【师说】2017届高三物理一轮总复习 第4章《曲线运动 万有引力与航天》1 曲线运动 运动的合成与分解课件
高中物理一轮总复习课件第四章曲线运动万有引力与航天

在天体运动中,万有引力等于向心力,即$Gfrac{Mm}{r^2} = mfrac{v^2}{r}$,其中$M$为中心天体质量。
万有引力与重力关系探讨
重力来源
在地球表面附近,物体所受的重力是由于地球对物体的万 有引力而产生的。
重力与万有引力关系
在地球表面附近,重力近似等于万有引力,即$mg approx Gfrac{Mm}{R^2}$,其中$g$为重力加速度, $R$为地球半径。
曲线运动加速度特点
加速度与速度方向不在同一直线上。 01
加速度可以是恒定的(如平抛运动),也可以是 02 变化的(如匀速圆周运动)。
加速度的大小和方向可以变化,也可以不变。 03
02
平抛运动与类平抛运动
平抛运动定义及公式推导
定义
物体以一定的初速度沿水平方向抛出,如 果物体仅受重力作用,这样的运动叫做平 抛运动。
THANKS
感谢观看
数据处理
学会处理实验数据,包括 数据的读取、记录和计算 等。
高考命题趋势预测和备考策略
命题趋势
结合历年高考物理试题和考试大纲,分析命题趋势和考查重点。
备考策略
针对命题趋势和考查重点,制定相应的备考策略。如加强基础知识的学习和理解 、多做典型题和模拟题、注重实验操作和数据处理等。同时,也要注意时间管理 和心态调整,保持积极的心态和良好的状态。
万有引力定律表达式
$F = Gfrac{m_1m_2}{r^2}$,其中$F$为万有引力,$G$为 万有引力常量,$m_1$和$m_2$分别为两物体的质量,$r$ 为两物体之间的距离。
万有引力定律适用条件及范围
适用条件
万有引力定律适用于质点间的相互作用,当两物体间的距离远大于物体本身的 大小时,可视为质点。
高三物理一轮复习 第4章 曲线运动 万有引力与航天 1

(3) 合 力 的 效 果 : 合 力 沿 切 线 方 向 的 分 力 改 变 速 度 的 大 小,沿径向的分力改变速度的方向,如图所示的两个情景.
①合力方向与速度方向的夹角为锐角时,物体运动的速率 将增大;
②合力方向与速度方向的夹角为钝角时,物体运动的速率 将减小.
2.曲线运动的分类
名称
条件
合力特点
提示:头部的速度方向为头部运动轨迹在各点的切线方 向,如图所示,A、C两位置头部速度方向与v方向相同,B、 D两位置头部速度方向与v方向相反.
[填一填] 1.速度方向 质点在某一点的瞬时速度的方向,沿曲线上该点的__切__线__ 方向.
2.运动性质 做曲线运动的物体,速度的__方__向__时刻改变,故曲线运动 一定是_变__速__运动,即必然具有加速度.
【解题引路】 (1)物体做匀速直线运动的条件是什么? (2)当所加外力与初速度方向相同时物体做什么性质的运 动?当外力与初速度方向成一定夹角时物体做什么性质的运 动? 【提示】 (1)合外力为0 (2)匀加速直线运动 曲线运动 【尝试解题】 ________
【解析】 因不知对小球的水平风力的具体方向,故轨迹 有多种可能,A、B、C均有可能,因小球运动轨迹一定与小球 速度方向相切,不可能出现如图D中折线,故D错误.
3.曲线运动的条件 (1)运动学角度:物体的_加__速__度__方向跟速度方向不在同一 条直线上. (2)动力学角度:物体所受__合__外__力___的方向跟速度方向不 在同一条直线上.
做曲线运动的物体( A.速度一定改变 B.动能一定改变 C.加速度一定改变 D.机械能一定改变
[练一练] )
【解析】 物体做曲线运动时速度的方向一定变化,速度 的大小不一定变化,A正确.而动能是标量,大小与速度的平 方成正比,与速度的方向无关,B错误.若物体运动中所受合 外力是恒力,则加速度不变,如平抛运动,C错误.除重力外 若物体不受其他外力或其他外力不做功,则其机械能不变,D 错误.
