数据中心建设架构设计
数据中心架构

数据中心架构数据中心是现代企业和组织中的重要基础设施之一,它承载着大量的数据和信息,为企业的运营和决策提供支持。
数据中心架构的设计和建设对于保障数据安全、提高数据处理和存储效率具有至关重要的作用。
本文将介绍数据中心架构的一般原则和常见设计模式。
一、概述数据中心架构是指构筑数据中心所需的硬件、软件和网络基础设施的设计和布局。
一个好的数据中心架构能够确保数据的安全性、高可用性和可扩展性,同时提高数据处理效率和性能。
二、硬件设计1.服务器:数据中心的核心设备之一是服务器。
在设计中,需要考虑服务器的性能、可靠性和扩展性。
常用的服务器架构包括单机架构、集群架构和分布式架构。
选择合适的服务器架构取决于数据中心的需求和规模。
2.存储系统:数据中心需要大容量的存储系统来存储和管理海量数据。
存储系统的设计应考虑数据的备份和恢复、数据的传输速度和存储容量等因素。
常见的存储架构有直连存储和网络存储,可以根据实际需求选择合适的架构。
3.网络设备:数据中心中的网络设备包括交换机、路由器和防火墙等。
网络设备的设计要考虑数据中心内部的通信、数据的传输速度和网络的安全性。
合理规划网络拓扑结构、采用高性能的网络设备是保证数据中心高效运行的关键。
三、软件设计1.操作系统:数据中心的服务器通常运行着不同的操作系统,如Windows、Linux等。
选择稳定、安全、易于管理的操作系统对数据中心的正常运行非常重要。
2.虚拟化技术:虚拟化技术可以将一台物理服务器虚拟为多台逻辑服务器,提高服务器的利用率和资源共享。
使用虚拟化技术可以降低数据中心的成本,并提高系统的灵活性和可管理性。
3.监控和管理软件:数据中心需要监控和管理大量的设备和系统。
监控和管理软件可以实时监测服务器的运行状态、网络的流量和设备的健康状况,及时发现和解决问题,保证数据中心的高可用性和稳定性。
四、设计模式1.冗余设计:为了提高数据中心的可用性,需要在架构设计中考虑冗余。
例如,使用双电源供电、双路冗余网络设备等方式,确保数据中心在遇到单点故障时仍能正常运行。
数据中心网络架构规划与设计

数据中心网络架构规划与设计
数据中心网络架构规划与设计需要从多个角度考虑,包括数据集成管理、多层次服务需求和信息安全等。
以下是具体的规划步骤:
1.网络架构划分:将数据中心网络划分为中心内网、涉密网、局广域网(地
调局专网)及外网(互联网服务区)。
这种划分主要是为了满足不同类型
的数据传输和安全需求。
2.功能逻辑分区:在中心内网、涉密网、局广域网及外网的基础上,按照逻
辑功能将网络划分为多个功能逻辑分区,包括主功能区、核心存储备份
区、涉密区、数据交换区和服务发布区。
每个分区都有其特定的功能和作
用。
3.物理隔离:从信息数据安全角度出发,涉密区以物理隔离方式独立部署,
保证涉密数据的安全性和保密性。
4.部署服务器虚拟化技术、负载均衡技术、统一交换技术(FCoE)及存储备
份技术:在统一网络管理的基础上,采用上述技术建立起应用服务器与存
储体系及信息安全防护体系。
这些技术可以优化服务器的性能和效率,提
高数据存储和备份的安全性和可靠性。
5.数据中心信息资源层:信息资源层主要包括数据中心的各类数据、数据
库,负责整个数据中心的数据存储和交换,为数据中心提供统一的数据交
换平台。
这一层需要考虑到数据的存储、备份、恢复和共享等需求,同时
还需要考虑数据的安全性和可靠性。
总之,数据中心网络架构规划与设计需要全面考虑数据传输、安全性和可靠性等方面的需求,同时还需要考虑未来的扩展和升级。
因此,在进行规划与设计时,需要结合实际情况和未来发展需求进行综合考虑。
IDC数据中心的整体架构设计

