x 2+y 2-2x -2y =0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 及上顶点B .过椭圆外一点M (m,0)(m >a )作倾斜角5π6的直线l 交椭圆于C ,D 两点.(1)求椭圆的方程;(2)若右焦点F 在以线段CD 为直径的圆E 的内部,求m 的取值范围. 解:(1)∵圆G :x 2+y 2-2x -2y =0经过点F ,B , ∴F (2,0),B (0,2),∴c =2,b =2, ∴a 2=b 2+c 2=6,∴椭圆的方程为x 26+y 22=1.(2)由题意知直线l 的方程为y =-33(x -m ),m >6, 由⎩⎪⎨⎪⎧x 26+y 22=1,y =-33(x -m ),消去y ,得2x 2-2mx +(m 2-6)=0.由Δ=4m 2-8(m 2-6)>0,解得-23<m <2 3. ∵m >6,∴6<m <2 3.设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=m ,x 1x 2=m 2-62, ∴y 1y 2=⎣⎢⎡⎦⎥⎤-33(x 1-m )·⎣⎢⎡⎦⎥⎤-33(x 2-m )=13x 1x 2-m 3(x 1+x 2)+m 23. ∵FC →=(x 1-2,y 1),FD →=(x 2-2,y 2),∴FC →·FD →=(x 1-2)(x 2-2)+y 1y 2=43x 1x 2-m +63(x 1+x 2)+m 23+4=2m (m -3)3.∵点F 在圆E 的内部,∴FC →·FD →<0,即2m (m -3)3<0, 解得0<m <3.又∵6<m <23,∴6<m <3. 故m 的取值范围是(6,3).3.椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1(-1,0)、F 2(1,0),过F 1作与x 轴不重合的直线l 交椭圆于A 、B 两点.(1)若△ABF 2为正三角形,求椭圆的离心率;(2)若椭圆的离心率满足0<e <5-12,O 为坐标原点,求证:|OA |2+|OB |2<|AB 2|. (1)解:由椭圆的定义知|AF 1|+|AF 2|=|BF 1|+|BF 2|,∵|AF 2|=|BF 2|,∴|AF 1|=|BF 1|,即F 1F 2为边AB 上的中线,∴F 1F 1⊥AB .在Rt △AF 1F 2中,cos 30°=2c 4a 3,则c a =33,∴椭圆的离心率为33.(2)证明:设A (x 1,y 1),B (x 2,y 2),∵0<e <5-12,c =1,∴a >1+52.①当直线AB 与x 轴垂直时,1a 2+y 2b 2=1,y 2=b 4a 2,OA →·OB →=x 1x 2+y 1y 2=1-b 4a 2=-a 4+3a 2-1a 2=-⎝ ⎛⎭⎪⎫a 2-322+54a 2,∵a 2>3+52,∴OA →·OB →<0,∴∠AOB 恒为钝角,∴|OA |2+|OB |2<|AB |2. ②当直线AB 不与x 轴垂直时,设直线AB 的方程为:y =k (x +1),代入x 2a 2+y 2b 2=1,整理得,(b 2+a 2k 2)x 2+2k 2a 2x +a 2k 2-a 2b 2=0,∴x 1+x 2=-2a 2k 2b 2+a 2k 2,x 1x 2=a 2k 2-a 2b 2b 2+a 2k 2,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+k 2(x 1+1)(x 2+1)=x 1x 2(1+k 2)+k 2(x 1+x 2)+k 2=(a 2k 2-a 2b 2)(1+k 2)-2a 2k 4+k 2(b 2+a 2k 2)b 2+a 2k 2=k 2(a 2+b 2-a 2b 2)-a 2b 2b 2+a 2k 2=k 2(-a 4+3a 2-1)-a 2b 2b 2+a 2k2令m (a )=-a 4+3a 2-1,由①可知m (a )<0,∴∠AOB 恒为钝角,∴恒有|OA |2+|OB |2<|AB |2. 4.