高考物理一轮复习第4章曲线运动万有引力与航天第4节万有引力与航天教师用书

第4节 万有引力与航天知识点1 开普勒行星运动定律 1.开普勒第一定律所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上. 2.开普勒第二定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积. 3.开普勒第三定律所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,表达式:a 3T=k .知识点2 万有引力定律 1.内容(1)自然界中任何两个物体都相互吸引. (2)引力的方向在它们的连线上.(3)引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r,其中G 为引力常量,G =6.67×10-11 N·m 2/kg 2,由卡文迪许扭秤实验测定.3.适用条件(1)两个质点之间的相互作用.(2)对质量分布均匀的球体,r 为两球心间的距离. 知识点3 地球同步卫星及宇宙速度 1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.24×104km ,卫星离地面高度h =r -R ≈6R (为恒量).(5)速率一定:运行速度v =2πrT=3.07 km/s(为恒量).(6)绕行方向一定:与地球自转的方向一致.2.三种宇宙速度比较1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同.3.经典力学有它的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.[物理学史链接]1.德国天文学家开普勒提出天体运动的开普勒三大定律.2.牛顿总结了前人的科研成果,在此基础上,经过研究得出了万有引力定律.3.英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量.1.正误判断(1)只有天体之间才存在万有引力.(×)(2)当两物体间的距离趋近于零时,万有引力趋近于无穷大.(×)(3)第一宇宙速度与地球的质量有关.(√)(4)地球同步卫星的运行速度大于第一宇宙速度.(×)(5)地球同步卫星可以定点于北京正上方.(×)(6)若物体的发射速度大于第二宇宙速度,小于第三宇宙速度,则物体可以绕太阳运行.(√)2.[物理学史](2016·全国丙卷)关于行星运动的规律,下列说法符合史实的是( ) A.开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律B [开普勒在前人观测数据的基础上,总结出了行星运动的规律,与牛顿定律无联系,选项A 错误,选项B 正确;开普勒总结出了行星运动的规律,但没有找出行星按照这些规律运动的原因,选项C 错误;牛顿发现了万有引力定律,选项D 错误.]3.[同步卫星的特点]由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( )A .质量可以不同B .轨道半径可以不同C .轨道平面可以不同D .速率可以不同A [同步卫星轨道只能在赤道平面内,高度一定,轨道半径一定,速率一定,但质量可以不同,A 项正确.]4.[中心天体质量的求解](2015·江苏高考)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120,该中心恒星与太阳的质量比约为( )【导学号:92492186】A.110B .1C .5D .10B [行星绕中心恒星做匀速圆周运动,万有引力提供向心力,由牛顿第二定律得G Mm r2=m4π2T 2r ,则M 1M 2=⎝ ⎛⎭⎪⎫r 1r 23·⎝ ⎛⎭⎪⎫T 2T 12=⎝ ⎛⎭⎪⎫1203×⎝ ⎛⎭⎪⎫36542≈1,选项B 正确.]1利用天体表面的重力加速度g 和天体半径R .(1)由G Mm R 2=mg 得天体质量M =gR 2G .(2)天体密度:ρ=M V =M 43πR 3=3g4πGR.2.卫星环绕法测出卫星绕天体做匀速圆周运动的半径r 和周期T .(1)由G Mm r 2=m 4π2r T 2得天体的质量M =4π2r3GT 2.(2)若已知天体的半径R ,则天体的密度ρ=M V =M 43πR3=3πr3GT 2R 3.(3)若卫星绕天体表面运行时,可认为轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2,可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.[题组通关]1.(2014·全国卷Ⅱ)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )【导学号:92492187】A.3πGT 2·g 0-gg 0 B .3πGT 2·g 0g 0-gC.3πGT2D .3πGT 2·g 0gB [物体在地球的两极时,mg 0=G MmR2,物体在赤道上时,mg +m ⎝⎛⎭⎪⎫2πT 2R =G Mm R 2,ρ=M 43πR3,以上三式联立解得地球的密度ρ=3πg 0GT 2g 0-g,故选项B 正确,选项A 、C 、D 错误.]2.(多选)(2017·上饶二模)2014年11月1日早上6时42分,被誉为“嫦娥5号”的“探路尖兵”载人返回飞行试验返回器在内蒙古四子王旗预定区域顺利着陆,标志着我国已全面突破和掌握航天器以接近第二宇宙速度的高速载人返回关键技术,为“嫦娥5号”任务顺利实施和探月工程持续推进奠定了坚实基础.已知人造航天器在月球表面上空绕月球做匀速圆周运动,经过时间t (t 小于航天器的绕行周期),航天器运动的弧长为s ,航天器与月球的中心连线扫过角度为θ,引力常量为G ,则( )【导学号:92492188】A .航天器的轨道半径为θsB .航天器的环绕周期为2πtθC .月球的质量为s 3Gt 2θD .月球的密度为3θ24Gt2BC [根据几何关系得r =sθ,故A 错误;经过时间t ,航天器与月球的中心连线扫过角度为θ,则t T =θ2π,得T =2πtθ,故B 正确;由万有引力充当向心力而做圆周运动,所以G Mm r =m 4π2T r ,得M =4π2r 3GT =4π2⎝⎛⎭⎪⎫s θ3G ⎝ ⎛⎭⎪⎫2πt θ2=s 3Gt θ,故C 正确;月球的体积V =43πr 3=43π⎝ ⎛⎭⎪⎫s θ3,月球的密度ρ=M V =s 3Gt 2θ43π⎝ ⎛⎭⎪⎫s θ3=3θ24πGt 2,故D 错误.]两点提醒1.估算的只是中心天体的质量,并非环绕天体的质量.2.区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R.1.(1)同步卫星的周期、轨道平面、高度、线速度、角速度绕行方向均是固定不变的,常用于无线电通信,故又称通信卫星.