IDC数据中心的整体架构设计尊敬的读者:感谢您参考本文档,本文档旨在为您提供IDC数据中心的整体架构设计方案。
本文档将详细介绍IDC数据中心的各个方面,包括网络架构、硬件架构、存储架构、安全架构等,以帮助您深入了解和设计一个高效可靠的IDC数据中心。
第一章:引言本章对IDC数据中心的背景和目标进行介绍,包括IDC数据中心的定义、主要功能、重要性以及本文档的目的和范围。
第二章:网络架构设计本章将详细介绍IDC数据中心的网络架构设计,包括网络拓扑结构、网络设备配置、网络连接策略、冗余设计等。
第三章:硬件架构设计本章将详细介绍IDC数据中心的硬件架构设计,包括服务器选型、服务器布局、机柜设计、供电和散热设计等。
第四章:存储架构设计本章将详细介绍IDC数据中心的存储架构设计,包括存储设备选型、存储容量规划、存储性能需求等。
第五章:安全架构设计本章将详细介绍IDC数据中心的安全架构设计,包括物理安全措施、网络安全措施、数据安全措施、灾备设计等。
第六章:监控与管理本章将介绍IDC数据中心的监控与管理体系,包括监控系统设计、运维管理流程、故障处理流程等。
第七章:容灾与备份本章将介绍IDC数据中心的容灾与备份策略,包括备份方案设计、灾备设施选择、数据恢复测试等。
第八章:性能优化本章将介绍IDC数据中心的性能优化策略,包括服务器负载均衡、网络优化、存储性能优化等。
第九章:可扩展性设计本章将介绍IDC数据中心的可扩展性设计,包括扩容计划、资源预留策略、设备升级计划等。
第十章:总结本章对整个设计方案进行总结,并提出未来可能的改进和优化方向。
附件:本文档涉及的附件包括网络拓扑图、硬件设备清单、安全策略文档等,详细信息请参见附件部分。
法律名词及注释:1.IDC: Internet Data Center,即互联网数据中心,是提供大规模服务器的机房。
2.容灾:即容灾备份,是指为了保证系统可恢复性而采取的备份措施。
3.监控系统:用于监测IDC数据中心各项指标并预警的系统。
新一代数据中心建设方案

新一代数据中心建设方案在当今数字化时代,数据中心已经成为企业运营和创新的核心基础设施。
随着业务的快速发展和技术的不断演进,新一代数据中心的建设变得至关重要。
新一代数据中心不仅要具备高效能、高可靠性和高安全性,还要能够灵活适应不断变化的业务需求和技术趋势。
一、新一代数据中心的需求分析首先,新一代数据中心需要满足企业日益增长的业务需求。
随着业务的扩展,数据量呈爆炸式增长,数据中心需要具备强大的存储和处理能力,以确保数据的快速访问和分析。
其次,高可靠性是关键。
任何的业务中断都可能导致巨大的经济损失和声誉损害,因此数据中心必须具备冗余的电力、冷却和网络系统,以确保在发生故障时能够无缝切换,保持业务的连续性。
再者,能源效率也是重要考量因素。
数据中心的能耗巨大,降低能耗不仅有助于节约成本,还符合环保要求。
采用先进的冷却技术和节能设备,能够有效提高能源利用效率。
此外,安全性不容忽视。
数据是企业的宝贵资产,数据中心需要具备完善的安全防护机制,包括网络安全、物理安全和数据加密等,以防止数据泄露和恶意攻击。
最后,灵活性和可扩展性是必备的。
企业的业务和技术不断变化,数据中心需要能够快速调整和扩展,以适应新的需求和应用。
二、新一代数据中心的架构设计在架构设计方面,新一代数据中心通常采用分层架构,包括基础设施层、网络层、计算层、存储层和应用层。
基础设施层包括电力供应、冷却系统和机房设施等。
采用模块化的设计,能够根据实际需求灵活配置,提高建设效率和可扩展性。
网络层采用高速、低延迟的网络设备,构建扁平化的网络架构,以提高数据传输效率。
同时,引入软件定义网络(SDN)技术,实现网络的灵活配置和管理。
计算层采用高性能的服务器和虚拟化技术,实现资源的动态分配和高效利用。