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,F 1,F 2分别为左、右焦点,过F 1的直线交椭圆C 于P ,Q 两点,且△PQF 2的周长为8.(1)求椭圆C 的方程;(2)设过点M (3,0)的直线交椭圆C 于不同两点A ,B ,N 为椭圆上一点,且满足OA →+OB →=tON→(O 为坐标原点),当|AB |<3时,求实数t 的取值范围. 解析:(1)∵e 2=c2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又∵4a =8,∴a =2,∴b 2=1, ∴椭圆C 的方程是x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),N (x ,y ),AB 的方程为y =k (x -3),由⎩⎨⎧y =k (x -3)x 24+y 2=1,整理得(1+4k 2)x 2-24k 2x +36k 2-4=0.由△=242k 4-16(9k 2-1)(1+4k 2)>0,得k 2<15. ∵x 1+x 2=24k 21+4k 2,x 1·x 2=36k 2-41+4k 2,∴OA →+OB →=(x 1+x 2,y 1+y 2)=t (x ,y ),则x =1t (x 1+x 2)=24k 2t (1+4k 2), y =1t (y 1+y 2)=1t [k (x 1+x 2)·6k ]=-6k t (1+4k 2). 由点N 在椭圆上,得(24k 2)2t 2(1+4k 2)2+144k 2t 2(1+4k 2)2=4, 化简得36k 2=t 2(1+4k 2).① 又由|AB |=1+k 2|x 1-x 2|<3,即(1+k 2)[(x 1+x 2)2-4x 1x 2]<3,将x 1+x 2,x 1x 2代入得(1+k 2)⎣⎢⎢⎡⎦⎥⎥⎤242k 4(1+4k 2)2-4(36k 2-4)1+4k 2<3, 化简,得(8k 2-1)(16k 2+13)>0,则8k 2-1>0,k 2>18,∴18<k 2<15.②由①,得k2=t236-4t2,联立②,解得3<t2<4.∴-2<t<-3或3<t<2,即t∈(-2,-3)∪(3,2).。
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题
新高考方案二轮-数学(新高考版)大题专攻(二) 第1课时 圆锥曲线中的最值、范围、证明问题

(2)已知 O 为坐标原点,M,N 为椭圆上不重合两点,且 M,N 的中点 H
落在直线 y=12x 上,求△MNO 面积的最大值.
[解题微“点”]
(1)利用―A→G ·―B→G =0 及 e= 23构建方程组求 a,b, 即得椭圆方程; 切入点 (2)设出点 M,N 与 H 的坐标,表示出直线 MN 的方 程,与椭圆联立,利用弦长公式和点到直线的距离 公式表示△MNO 的面积后求最大值 障碍点 不要漏掉 Δ>0,利用此条件可求参数的取值范围
解:(1)依题意,2c=6,则 b= 9-5=2,
则双曲线 C:x52-y42=1,B1(0,-2),F2(3,0).
设直线 l:4x+3y+m=0,将 B1(0,-2)代入解得 m=6,
此时 l:4x+3y+6=0,F2 到 l 的距离为 d=158.
(2)设双曲线上的点 P(x,y)满足―PB→1 ·―PB→2 =-2, 即 x2+y2=b2-2,又xa22-by22=1⇒y2=ba22x2-b2,
[对点训练] (2021·济南三模)已知抛物线C:x2=4y,过点P(1,-2)作斜率为k(k>0)的直线l1与 抛物线C相交于A,B两点. (1)求k的取值范围; (2)过P点且斜率为-k的直线l2与抛物线C相交于M,N两点,求证:直线AM、BN 及y轴围成等腰三角形.
解:(1)由题意设直线 l1 的方程为 y+2=k(x-1), 由xy+2=24=y,kx-1, 得到:x2-4kx+4k+8=0, 由题意知 Δ>0,所以 k2-k-2>0,即 k<-1 或 k>2. 因为 k>0,所以 k 的取值范围为(2,+∞).