(2)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (3)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.2.四个分析“四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半径的关系.GMmr 2=⎩⎪⎪⎨⎪⎪⎧ma →a =GMr 2→a ∝1r2m v2r →v =GM r →v ∝1r m ω2r →ω=GM r 3→ω∝1r 3m 4π2T 2r →T =4π2r 3GM→T ∝r 33.同步卫星的六个“一定”:[题组通关]1.(2017·天津模拟)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图441所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )图441A .卫星a 的角速度小于c 的角速度B .卫星a 的加速度大于b 的加速度C .卫星a 的运行速度大于第一宇宙速度D .卫星b 的周期大于24 hA [a 的轨道半径大于c 的轨道半径,因此卫星a 的角速度小于c 的角速度,选项A 正确;a 的轨道半径与b 的轨道半径相等,因此卫星a 的加速度等于b 的加速度,选项B 错误;a 的轨道半径大于地球半径,因此卫星a 的运行速度小于第一宇宙速度,选项C 错误;a 的轨道半径与b 的轨道半径相等,卫星b 的周期等于a 的周期,为24 h ,选项D 错误.]2.(2016·全国乙卷)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )【导学号:92492189】A .1 hB .4 hC .8 hD .16 hB [万有引力提供向心力,对同步卫星有:GMm r 2=mr 4π2T 2,整理得GM =4π2r 3T2 当r =6.6R 地时,T =24 h若地球的自转周期变小,轨道半径最小为2R 地三颗同步卫星A 、B 、C 如图所示分布 则有4π2R 地3T 2=4π2R 地3T ′2解得T ′≈T6=4 h ,选项B 正确.]利用万有引力定律解决卫星运动的技巧1.一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. 2.两组公式(1)G Mm r 2=m v 2r =m ω2r =m 4π2T2r =ma(2)mg =GMmR (g 为星体表面处的重力加速度) 3.a 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心 天体质量共同决定,所有参量的比较,最终归结到半径的比较.1.卫星轨道的渐变当卫星由于某种原因速度突然改变时,万有引力不再等于向心力,卫星将做变轨运行.(1)当卫星的速度逐渐增加时,G Mm r <m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速度比原轨道时减小.(2)当卫星的速度逐渐减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速度比原轨道时增大.2.卫星轨道的突变由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.如图442所示,发射同步卫星时,可以分多过程完成:图442(1)先将卫星发送到近地轨道Ⅰ.(2)使其绕地球做匀速圆周运动,速率为v 1,变轨时在P 点点火加速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ.(3)卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动.[多维探究]●考向1 卫星轨道渐变时各物理量的变化分析1.(多选)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用BC [第一宇宙速度和第二宇宙速度为发射速度,天体运动的速度为环绕速度,均小于第一宇宙速度,选项A 错误;天体运动过程中由于大气阻力,速度减小,导致需要的向心力F n =mv 2r减小,做近心运动,近心运动过程中,轨道高度降低,且万有引力做正功,势能减小,动能增加,选项B 、C 正确;航天员在太空中受地球引力,地球引力全部提供航天员做圆周运动的向心力,选项D 错误.]●考向2 卫星轨道突变前后各物理量间的变化分析2.(多选)(2017·唐山模拟)如图443所示,地球卫星a 、b 分别在椭圆轨道、圆形轨道上运行,椭圆轨道在远地点A 处与圆形轨道相切,则( )【导学号:92492190】图443A .卫星a 的运行周期比卫星b 的运行周期短B .两颗卫星分别经过A 点处时,a 的速度大于b 的速度C .两颗卫星分别经过A 点处时,a 的加速度小于b 的加速度D .卫星a 在A 点处通过加速可以到圆轨道上运行AD [由于卫星a 的运行轨道的半长轴比卫星b 的运行轨道半径短,根据开普勒定律,卫星a 的运行周期比卫星b 的运行周期短,选项A 正确;两颗卫星分别经过A 点处时,a 的速度小于b 的速度,选项B 错误;两颗卫星分别经过A 点处,a 的加速度等于b 的加速度,选项C 错误;卫星a 在A 点处通过加速可以到圆轨道上运行,选项D 正确.]3.(多选)如图444所示是飞船进入某星球轨道后的运动情况,飞船沿距星球表面高度为100 km 的圆形轨道Ⅰ运动,到达轨道的A 点时,点火制动变轨进入椭圆轨道Ⅱ,到达轨道Ⅱ的B 点时,飞船离星球表面高度为15 km ,再次点火制动,下降落到星球表面.下列判断正确的是( )【导学号:92492191】图444A .飞船在轨道Ⅱ上的B 点受到的万有引力等于飞船在B 点所需的向心力 B .飞船在轨道Ⅱ上由A 点运动到B 点的过程中,动能增大C .飞船在A 点点火变轨瞬间,速度增大D .飞船在轨道Ⅰ绕星球运动一周所需的时间大于在轨道Ⅱ绕星球运动一周所需的时间 BD [由飞船在轨道Ⅱ上的运动轨迹可知,飞船在B 点做离心运动,B 点的万有引力小于所需的向心力,A 错误;从A 到B 的运动过程中万有引力做正功,由动能定理可知,动能增大,B 正确;由题可知在A 点制动进入椭圆轨道,速度减小,C 错误;由开普勒第三定律可得,D 正确.]卫星变轨问题“四个”物理量的规律总结1.速度:如图所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .2.加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.3.周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3.4.机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3.1.第一宇宙速度的推导方法一:由G Mm R 2=m v 21R 得v 1=GM R=7.9×103m/s. 