云计算技术的应用,使得计算资源能够根据业务需求弹性扩展。
存储层采用分布式存储系统,提高数据的可靠性和读写性能。
同时,结合闪存技术和大容量硬盘,满足不同类型数据的存储需求。
典型 数据中心的架构设计

典型数据中心的架构设计在当今数字化的时代,数据中心已成为支撑企业运营和创新的关键基础设施。
一个设计合理、高效可靠的数据中心架构能够确保数据的安全存储、快速处理和稳定传输,为企业的业务发展提供坚实的技术支持。
接下来,让我们深入探讨一下典型数据中心的架构设计。
数据中心的架构设计就像是构建一座高楼大厦,需要从基础开始,逐步搭建起一个稳固、高效且功能齐全的体系。
首先,我们来看看物理基础设施。
物理基础设施是数据中心的基石,包括机房的选址、建筑结构、电力供应和冷却系统等方面。
机房的选址要考虑到地理环境、自然灾害风险、电力供应稳定性等因素。
一个理想的位置应该远离地震带、洪水区,并且有可靠的电力来源。
建筑结构要能够承受设备的重量,并具备良好的防火、防潮和防尘性能。
电力供应系统则至关重要,它需要保证不间断的电源供应,以防止数据丢失和业务中断。
通常会采用多路市电接入,并配备不间断电源(UPS)和备用发电机。
冷却系统同样不可或缺,大量的服务器和设备在运行时会产生大量的热量,如果不能及时有效地散热,会影响设备的性能和寿命。
常见的冷却方式有风冷和水冷,以及采用精密空调来控制机房的温度和湿度。
接下来是网络架构。
网络就像是数据中心的“血管”,负责数据的传输和通信。
数据中心的网络一般分为三层:接入层、汇聚层和核心层。
接入层连接着服务器和终端设备,提供网络接入端口。
汇聚层将多个接入层的流量汇聚起来,进行初步的处理和转发。
核心层则是整个网络的“大脑”,负责高速的数据交换和路由选择。
为了提高网络的可靠性和性能,常常会采用冗余设计,例如多链路备份、设备冗余等。
在服务器和存储方面,需要根据业务需求选择合适的类型和配置。
服务器可以分为塔式服务器、机架式服务器和刀片服务器等。
存储设备则包括直接连接存储(DAS)、网络附加存储(NAS)和存储区域网络(SAN)等。
对于数据量较大、对性能要求较高的业务,可能会采用分布式存储架构,将数据分散存储在多个节点上,以提高数据的读写速度和可靠性。
智慧城市数据中心建设方案

智慧城市数据中心建设方案随着人工智能、物联网等技术的发展与应用,智慧城市的建设成为了现代城市发展的重要目标。
而数据中心作为智慧城市的核心组成部分,承担着处理、存储和管理大量数据的重要任务。
本文将提出一种智慧城市数据中心建设方案,以满足智慧城市对于数据处理的需求。
一、引言智慧城市数据中心的建设是为了支持城市级别的数据处理、存储和管理需求。
该方案旨在构建一个高效、安全、可扩展的数据中心,以满足智慧城市的数据处理需求,提供智慧城市应用所需的基础设施支持。
二、架构设计1. 基础设施建设智慧城市数据中心的基础设施需要考虑网络、能源供应、机房环境等方面的要求。
网络方面,应建设高速稳定的数据传输网络,以满足大规模数据的传输需求;能源供应方面,应保证电力供应的稳定性和可靠性,采用绿色能源,降低能源消耗;机房环境方面,应采用先进的制冷技术,确保机房的温度和湿度控制在合适的范围内。
2. 数据存储与管理智慧城市数据中心需要拥有高效、可靠的数据存储与管理系统。
其中,数据存储应采用分布式存储技术,将数据分散存储在多个节点中,提高数据的容错性和可用性;数据管理方面,应建立完善的数据分类和标签系统,实现对数据的有效管理和检索。
3. 安全与保护数据安全是智慧城市数据中心建设中至关重要的一环。
在安全方面,应建立多层次的数据安全机制,包括网络安全、物理安全和数据加密等,以确保数据的机密性和完整性。
此外,还需要采用灾备备份技术,将重要数据备份到异地,以保证数据的可用性和可恢复性。