[提分技巧] 解决范围问题的常用方法
利用待求量的几何意义,确定出极端位置后,利 数形结合法
2021高考文科数学一轮复习:圆锥曲线中的范围、最值问题课时跟踪检测

第2课时 圆锥曲线中的范围、最值问题A 级·基础过关|固根基|1.抛物线y =x 2上的点到直线x -y -2=0的最短距离为( ) A. 2 B.728 C .2 2D.526解析:选 B 设抛物线上一点的坐标为(x ,y ),则d =|x -y -2|2=|-x 2+x -2|2=⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫x -122-742,∴当x =12时,d min =728.2.过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A ,B 两点,且|AB |=4,这样的直线可以作2条,则p 的取值范围是( )A .(0,4)B .(0,4]C .(0,2]D .(0,2)解析:选D 过抛物线y 2=2px (p >0)焦点的弦中最短的为通径,且通径长为2p ,由已知得2p <4,所以p <2.又p >0,所以0<p <2.故选D.3.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( )A .2B .3C .6D .8解析:选C 由题意得,F (-1,0),设点P (x 0,y 0),则y 20=3⎝ ⎛⎭⎪⎫1-x 204(-2≤x 0≤2). 则OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=14(x 0+2)2+2. 因为-2≤x 0≤2,所以当x 0=2时,OP →·FP →取得最大值,最大值为6,故选C.4.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为左焦点F ,若14<k <23,则椭圆离心率的取值范围为( )A.⎣⎢⎡⎦⎥⎤13,34B.⎝ ⎛⎭⎪⎫13,34C.⎝ ⎛⎭⎪⎫0,34 D.⎝ ⎛⎭⎪⎫13,1 解析:选B 由题意知,B ⎝⎛⎭⎪⎫-c ,-b 2a , 所以k =b 2ac +a =a -c a =1-e .又14<k <23,所以14<1-e <23,解得13<e <34.5.已知点P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( )A .1B .2+155C .4+155D .22+1解析:选D 设F 2是双曲线C 的右焦点,因为|PF 1|-|PF 2|=22,所以|PF 1|+|PQ |=22+|PF 2|+|PQ |,显然当F 2,P ,Q 三点共线且P 在F 2,Q 之间时,|PF 2|+|PQ |最小,且最小值为F 2到l 的距离.易知l 的方程为y =x2或y =-x2,F 2(3,0),则F 2到l 的距离为d =|3±0|3=1,故|PF 1|+|PQ |的最小值为22+1.故选D.6.已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→<0,则x 0的取值范围是________.解析:由题意可知,F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(x 0+3)(x 0-3)+y 20=x 20+y 2-3<0.因为点P 在椭圆上,所以y 20=1-x 204.所以x 20+⎝ ⎛⎭⎪⎫1-x 204-3<0,解得-263<x 0<263,即x 0的取值范围是⎝ ⎛⎭⎪⎫-263,263.答案:⎝ ⎛⎭⎪⎫-263,2637.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,则此双曲线离心率的取值范围为________.解析:由过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,可得b a<2,∴e =c a =a 2+b 2a 2<1+4= 5. ∵e >1,∴1<e <5,∴此双曲线离心率的取值范围为(1,5). 答案:(1,5)8.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点的坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是________.解析:∵PM →·AM →=0,∴AM →⊥PM →, ∴|PM →|2=|AP →|2-|AM →|2=|AP →|2-1. ∵椭圆右顶点到右焦点A 的距离最小, 故|AP →|min =2,∴|PM →|min = 3. 答案: 39.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值.解:(1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =2 2.解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1得4x 2+6mx +3m 2-3=0. 所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.|AB |=(x 2-x 1)2+(y 2-y 1)2=2[(x 1+x 2)2-4x 1x 2] =12-3m22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6.10.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在抛物线C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.解:(1)证明:设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上,即x 0+14y 212,y 0+y 12在y 2=4x 上,所以有⎝ ⎛⎭⎪⎫y 0+y 122=4×x 0+14y 212,同理⎝ ⎛⎭⎪⎫y 0+y 222=4×x 0+14y 222.