方法二:由mg =m v 21R 得v 1=gR =7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=5 075 s≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动.(2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间. [题组通关]1.(多选)2011年中俄联合实施探测火星计划,由中国负责研制的“萤火一号”火星探测器与俄罗斯研制的“福布斯一土壤”火星探测器一起由俄罗斯“天顶”运载火箭发射前往火星.已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法中正确的是( )A .发射速度只要大于第一宇宙速度即可B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度而小于第三宇宙速度D .火星探测器环绕火星运行的最大速度为地球第一宇宙速度的23CD [根据三个宇宙速度的意义,可知选项A 、B 错误,选项C 正确;已知M 火=M 地9,R 火=R 地2,则v mv 地=GM 火R 火∶GM 地R 地=23,选项D 正确.] 2.物体脱离星球引力所需要的最小速度称为第二宇宙速度,第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球半径是地球半径R 的13,其表面的重力加速度是地球表面重力加速度g 的16,不计其他星球的影响,则该星球的第二宇宙速度为( )A.gR B .13gR C.16gR D .3gRB [设某星球的质量为M ,半径为r ,绕其飞行的卫星质量为m ,根据万有引力提供向心力,可得G Mm r 2=m v 21r ,解得:v 1=GMr,又因它表面的重力加速度为地球表面重力加速度g 的16,可得G Mm r 2=m g 6,又r =13R 和v 2=2v 1,解得:v 2=13gR ,所以正确选项为B.]宇宙速度问题的分析思路[母题] (多选)如图445所示,A 是地球的同步卫星,B 是位于赤道平面内的近地卫星,C 为地面赤道上的物体,已知地球半径为R ,同步卫星离地面的高度为h ,则( )图445A .A 、B 加速度的大小之比为⎝⎛⎭⎪⎫R +h R 2B .A 、C 加速度的大小之比为1+h RC .A 、B 、C 速度的大小关系为v A >v B >v CD .要将B 卫星转移到A 卫星的轨道上运行至少需要对B 卫星进行两次加速 【自主思考】 (1)A 和C 的运动相同点是什么? 提示:ωA =ωC =ω地自.(2)A 和B 的运动有什么相同点?提示:都是卫星,满足F 万=F 向=ma 向=m v 2r.BD [根据万有引力提供向心力可知G Mmr2=ma ,得a A =GM R +h2,a B =G MR2,故a A a B =⎝⎛⎭⎪⎫R R +h 2,选项A 错误;A 、C 角速度相同,根据a =ω2r 得a A =ω2(R +h ),a C =ω2R ,故a Aa C=1+h R,选项B 正确;根据G Mm r 2=m v 2r 得v =GMr,可知轨道半径越大线速度越小,所以v B >v A ,又A 、C 角速度相同,根据v =ωr 可知v A >v C ,故v B >v A >v C ,选项C 错误;要将B 卫星转移到A 卫星的轨道上,先要加速到椭圆轨道上,再由椭圆轨道加速到A 卫星的轨道上,选项D 正确.][母题迁移]1.(多选)地球同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的第一宇宙速度为v 2,半径为R ,则下列比例关系中正确的是( )【导学号:92492192】A.a 1a 2=rR B .a 1a 2=⎝ ⎛⎭⎪⎫r R 2C.v 1v 2=r RD .v 1v 2=R rAD [设地球质量为M ,同步卫星的质量为m 1,在地球表面做匀速圆周运动的卫星的质量为m 2,根据向心加速度和角速度的关系有a 1=ω21r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=r R,选项A 正确,B 错误;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 21r ,G Mm 2R 2=m 2v 22R ,解得v 1v 2=Rr,选项D 正确,C 错误.]2.(2016·四川高考)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )【导学号:92492193】图446A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3D [卫星围绕地球运行时,万有引力提供向心力,对于东方红一号,在远地点时有GMm 1R +h 12=m 1a 1,即a 1=GM R +h 12,对于东方红二号,有GMm 2R +h 22=m 2a 2,即a 2=GM,由于h2>h1,故a1>a2,东方红二号卫星与地球自转的角速度相等,由于东方红R +h22二号做圆周运动的轨道半径大于地球赤道上物体做圆周运动的半径,根据a=ω2r,故a2>a3,所以a1>a2>a3,选项D正确,选项A、B、C错误.]赤道表面的物体、近地卫星、同步卫星的对比ω3=ω自=GMR+h3a3=ω23(R+h) =GMR+h2。
高考物理一轮总复习第4章曲线运动万有引力与航天第4讲万有引力与航天课件

考点 天体质量和密度的估算 名师点拨
1.自力更生法:利用天体表面的重力加速度 g 和天体 半径 R。
(1)由 GMRm2 =mg 得天体质量 M=gGR2。 (2)天体密度 ρ=MV =43πMR3=4π3GgR。
2.借助外援法:测出卫星绕天体做匀速圆周运动的半 径 r 和周期 T。
(1)由 GMr2m=m4Tπ22r得天体的质量 M=4GπT2r23。 (2)若已知天体的半径 R,则天体的密度 ρ=MV =43πMR3= G3Tπ2rR3 3。
A.发射速度大于 7.9 km/s B.可以定点在相对地面静止的同步轨道上 C.卫星绕地球运行的线速度比月球的小 D.卫星绕地球运行的周期比月球的大
(3)若卫星绕天体表面运行时,可认为轨道半径 r 等于天 体半径 R,则天体密度 ρ=G3Tπ2,可见,只要测出卫星环绕 天体表面运动的周期 T,就可估算出中心天体的密度。
例 1 [2017·陕西宝鸡质检](多选)科学家们近期发现了 一颗距离地球 1400 光年的系外行星“Kepler-452b”,它围 绕着一颗与太阳质量几乎相等的恒星运行。这是迄今发现 的最接近地球的“另一个地球”。一未知飞行物以周期 T 贴近“Kepler-452b”表面做半径为 R 的匀速圆周运动,引 力常量为 G,则( )