4. 数据处理与分析智慧城市数据中心需要具备强大的数据处理和分析能力。
为此,可以采用分布式计算和大数据分析技术,实现对大规模数据的高效处理和深入分析,为智慧城市决策提供有力支持。
三、可行性分析智慧城市数据中心建设方案的可行性需要综合考虑技术、经济、社会等多个因素。
从技术角度来看,当前的数据处理、存储和管理技术已相对成熟,可以满足智慧城市对于数据处理的需求。
从经济角度来看,数据中心的建设和运维成本较高,但是其带来的效益和价值也是显而易见的。
企业数据中心建设方案

第1篇
企业数据中心建设方案
一、项目背景
随着信息技术的飞速发展,数据资源已成为企业核心竞争力的关键要素。建设企业数据中心,旨在提高数据处理能力,保障数据安全,优化资源配置,降低运营成本,为企业的持续发展奠定坚实基础。
二、建设目标
1.提高数据处理能力:确保数据中心具备高效、稳定的数据处理能力,满足企业业务发展需求。
2.保障数据安全:建立健全数据安全防护体系,确保数据在存储、传输、处理等环节的安全。
3.优化资源配置:整合企业现有资源,提高资源利用率,降低运营成本。
4.提高运维效率:采用先进的技术和设备,提高数据中心的运维效率。
5.可持续发展:为企业的长期发展提供稳定、高效的数据支持。
三、方案设计
1.总体架构
企业数据中心总体架构分为三个层次:基础设施层、平台层和应用层。
3.提高数据资源利用率,优化成本结构。
4.实现数据中心的可扩展性和灵活性,适应未来技术变革。
三、总体设计
1.设计原则
-安全可靠:确保数据中心运行的安全性和可靠性。
-高效节能:采用节能技术和设备,降低能耗。
-灵活扩展:设计具备良好的扩展性,以适应业务发展和技术升级。
-易于管理:采用标准化、模块化的设计,简化运维管理。
(2)网络架构:采用高可用性的网络架构,实现数据传输的高速和稳定。
(3)服务器与存储:根据业务需求,选择具有高性(1)数据库系统:部署成熟的关系型数据库,确保数据的一致性和完整性。
(2)大数据平台:构建基于开源技术的大数据处理平台,实现数据的深度挖掘和分析。
(2)网络安全:部署防火墙、入侵检测系统、安全审计等设备,保障网络安全。
(3)数据安全:采用数据加密、访问控制、数据备份等技术,确保数据安全。
数据中心建设技术方案

数据中心建设技术方案一、选址规划数据中心的选址是建设的首要步骤,需要综合考虑多方面因素。
首先,要选择电力供应稳定、电价合理的地区,以确保数据中心的正常运行和降低运营成本。
其次,地理位置应具备良好的通信基础设施,便于与外部网络连接。
此外,还需考虑当地的自然环境,如气候条件、地质灾害风险等。
避免选择在地震、洪水等自然灾害频发的区域。
同时,为了便于维护和管理,选址应尽量靠近企业的主要业务区域。
二、基础设施建设(一)建筑结构数据中心的建筑应具备良好的承重能力和抗震性能,采用防火、防潮、防尘的材料。
内部布局要合理,划分出设备区、操作区、监控区等不同功能区域。
(二)电力系统电力供应是数据中心的命脉。
应配备双路市电接入,并设置备用发电机组和不间断电源(UPS)系统,以保障在市电故障时仍能持续供电。
同时,要进行合理的电力分配和管理,采用智能配电柜等设备,提高电力使用效率。
(三)制冷系统为了保证服务器等设备在适宜的温度环境下运行,制冷系统至关重要。
可采用风冷、水冷或液冷等方式,根据数据中心的规模和需求选择合适的制冷方案。
同时,要做好机房的热通道和冷通道隔离,提高制冷效果。
(四)消防系统数据中心内应安装火灾自动报警系统、气体灭火系统等消防设施,确保在发生火灾时能够及时发现并扑灭火情,保护设备和数据的安全。
三、网络架构(一)核心层核心层负责高速数据传输和路由转发,应采用高性能的交换机和路由器,具备大容量、高带宽和低延迟的特点。