所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4×14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 因此,PM 垂直于y 轴.(2)由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0). 因此,△PAB 的面积为S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 2+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.B 级·素养提升|练能力|11.已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足 AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.解析:设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2(y 2-1),即x 1=-2x 2,y 1=3-2y 2. 因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+(3-2y 2)2=m ,x 224+y 22=m ,得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大. 答案:5 12.如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .则直线AP 斜率的取值范围为________,|PA |·|PQ |的最大值为________.解析:设直线AP 的斜率为k ,则k =x 2-14x +12=x -12.因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1). 因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3,k ∈(-1,1). 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减, 因此,当k =12时,|PA |·|PQ |取得最大值2716.答案:(-1,1)271613.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.解:(1)由题知e =c a =32,2b =2, 又a 2=b 2+c 2,∴b =1,a =2, ∴椭圆C 的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1, ① ∴x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2.∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54, ②由①②得0≤m 2<65,120<k 2≤54.∵原点O 到直线l 的距离d =|m |1+k2,∴d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2). 又120<k 2≤54,∴0≤d 2<87,∴原点O 到直线l 的距离的取值范围是⎣⎢⎡⎭⎪⎫0,2147. 14.(2020届安徽省示范高中名校高三联考)已知抛物线E :y 2=2px (p >0),过其焦点F 的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,满足y 1y 2=-4.(1)求抛物线E 的方程;(2)已知点C 的坐标为(-2,0),记直线CA ,CB 的斜率分别为k 1,k 2,求1k 21+1k 22的最小值.解:(1)因为直线AB 过焦点,所以设直线AB 的方程为x =my +p2,代入抛物线方程得y2-2pmy -p 2=0,则y 1y 2=-p 2=-4,解得p =2,所以抛物线E 的方程为y 2=4x .(2)由(1)知抛物线的焦点坐标为F (1,0),则直线AB 的方程为x =my +1,代入抛物线的方程有y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,则k 1=y 1x 1+2=y 1my 1+3, k 2=y 2x 2+2=y 2my 2+3,所以1k 1=m +3y 1,1k 2=m +3y 2,因此1k 21+1k 22=⎝ ⎛⎭⎪⎫m +3y 12+⎝ ⎛⎭⎪⎫m +3y 22=2m 2+6m ⎝⎛⎭⎪⎫1y 1+1y 2+9⎝⎛⎭⎪⎫1y 21+1y22=2m 2+6m ·y 1+y 2y 1y 2+9·(y 1+y 2)2-2y 1y 2y 21y 22=2m 2+6m ·4m -4+9·(4m )2+816=5m 2+92,所以当m =0时,1k 21+1k 22有最小值为92.。
圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(十五)大题考法——圆锥曲线中的最值、范围、证明问题1.设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点为A ,B ,C是椭圆上关于原点对称的两点(B ,C 均不在x 轴上),线段AC 的中点为D ,且B ,F ,D 三点共线.(1)求椭圆E 的离心率;(2)设F (1,0),过F 的直线l 交E 于M ,N 两点,直线MA ,NA 分别与直线x =9交于P ,Q 两点.证明:以P Q 为直径的圆过点F .解:(1)法一:由已知A (a,0),F (c,0),设B (x 0,y 0),C (-x 0,-y 0),则D ⎝ ⎛⎭⎪⎫a -x 02,-y 02,∵B ,F ,D 三点共线,∴BF ―→∥BD ―→,又BF ―→=(c -x 0,-y 0),BD ―→=⎝ ⎛⎭⎪⎫a -3x 02,-3y 02,∴-32y 0(c -x 0)=-y 0·a -3x 02,∴a =3c ,从而e =13.