2.公式:F= Gmr1m2 2 ,其中 G 为万有引力常量,G =6.67×10-11 N·m2/kg2,其值由卡文迪许通过扭秤实验测 得。
3.使用条件:适用于两个 质点 或均匀球体;r 为两 质点或均匀球体球心间的距离。
知识点 3 环绕速度 Ⅱ 1.第一宇宙速度又叫 环绕 速度,其数值为 7.9 km/s。 2.第一宇宙速度是人造卫星在 地球表面 附近环绕 地球做匀速圆周运动时具有的速度。 3.第一宇宙速度是人造卫星的最小 发射 速度,也 是人造卫星的最大 环绕 速度。
高三物理一轮复习 必考 第4章 曲线运动 万有引力与航天章末高效整合教师用书

峙对市爱惜阳光实验学校第4章曲线运动万有引力与物理方法|类平抛运动的求解技巧1.类平抛运动的特点(1)受力特点物体所受合力为恒力,且与初速度的方向垂直.(2)运动特点在初速度v0方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速度a =F合m.2.类平抛运动的求解技巧(1)常规分解法将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此,互不影响,且与合运动具有时性.(2)特殊分解法对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为a x、a y,初速度v0分解为v x、v y,然后分别在x、y方向列方程求解.在光滑的水平面内,一质量m=1 kg的质点以速度v0=10 m/s沿x轴正方向运动,经过原点后受一沿y轴正方向(竖直方向)的恒力F=15 N作用,直线OA与x轴成α=37°,如图41所示曲线为质点的轨迹图(g取10 m/s2,sin 37°=0.6,cos 37°=0.8),求:图41(1)如果质点的运动轨迹与直线OA相交于P点,质点从O点到P点所经历的时间以及P点的坐标;(2)质点经过P点时的速度大小.【标准解答】(1)质点在水平方向上无外力作用做匀速直线运动,竖直方向受恒力F和重力mg作用做匀加速直线运动.由牛顿第二律得:a=F-mgm=15-101m/s2=5 m/s2.设质点从O点到P点经历的时间为t,P点坐标为(x P,y P),那么x P=v0t,y P=12at2又tan α=y Px P联立解得:t=3 s,x P=30 m,y P=22.5 m.(2)质点经过P点时沿y轴正方向的速度v y =at =15 m/s故过P 点时的速度大小v P =v 20+v 2y =513 m/s.【答案】 (1)3 s x P =30 m ,y P =22.5 m (2)513 m/s [突破训练]1.如图42所示,A 、B 两质点从同一点O 分别以相同的水平速度v 0沿x 轴正方向抛出,A 在竖直平面内运动,落地点为P 1;B 沿光滑斜面运动,落地点为P 2,P 1和P 2在同一水平面上,不计阻力,那么以下说法正确的选项是( )【导学号:96622074】 图42A .A 、B 的运动时间相同B .A 、B 沿x 轴方向的位移相同C .A 、B 运动过程中的加速度大小相同D .A 、B 落地时速度大小相同D 设O 点与水平面的高度差为h ,由h =12gt 21,h sin θ=12g sin θ·t 22可得:t 1=2hg,t 2=2hg sin 2θ,故t 1<t 2,A 错误;由x 1=v 0t 1,x 2=v 0t 2可知,x 1<x 2,B 错误;由a 1=g ,a 2=g sin θ可知,C 错误;A 落地的速度大小为v A =v 20+gt 12=v 20+2gh ,B 落地的速度大小v B =v 20+a 2t 22=v 20+2gh ,所以v A =v B ,故D 正确.物理模型|宇宙多星模型 1.宇宙双星模型(1)两颗双星做匀速圆周运动所需的向心力是由它们之间的万有引力提供的,故两行星做匀速圆周运动的向心力大小相.(2)两颗行星均绕它们连线上的一点做匀速圆周运动,因此它们的运行周期和角速度是相的.(3)两颗行星做匀速圆周运动的半径r 1和r 2与两行星间距L 的大小关系:r 1+r 2=L .2.宇宙模型(1)如图43所示,三颗质量相的行星,一颗行星位于中心位置不动,另外两颗行星围绕它做圆周运动.这三颗行星始终位于同一直线上,中心行星受力平衡.运转的行星由其余两颗行星的引力提供向心力:Gm 2r 2+Gm 22r2=ma 向图43两行星转动的方向相同,周期、角速度、线速度的大小相.(2)如图44所示,三颗质量相的行星位于一正三角形的顶点处,都绕三角形的中心做圆周运动.每颗行星运行所需向心力都由其余两颗行星对其万有引力的合力来提供.图44Gm 2L 2×2×cos 30°=ma 向 其中L =2r cos 30°.三颗行星转动的方向相同,周期、角速度、线速度的大小相.(2021·高考)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图45所示为A 、B 、C 三颗星体质量不相同时的一般情况).假设A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:图45(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)体做圆周运动的周期T .【标准解答】 (1)由万有引力律可知,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a 2=F CA ,方向如下图,那么合力大小为F A =23G m 2a2.(2)同上,B 星体所受A 、C 星体引力大小分别为F AB =G m A m Br 2=G 2m2a 2,F CB =G m C m B r 2=G m 2a2,方向如下图.由F Bx =F AB cos 60 °+F CB =2G m 2a 2,F By =F AB sin 60°=3G m 2a2,可得F B =F 2Bx +F 2By =7G m 2a2.(3)通过分析可知,圆心O 在中垂线AD 的中点,那么R C =⎝ ⎛⎭⎪⎪⎫34a 2+⎝ ⎛⎭⎪⎫12a 2,可得R C =74a .或⎝⎛由对称性可知OB =OC =R C ,cos ∠OBD =F Bx F B =DB OB =12a R C,得R C =⎭⎪⎪⎫74a (4)体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m ⎝ ⎛⎭⎪⎫2πT 2R C ,可得T =πa 3Gm.【答案】 (1)23G m 2a 2 (2)7G m 2a 2 (3)74a(4)πa 3Gm[突破训练]2.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.假设某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,那么此时圆周运动的周期为( ) 【导学号:96622075】A.n 3k 2T B.n 3k T C.n 2kT D.n kT B 双星间的万有引力提供向心力.