(二)汇聚层汇聚层将多个接入层设备连接到核心层,起到汇聚和分发数据的作用。
(三)接入层接入层直接连接服务器、存储设备等终端,提供网络接入服务。
同时,要采用冗余设计,确保网络的可靠性和可用性。
部署网络监控系统,实时监测网络性能和故障,及时进行处理。
四、服务器与存储系统(一)服务器选型根据业务需求选择合适的服务器类型,如塔式服务器、机架式服务器或刀片服务器。
考虑服务器的性能参数,如 CPU、内存、存储容量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据中心架构建设计方案建议书1、数据中心网络功能区分区说明功能区说明图1:数据中心网络拓扑图数据中心网络通过防火墙和交换机等网络安全设备分隔为个功能区:互联网区、应用服务器区、核心数据区、存储数据区、管理区和测试区。
可通过在防火墙上设置策略来灵活控制各功能区之间的访问。
各功能区拓扑结构应保持基本一致,并可根据需要新增功能区。
在安全级别的设定上,互联网区最低,应用区次之,测试区等,核心数据区和存储数据区最高。
数据中心网络采用冗余设计,实现网络设备、线路的冗余备份以保证较高的可靠性。
互联网区网络外联区位于第一道防火墙之外,是数据中心网络的Internet接口,提供与Internet高速、可靠的连接,保证客户通过Internet访问支付中心。
根据中国南电信、北联通的网络分割现状,数据中心同时申请中国电信、中国联通各1条Internet线路。
实现自动为来访用户选择最优的网络线路,保证优质的网络访问服务。
当1条线路出现故障时,所有访问自动切换到另1条线路,即实现线路的冗余备份。
但随着移动互联网的迅猛发展,将来一定会有中国移动接入的需求,互联区网络为未来增加中国移动(铁通)链路接入提供了硬件准备,无需增加硬件便可以接入更多互联网接入链路。
外联区网络设备主要有:2台高性能链路负载均衡设备F5 LC1600,此交换机不断能够支持链路负载,通过DNS智能选择最佳线路给接入用户,同时确保其中一条链路发生故障后,另外一条链路能够迅速接管。
互联网区使用交换机可以利用现有二层交换机,也可以通过VLAN方式从核心交换机上借用端口。
交换机具有端口镜像功能,并且每台交换机至少保留4个未使用端口,以便未来网络入侵检测器、网络流量分析仪等设备等接入。
建议未来在此处部署应用防火墙产品,以防止黑客在应用层上对应用系统的攻击。
应用服务器区网络应用服务器区位于防火墙内,主要用于放置WEB服务器、应用服务器等。
所有应用服务器和web服务器可以通过F5 BigIP1600实现服务器负载均衡。
外网防火墙均应采用千兆高性能防火墙。
防火墙采用模块式设计,具有端口扩展能力,以满足未来扩展功能区的需要。
在此区部署服务器负载均衡交换机,实现服务器的负载均衡。
也可以采用F5虚拟化版本,即无需硬件,只需要使用软件就可以象一台虚拟服务器一样,运行在vmware ESXi上。
数据库区数据库区在物理上和应用服务器在一个位置,但可以通过防火墙的通过逻辑隔离,将应用服务器和数据库服务器分离。
实际上应用服务器和数据库服务器都是通过VMware服务器虚拟化上创建的虚拟服务器,但可以通过交换机策略将两者逻辑分开。
测试区测试区主要用于软件和硬件上线前的功能和性能测试,本区主要要求网络能够和运行系统能够有效隔离,保证网络不收到测试系统影响。
测试区也是通过防火墙和VMware逻辑隔离。
存储数据区存储数据区因为不需要外网直接访问,因此可以通过网络和地址的规划完全与IP网络分离。
在本区部署两台IP存储阵列,一台是高性能的SAS硬盘 FAS2240-2,配置24块 15K 600G硬盘,总容量,经过Raid后还有大约的实际存储容量。