法二:连接OD ,AB (图略),由题意知,OD 是△CAB 的中位线,∴OD 綊12AB ,∴△OFD ∽△AFB .∴OF AF =OD AB =12,即c a -c =12, 解得a =3c ,从而e =13.(2)证明:∵F 的坐标为(1,0), ∴c =1,从而a =3,∴b 2=8. ∴椭圆E 的方程为x 29+y 28=1.设直线l 的方程为x =ny +1,由⎩⎪⎨⎪⎧x =ny +1,x 29+y 28=1消去x 得,(8n 2+9)y 2+16ny -64=0, ∴y 1+y 2=-16n8n 2+9,y 1y 2=-648n 2+9,其中M (ny 1+1,y 1),N (ny 2+1,y 2). ∴直线AM 的方程为yy 1=x -3ny 1-2,∴P ⎝ ⎛⎭⎪⎫9,6y 1ny 1-2,同理Q ⎝ ⎛⎭⎪⎫9,6y 2ny 2-2,从而FP ―→·F Q ―→=⎝ ⎛⎭⎪⎫8,6y 1ny 1-2·⎝ ⎛⎭⎪⎫8,6y 2ny 2-2=64+36y 1y 2n 2y 1y 2-2n (y 1+y 2)+4=64+36×(-64)8n 2+9-64n 28n 2+9+32n 28n 2+9+4=64+36×(-64)36=0.∴FP ⊥F Q ,即以P Q 为直径的圆恒过点F .2.(2017·浙江高考)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|P Q |的最大值. 解:(1)设直线AP 的斜率为k , k =x 2-14x +12=x -12,因为-12<x <32,所以-1<x -12<1,即直线AP 斜率的取值范围是(-1,1). (2)设直线AP 的斜率为k.则直线AP 的方程为y -14=k ⎝⎛⎭⎫x +12, 即kx -y +12k +14=0,因为直线B Q 与直线AP 垂直,所以直线B Q 的方程为x +ky -94k -32=0,联立⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +32(k 2+1).因为|PA |=1+k 2⎝⎛⎭⎫x +12= 1+k 2(k +1),|P Q |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|PA |·|P Q |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2, 令f ′(k )=0,得k =12或k =-1(舍去),所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减, 因此当k =12时,|PA |·|P Q |取得最大值2716.3.(2018·浙江重点中学12月高三期末热身联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,且椭圆过点⎝⎛⎭⎫3,12. (1)求椭圆C 的方程;(2)若椭圆上有相异的两点A ,B .A ,O ,B 三点不共线,O 为坐标原点,且直线AB ,OA ,OB 的斜率满足k 2AB =k OA ·k OB (k AB >0). (ⅰ)求证:|OA |2+|OB |2为定值;(ⅱ)设△AOB 的面积为S ,当S 取得最大值时,求直线AB 的方程. 解:(1)由题意可知,a =2b ,故椭圆方程可化为x 24b 2+y 2b 2=1,∵椭圆过点⎝⎛⎭⎫3,12, ∴34b 2+14b2=1, 解得b =1(负值舍去),∴a =2, ∴椭圆C 的方程为x 24+y 2=1.(2)设直线AB 的方程为y =k AB x +m (k AB >0),A (x 1,y 1),B (x 2,y 2). ∵k 2AB =k OA ·k OB (k AB >0), ∴k 2AB=y 1y 2x 1x 2=(k AB x 1+m )(k AB x 2+m )x 1x 2,化简得k AB m (x 1+x 2)+m 2=0, ∵A ,O ,B 三点不共线,∴m ≠0, ∴k AB (x 1+x 2)+m =0,①由⎩⎪⎨⎪⎧y =k AB x +m ,x 24+y 2=1消去y ,整理,得(1+4k 2AB )x 2+8k AB ·mx +4(m 2-1)=0, 由根与系数的关系可得⎩⎨⎧x 1+x 2=-8k AB m1+4k 2AB,x 1x 2=4(m 2-1)1+4k2AB. ②Δ=16(1+4k 2AB -m 2)>0,③将②代入①中得k AB ⎝ ⎛⎭⎪⎫-8k AB m 1+4k 2AB +m =0(k AB >0),解得k AB =12,则⎩⎪⎨⎪⎧x 1+x 2=-2m ,x 1x 2=2(m 2-1),④(ⅰ)证明:|OA |2+|OB |2=x 21+y 21+x 22+y 22=34x 21+34x 22+2=34[(x 1+x 2)2-2x 1x 2]+2, 将④代入得|OA |2+|OB |2=34×[4m 2-2×2(m 2-1)]+2=5.(ⅱ)设点O 到直线AB 的距离为d , 则S =12|AB |·d =121+k 2AB |x 1-x 2|·|m |1+k 2AB=12(x 1+x 2)2-4x 1x 2|m |=2-m 2|m |.由③及k AB =12可得m ∈(-2,0)∪(0,2),则S =2-m 2|m |=(2-m 2)m 2≤2-m 2+m 22=1,当且仅当m =±1时,等号成立.∴S 取最大值时,直线的AB 方程为y =12x +1或y =12x -1.4.(2018·宝鸡质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,其离心率e =12,点P 为椭圆上的一个动点,△PF 1F 2面积的最大值为4 3. (1)求椭圆的方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,AC 与BD 相交于点F 1,AC ―→·BD ―→=0,求|AC ―→|+|BD ―→|的取值范围.