设原来双星间的距离为L ,质量分别为M 、m ,圆周运动的圆心距质量为m 的恒星距离为r .对质量为m 的恒星:G Mm L 2=m ⎝ ⎛⎭⎪⎫2πT 2·r对质量为M 的恒星:G Mm L 2=M ⎝ ⎛⎭⎪⎫2πT 2(L -r )得G M +m L 2=4π2T2·L即T 2=4π2L 3G M +m那么当总质量为k (M +m ),间距为L ′=nL 时,T ′=n 3kT ,选项B 正确. 高考热点1|平抛运动的临界问题解决平抛运动的临界问题要注意以下三点: (1)明确平抛运动的根本性质、公式; (2)确临界状态;(3)确临界轨迹,在轨迹示意图上寻找出几何关系.(2021·高考)如图46所示,装甲车在水平地面上以速度v 0=20 m/s沿直线,车上机枪的枪管水平,距地面高为h =1.8 m .在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L 时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v =800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s =90 m 后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g =取10 m/s 2)图46(1)求装甲车匀减速运动时的加速度大小;(2)当L =410 m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离;(3)假设靶上只有一个弹孔,求L 的范围. 【思路导引】【标准解答】 (1)装甲车匀减速运动的加速度大小a =v 202s =209m/s 2.(2)第一发子弹飞行时间t 1=Lv +v 0=0.5 s弹孔离地高度h 1=h -12gt 21=0.55 m第二发子弹的弹孔离地的高度h 2=h -12g ⎝⎛⎭⎪⎫L -s v 2=1.0 m 两弹孔之间的距离Δh =h 2-h 1=0.45 m.(3)第一发子弹打到靶的下沿时(第二发打到靶上),装甲车离靶的距离为L 1L 1=(v 0+v )2hg=492 m第二发子弹打到靶的下沿时(第一发打到地上),装甲车离靶的距离为L 2L 2=v2hg+s =570 m故L 的范围为492 m<L ≤570 m.【答案】 (1)209 m/s 2(2)0.55 m 0.45 m(3)492 m<L ≤570 m [突破训练]3.(2021·卷Ⅰ)一带有乒乓球发射机的乒乓球台如图47所示.水平台面的长和宽分别为L 1和L 2,中间球高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .假设乒乓球的发射速率v 在某范围内,通过选择适宜的方向,就能使乒乓球落到球右侧台面上,那么v 的最大取值范围是( )图47 A.L 12g6h <v <L 1g6hB.L 14g h <v <4L 21+L 22g6hC.L 12g 6h <v <124L 21+L 22g6hD.L 14g h <v <124L 21+L 22g6hD 设以速率v 1发射乒乓球,经过时间t 1刚好擦球上边缘落到球间. 那么竖直方向上有3h -h =12gt 21①水平方向上有L 12=v 1t 1②由①②两式可得v 1=L 14g h设以速率v 2发射乒乓球,经过时间t 2刚好落到球右侧台面的两角处,在竖直方向有3h =12gt 22③在水平方向有⎝ ⎛⎭⎪⎫L 222+L 21=v 2t 2④由③④两式可得v 2=124L 21+L 22g6h那么v 的最大取值范围为v 1<v <v 2.应选项D 正确. 高考热点2|万有引力律的用(多项选择)宇宙飞船以周期T 绕地球做圆周运动时,由于地球遮挡阳光,会经历“日全食〞过程,如图48所示.地球的半径为R ,地球质量为M ,引力常量为G ,地球自转周期为T 0,太阳光可看做平行光,宇航员在A 点测出的张角为α,那么( )图48A .飞船绕地球运动的线速度为2πRT sinα2B .一天内飞船经历“日全食〞的次数为TT 0C .飞船每次“日全食〞过程的时间为α2πT 0D .飞船周期为T =2πR sinα2R GM sinα2【标准解答】 飞船绕地球运动的线速度为v =2πr T ,由几何关系知sinα2=R r,所以v =2πRT sinα2,A 正确;又GMm r2 =m ⎝ ⎛⎭⎪⎫2πT 2r ,由此得T =2πR sinα2R GM sinα2,D 正确;飞船每次经历“日全食〞过程的时间为飞船转过α角所需的时间,即α2πT ,C 错误;一天内飞船经历“日全食〞的次数为T 0T,B 错误.【答案】 AD[突破训练]4.一卫星绕火星外表附近做匀速圆周运动,其绕行的周期为T .假设宇航员在火星外表以初速度v 水平抛出一小球,经过时间t 恰好垂直打在倾角α=30°的斜面体上,如图49所示.引力常量为G ,那么火星的质量为( )【导学号:96622076】 图49A.3v 3T 416Gt 3π4 B.33v 3T 416Gt 3π4 C.3v 2T 416Gt 3π4 D.33v 2T 416Gt 3π4 B 以M 表示火星的质量,r 0表示火星的半径,g ′表示火星外表附近的重力加速度,火星对卫星的万有引力提供向心力,有G Mm r 20=m ⎝ ⎛⎭⎪⎫2πT 2r 0,在火星外表有G Mm ′r 20=m ′g ′;平抛小球速度的偏转角为60°,tan 60°=g ′tv,联立以上各式解得M =33v 3T 416Gt 3π4,B 正确.。
2017届高三物理一轮复习 第4章 曲线运动 万有引力与航天 第4讲 万有引力与航天课件

GMm =mg R2 (g表示天体表面的重力加速度).
考点一
NO.1 梳理主干
2.天体质量和密度的计算 (1)利用天体表面的重力加速度g和天体半径R计算. gR2 Mm 由于G 2 =mg,故天体质量M= G . R 3g M M 天体密度ρ= V = = 4πGR . 4 3 πR 3
填准记牢
NO.2 题组训练 提升能力
考点三
NO.1 梳理主干
牢固记忆
2 v Mm (2)当卫星的速度突然减小时,G 2 >m r ,即万有引力大于所需 r
要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径
NO.2 题组训练 提升能力
变小,当卫星进入新的轨道稳定运行时,由v=
GM r 可知其运
行速度比原轨道的大.卫星的发射和回收就是利用这一原理.
考点一
反思提升
NO.1 梳理主干
对天体质量和密度估算问题的两点提醒 (1)区分两个质量:利用万有引力提供天体圆周运动的向心力估算 天体质量时,估算的只是中心天体的质量而非环绕天体的质量. (2)区别两个半径:天体半径 R 和卫星轨道半径 r,只有在天体表
填准记牢
NO.2 题组训练 提升能力
4 3 面附近的卫星才有 r≈R;计算天体密度时,V= πR 中的 R 只能 3 是中心天体的半径.