此硬盘可以分为两部分使用,一部分用于虚拟化软件共享存储,用于存放各类虚拟机的数据和用户数据库数据,大约分配。
另外一部分用于存储应用软件的存储的用户数据,此类数据主要存放活跃数据,大约6T。
另外一台存储使用高容量SATA存储,配置24块3000G硬盘,总共72T存储容量,经过Raid后,实际存储容量为48T。
在此处配置一台F5文件虚拟化管理系统ARX500,用于调度存储阵列内的文件调度。
当目前存储容量不足之后,可以随时增加存储容量,这时的存储可以采用更为便宜的基于Windows storage的存储系统。
办公管理区办公区通过VPN与数据中心互联,保证管理人员能够在办公室对数据中心的有效管理2、服务器虚拟化设计方案、方案拓扑设计系统设计描述在整个架构中,我们搭建了两个网络:一个是作为生产网络(根据实际应用可以划分多个VLAN),另外一个作为虚拟中心管理网络和虚拟机动态迁移VMotion网络。
另外根据实际的网络环境,结合实际生产环境中的要求,将网卡分别设置在不同的网段上。
使用新购置服务器作为ESX虚拟服务器,另外可以利用旧的1台服务器作为VMware Virtual Center管理中心。
将数据库服务器和应用服务器部署在三台ESX虚拟服务器上,利用VMWare VMotion功能,使得数据库服务器在ESX 虚拟服务器硬件环境出现问题的情况下,能够自动的迁移到另一台ESX虚拟服务器上运行,不会因为硬件环境出现的问题而导致应用服务停止运作,保证了业务连续性。
再利用VMWare VCB技术,定时针对应用系统做备份,当应用系统出现损坏的情况下,可以在最短的时间内,恢复到健康的应用系统生产环境。
使用VMware High Availability功能在整个虚拟化 IT 环境中提供,而没有传统群集解决方案的成本或复杂性。
VMware HA 可为在虚拟机中运行的任何应用程序提供经济高效的高可用性解决方案,而不需要考虑其应用操作系统设置或应用系统基础硬件配置。
VMware HA 不需要专门的备用硬件和附加软件支持。
同时,VMWare系统提供VMWare HA、VMWare VMotion、VMWare DRS的系统资源高可用与自动资源调节能力,可自动平衡应用间对CPU、内存的资源分配,保证应用系统维持在最佳运行状态。
VMWare高可用特性,可彻底保证用户关键性应用系统不间断运行。
若实施VMWare高可用架构,要求虚拟化应用系统必须接入SAN存储区域以作数据存储共享设置。
利用原有两台服务器,一台作为VMware VirtualCenter服务器,管理整个虚拟化数据中心系统。
在存储方面,采用万兆以太网接入的IPSAN存储,具有保障企业级业务持续性的多种特性,包括热插拔冗余硬件、热备份硬盘、多路经故障切换、快照、克隆、本地/远程镜像和非破坏性固件升级等。
3、F5链路负载均衡问题的提出通常用户系统结构设计图如下:链路单点故障在系统原有系统结构中,采用单条链路接入,一个或多个DNS服务器,这些服务器对于同一个域名均解析为同一个地址。
在该种网络结构之中,无论主机系统、网络系统的规划有多么完美, 完全的排除了应用瓶颈和单点故障, 都还存在一个非常明显的单点故障, 就是国际网络接入部分的方案不够完整, 一旦国际网络接入部分出现中断就直接意味着所有应用的中断。
Internet用户访问快慢差异随着国内最大的Internet接入提供商Chinanet被拆分为北方China Netcom 和南方China Telecom之后,两方资源的互访受到了很大程度的影响。
其出现的根本原因为南北网络的互通互联接点拥塞,造成用户丢包、延迟较大,从而导致访问缓慢,甚至对于一些应用根本无法访问。