解:(1)由题意得,当点P 是椭圆的上、下顶点时,△PF 1F 2的面积取得最大值, 此时S △PF 1F 2=12|F 1F 2|·|OP |=bc ,所以bc =43,因为e =c a =12,所以b =23,a =4,所以椭圆方程为x 216+y 212=1.(2)由(1)得,F 1的坐标为(-2,0), 因为AC ―→·BD ―→=0,所以AC ⊥BD ,①当直线AC 与BD 中有一条直线斜率不存在时,易得|AC ―→|+|BD ―→|=6+8=14. ②当直线AC 的斜率k 存在且k ≠0时, 设其方程为y =k (x +2),A (x 1,y 1),C (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2),x 216+y 212=1,得(3+4k 2)x 2+16k 2x +16k 2-48=0, 则x 1+x 2=-16k 23+4k 2,x 1x 2=16k 2-483+4k 2. |AC ―→|=1+k 2|x 1-x 2|=24(k 2+1)3+4k 2,此时直线BD 的方程为y =-1k(x +2).同理由⎩⎨⎧y =-1k (x +2),x 216+y212=1,可得|BD ―→|=24(k 2+1)4+3k 2,|AC ―→|+|BD ―→|=24(k 2+1)3+4k 2+24(k 2+1)4+3k 2=168(k 2+1)2(4+3k 2)(3+4k 2), 令t =k 2+1,则|AC ―→|+|BD ―→|=168t 2(3t +1)(4t -1)=16812+t -1t2(t >1),因为t >1,0<t -1t 2≤14,所以|AC ―→|+|BD ―→|=16812+t -1t2∈⎣⎡⎭⎫967,14. 综上,|AC ―→|+|BD ―→|的取值范围是⎣⎡⎦⎤967,14.5.设抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 交抛物线C 于P ,Q 两点,且|P Q |=8,线段P Q 的中点到y 轴的距离为3.(1)求抛物线C 的方程;(2)若点A (x 1,y 1),B (x 2,y 2)是抛物线C 上相异的两点,满足x 1+x 2=2,且AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程.解:(1)设P (x P ,y P ),Q (x Q ,y Q ),则P Q 的中点坐标为⎝ ⎛⎭⎪⎫x P +x Q 2,y P +y Q 2.由题意知x P +x Q2=3,∴x P +x Q =6,又|P Q |=x P +x Q +p =8,∴p =2,故抛物线C 的方程为y 2=4x .(2)当AB 垂直于x 轴时,显然不符合题意, 所以可设直线AB 的方程为y =kx +b (k ≠0),由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x 消去y 并整理,得k 2x 2+(2kb -4)x +b 2=0, ∴x 1+x 2=4-2kb k2=2,得b =2k -k , ∴直线AB 的方程为y =k (x -1)+2k . ∵AB 中点的横坐标为1, ∴AB 中点的坐标为⎝⎛⎭⎫1,2k . 可知AB 的中垂线的方程为y =-1k x +3k ,∴M 点的坐标为(3,0).∵直线AB 的方程为k 2x -ky +2-k 2=0, ∴M 到直线AB 的距离d =|3k 2+2-k 2|k 4+k2=2k 2+1|k |.由⎩⎪⎨⎪⎧k 2x -ky +2-k 2=0,y 2=4x得k 24y 2-ky +2-k 2=0,∴y 1+y 2=4k ,y 1y 2=8-4k 2k 2,∴|AB |=1+1k2|y 1-y 2|=41+k 2k 2-1k 2.设△AMB 的面积为S , 则S =4⎝⎛⎭⎫1+1k 2 1-1k2. 设1-1k2=t ,则0≤t <1, ∴S =4t (2-t 2)=-4t 3+8t ,S ′=-12t 2+8,由S ′=0,得t =63(负值舍去), 即k =±3时,S max =1669, 此时直线AB 的方程为3x ±3y -1=0.6.已知抛物线y 2=2px (p >0)的焦点为F ,P 为抛物线上的点(第一象限),直线l 与抛物线相切于点P .(1)过P 作PM 垂直于抛物线的准线于点M ,连接PF ,求证:直线l 平分∠MPF ;(2)若p =1,过点P 且与l 垂直的直线交抛物线于另一点Q ,分别交x 轴、y 轴于A ,B 两点,求|AB ||AP |+|AB ||A Q |的取值范围.解:(1)证明:设P (x 0,y 0),则y 20=2px 0,因为点P 不是抛物线的顶点,所以直线l 的斜率存在,设为k ,则k =p y 0,所以切线l :y -y 0=py0(x -x 0),即y 0y =p (x +x 0).设切线l 与x 轴交于点C , 则C (-x 0,0),所以|FC |=x 0+p2,由抛物线的定义得|PF |=|PM |=x 0+p2,所以|PF |=|FC |,所以∠PCF =∠FPC =∠MPC , 因而直线l 平分∠MPF .(2)由(1)及已知得,过点P 且与l 垂直的直线的斜率为-y 0p =-y 0,因而其方程为y -y 0=-y 0(x -x 0),则A (x 0+1,0),B (0,x 0y 0+y 0).由⎩⎪⎨⎪⎧y 2=2x ,y -y 0=-y 0(x -x 0)得y 2+2y 0y -2(x 0+1)=0,由y 0和y Q 为方程的两个根得,y 0+y Q =-2y 0,因而y Q =-2-y 20y 0=-2(x 0+1)y 0.所以|AB ||AP |+|AB ||A Q |=|y B ||y P |+|y B ||y Q |=|x 0y 0+y 0||y 0|+|x 0y 0+y 0||-2(x 0+1)y 0|=2x 0+1,因为x 0>0,所以2x 0+1>1,所以|AB ||AP |+|AB ||A Q |的取值范围为(1,+∞).。