(1)(2)至少要用两颗同步卫星,这两 颗卫星间距最小时分别位于如图所 示的P1和P2两点.这两颗卫星间的 距离最小为d=2R. (3)设同步卫星的轨道半径为r= OP1,由万有引力定律和牛顿第二 Mm 4π2 Mm 定律得G 2 =mr 2 ,mg=G 2 r T R 3 gR2T2 解得r= 4π2 用这两颗卫星把电 磁波信号由A点传 到B点需要经历的 2R+2P1B 时间为t= c ,又P1B= 2R r2-R2,解得t= c +
高三物理一轮复习第四章曲线运动—万有引力定律与航天优化课件
一题一得 在应用万有引力定律解题时,经常需要像本题 一样先假设某处存在一个物体再分析求解.
一物体静置在平均密度为ρ的球形天体表面
的赤道上.已知万有引力常量为G,若由于天体自转使物体对
天体表面压力恰好为零,则天体自转周期为( )
4π 1 A.3Gρ 2
3 1 B.4πGρ 2
π 1 C.Gρ 2
(2011·惠州调研二)中继卫星定点在东经77°赤道上 空的同步轨道上.对该卫星下列说法正确的是( )
A.运行速度大于7.9 km/s B.离地面高度一定,相对地面静止 C.绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相 等
() A.b、c的线速度大小相等,且大于a的线速度 B.b、c的向心加速度大小相等,且大于a的向心加速度 C.c加速可追上同一轨道上的b,b减速可等候同一轨道
上的c D.a卫星由于某种原因,轨道半径缓慢减小,其线速度
将增大
【答案】D
【解析】因为b、c在同一轨道上运行,故其线速度大小、加速
度大小均相等.又b、c轨道半径大于a的轨道半径,由v=
认为它的轨道半径未变,视为稳定运行,由v= v逐渐增大,故D选项正确.
GM r
知,r减小时
5.(2012·深圳高级中学模拟)星球的第二宇宙速度v2与第 一宇宙速度v1的关系是v2=av1.已知某星球的半径为r,它表面 的重力加速度为地球表面的重力加速度g的b倍.不计其他星
球的影响,则该星球的第二宇宙速度为( )
(5)“双星”问题:两个靠得很近的星体,它们以两者连 线上的某一点为圆心做匀速圆周运动,它们的向心力、向心 加速度大小相同,它们的运动周期相同;但轨道半径不等于 引力距离,关系是r1+r2=l.
高考物理一轮总复习 必修部分 第4章 曲线运动 万有引力与航天 第1讲 曲线运动 运动的合成与分解课
二、对点激活 1.[曲线运动性质的理解][2015·广州模拟](多选)关于做曲线运动的物体,下列说法中正确的是( ) A.它所受的合外力一定不为零 B.它所受的合外力一定是变力 C.其速度可以保持不变 D.其动能可以保持不变
解析 物体做曲线运动,其速度方向一定改变,故物体的加速度一定不为零,合外力也一定不为零, 合外力若与速度始终垂直,动能可以保持不变,故 A、D 正确,B、C 错误。
(2)运动的合成:已知 分运动 求 合运动 ,包括位移、速度和加速度的合成。 (3)运动的分解:已知 合运动 求 分运动 ,解题时应按实际效果分解,或正交分解。 2.遵循的规律:位移、速度、加速度都是矢量,故它们的合成与分解都遵循 平行四边形法则 。
3.合运动的性质 (1)两个匀速直线运动的合运动一定是 匀速直线运动 。 (2)一个匀速直线运动、一个匀变速直线运动的合运动 不一定 (选填“一定”或“不一定”)是直线运
总结升华
决定物体运动的两因素 决定物体运动的因素一是初速度,二是合力,而物体运动的轨迹在合力与速度方向的夹角范围内,且 弯向受力方向,这是分析该类问题的技巧。
(1)物体做曲线运动的条件是什么? 提示:有初速度,且受到与初速度不在一条线上的合外力。 (2)合力方向与轨迹的关系是什么? 提示:合力方向指向轨迹凹侧。 尝试解答 选 ABD。
物体从 A 点向 B 点做曲线运动,所受合外力可能的方向如图所示。由于物体所受的力是恒力,所以任 何一种可能的情况中力的方向也不能和过 B 点的切线 Bb 平行,那么当力 F 突然反向时,物体受的力也不 可能与 Bb 直线平行,所以物体不可能沿过 B 点的切线 Bb 做直线运动,物体仍做曲线运动,故 B 选项正 确;由于合外力方向的变化,必然导致曲线弯曲的方向与原来相反,因此,物体在所受力变向后沿曲线 Bc 运动是可能的,C 选项不正确,A、B、D 选项正确。
高三物理一轮复习 第四章 曲线运动 万有引力与航天章末检测提升(2021年整理)
2017届高三物理一轮复习第四章曲线运动万有引力与航天章末检测提升编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届高三物理一轮复习第四章曲线运动万有引力与航天章末检测提升)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届高三物理一轮复习第四章曲线运动万有引力与航天章末检测提升的全部内容。