以下是一张在真实环境下的实测数据表:表中可以看出,对于同一个站点,一个用户分别从两条线路进行访问,得出的访问速度差异是非常大的。
最大的差值在广东电信分别访问站点的两条线路,其速度差异接近20倍。
有效解决链路单点故障及为南北不同用户提供相同服务质量的需求与日俱增。
对于一个运行关键业务的网站来说,为用户供24*7不间段的业务,并保持用户的访问速度和访问的成功率非常重要。
F5提供的最佳解决方案使用F5公司的LinkControl多链路设计结构图:网络出口结构建议我们建议采用一对F5 Link controller设备接在两个出口链路处,实现由内向外和由外向内的出入站流量负载均衡。
由外向内的inbound访问的智能性,通过Link controller提供的智能DNS解析功能,实现对两条链路的负载均衡。
Link controller可以通过实时监控两条链路的负载状况及其健康状况,也可以根据当前链路的负载情况,用户所处的位置ip地址或用户的特殊要求进行相应域名解析,指引用户从最快的、最好的、最近的路径访问到企业的站点。
这里我们建议采用静态负载(Topology)和动态负载(RTT)相结合的方式,使得方案更能满足客户是实际需求,当用户是来自国内的用户,在F5设备的Class中能查到它是来自哪家运营商的地址,这时F5的设备将采用静态的算法给用户端一条最快的链路,如果用户不是来自国内,是来自国外的用户,F5设备将采用动态算法(RTT),去探测用户的LDNS,然后算出来一个最佳路径并提供给用户,这样从用户端,不论是来自国内还是来自国外的用户都能得到一条最佳的路径来访问用户企业网站。
用户在进行由内向外的outbound访问时,由F5 Link controller提供智能的链路选择,实现对两条链路的负载均衡。
F5 LC可以通过实时监控两条链路的负载状况及其健康状况来保证链路的高可用性,同时可以根据当前链路的负载情况,用户想要访问的IP地址等信息进行链路选择,指引用户从最快的、最好的、最近的路径访问INTERNET,另外考虑到带宽等,我们可以在F5 LC 上通过添加策略来实现指定用户走指定链路,只有当此链路出问题时会自动切换到其他好的链路上。
方案特点:1、从整体结构上来看,对入站链路选择进行了优化,解决了服务器互访慢的问题,使得web服务提高了响应速度,由于链路的优化从而改善了这些服务的的响应速度,国内用户和国外用户通过F5设备的均衡最终能得到一个相对最佳的链路,保证了内部服务从外网访问能通过一条最快的链路,大大提升了网络响应速度2、采用F5的LC,同时也解决了出站时的链路优化和当其中某个链路中断时,自动切换到其他的链路上去的功能,另外在BIGIP上设置不同网段的链路选择,如:可以将一段地址网络只走某一条链路,其他的地址走另外的链路,当此链路中断时, BIGIP把所有流量切换到好的链路上。
3、另外F5 LC还同时具备服务器负载均衡的能力,可以解决企业原有的服务器性能不足的问题。
技术实现原理出站连接为了向企业用户访问互联网资源时提供高可性,LC使用default gateway pool和SNAT(安全网络地址转换)将流量动态导向最佳链路。
Default gateway pool包含了多个网关,F5 LC将根据负载均衡算法选择一个最优网关,将当前数据发送到该网关,从而发送到对应ISP。
SNAT提供了一个安全机制,可将不能路由内部地址转换为可路由的地址,并将流量导向合适的上游网关路由器。
利用LC的智能流量管理功能,可替代防火墙的NAT功能,并保证流量可以通过与WAN或互联网的最佳连接往返发送。
另外LC可以利用rules功能实现类似策略路由的功能,LC可以根据数据源地址或目的地址来选择路径,从而实现outbound流量的最优链路选择,避免针对某些链路的站点收费问题。