第四章曲线运动万有引力与航天一、选择题(本大题共10小题,共40分.每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有错选的得0分)1(多选)如图,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则() A.a的飞行时间比b的长 B.b和c的飞行时间相同C.a的水平速度比b的小 D.b的初速度比c的大解析:平抛运动的竖直分运动为自由落体运动,根据h=12gt2可知,t a<t b=t c,A项错误而B项正确;平抛运动的水平分运动为匀速直线运动,由x=vt=v0错误!,得v0=x错误!,因x a>x b,h a<h b,所以水平速度v0a〉v0b,C项错误;因x b〉x c,t b=t c,所以水平速度v0b〉v0c,D项正确.答案:BD2.如图所示,正在匀速转动的水平转盘上固定有三个可视为质点的小物块A、B、C,它们的质量关系为m A=2m B=2m C,到轴O的距离关系为r C=2r A=2r B.下列说法中正确的是 ( ) A.B的角速度比C小 B.A的线速度比C大C.B受到的向心力比C小 D.A的向心加速度比B大解析:正在匀速转动的水平转盘上固定有三个可视为质点的小物块A、B、C,它们的角速度相同,由v=ωr可知,C的线速度最大,由a=ω2r可知,C的向心加速度最大,由F=mω2r 可知,B受到的向心力比C小,故只有C项正确.答案:C3.如图所示,一个杂技演员骑着特制小摩托车在半径为R的竖直轨道内进行表演,A、C 两点分别是轨道的最高点和最低点,B、D两点分别是轨道的最左侧端点和最右侧端点.人和车的总质量为m,运动过程中速度的大小保持不变,则(设杂技演员在轨道内逆时针运动)( )A.车受到轨道支持力的大小不变B.人和车的向心加速度大小不变C.在C、D两点,人和车所受总重力的瞬时功率相等D.由A点到B点的过程中,人始终处于超重状态解析:人和车做匀速圆周运动,其向心加速度的大小不变,选项B正确;车受到重力、轨道支持力、牵引力和摩擦力的作用,合力的方向指向圆心,大小一定,车受到轨道支持力的大小随位置的改变而改变,选项A错误;由P=Fv cosθ知,在C点人和车所受总重力的瞬时功率为0,在D点人和车所受总重力的瞬时功率不为0,选项C错误;由A点到B点的过程中,人的加速度存在竖直向下的分量,始终处于失重状态,选项D错误.答案:B4.无极变速可以在变速范围内任意连续地变换速度,性能优于传统的挡位变速器,很多种高档汽车都应用无极变速。
2017届高三物理一轮复习(word版):第四章曲线运动万有引力与航天要点
第四章 ⎪⎪⎪曲线运动 万有引力与航天[备考指南]第1节曲线运动__运动的合成与分解(1)速度发生变化的运动,一定是曲线运动。
(×)(2)做曲线运动的物体加速度一定是变化的。
(×)(3)做曲线运动的物体速度大小一定发生变化。
(×)(4)曲线运动可能是匀变速运动。
(√)(5)两个分运动的时间一定与它们的合运动的时间相等。
(√)(6)合运动的速度一定比分运动的速度大。
(×)(7)只要两个分运动为直线运动,合运动一定是直线运动。
(×)(8)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则。
(√)要点一物体做曲线运动的条件与轨迹分析[多角练通]1.(多选)(2015·广州模拟)关于做曲线运动的物体,下列说法中正确的是()A.它所受的合外力一定不为零B.它所受的合外力一定是变力C.其速度可以保持不变D.其动能可以保持不变解析:选AD物体做曲线运动,其速度方向一定改变,故物体的加速度一定不为零,合外力也一定不为零,合外力若与速度始终垂直,动能可以保持不变,故A、D正确,B、C错误。
2.(2015·邯郸模拟)质点做曲线运动从A到B速率逐渐增加,如图4-1-1所示,有四位同学用示意图表示A到B的轨迹及速度方向和加速度的方向,其中正确的是()图4-1-1解析:选D质点做曲线运动时速度方向一定沿曲线在该点的切线方向,而加速度方向一定指向轨迹凹侧,故B、C均错误;因质点从A到B的过程中速率逐渐增加,故加速度与速度方向间的夹角为锐角,D正确,A错误。
要点二运动的合成与分解的应用1.合运动与分运动的关系(1)等时性各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成)。
(2)等效性各分运动叠加起来与合运动有相同的效果。
(3)独立性一个物体同时参与几个运动,其中的任何一个都会保持其运动性质不变,并不会受其他分运动的干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.t 甲<t 乙 B.t 甲=t 乙 C.t 甲>t 乙 D.无法确定
【解析】 设水速为 v0,人在静水中的速度为 v,OA =OB=x. 对甲,O→A 阶段人对地的速度为(v+v0),所用时间 t1 x = ;A→O 阶段人对地的速度为(v-v0),所用时间 t2= v+v0 x x x 2vx .所以甲所用时间 t 甲=t1+t2= + = 2 2.对 v-v0 v+v0 v-v0 v -v0 乙,O→B 阶段和 B→O 阶段的实际速度 v′为 v 和 v0 的合 2 成,如图所示.由几何关系得,实际速度 v′= v2-v0 ,故 2x 2x t甲 v 乙所用时间 t 乙= = 2 2. = 2 2>1,即 t 甲>t 乙, v′ v -v0 t乙 v -v0 故 C 正确. 【答案】 C
考点一 物体做曲线运动的条件及轨迹分析 1.条件:物体受到的合外力与初速度不共线. 2.合力方向与轨迹的关系 无力不拐弯,拐弯必有力.曲线运动轨迹始终夹在合力方向与速 度方向之间,而且向合力的方向弯曲,或者说合力的方向总是指向轨 迹的“凹”侧. 3.合力方向与速率变化的关系 (1)当合力方向与速度方向的夹角为锐角时,物体的速率增大. (2)当合力方向与速度方向的夹角为钝角时,物体的速率减小. (3)当合力方向与速度方向垂直时,物体的速率不变.
【解析】 有风时, 气球实际速度的大小 v= 32+42 m/s=5 m/s, A 错误;气球沿合速度方向做匀速直线运动,轨迹为直线,B 错误; 水平速度增大,但气球飞行的时间不变,水平方向的位移增大,竖直 方向的位移不变,合位移增大,故气球到达高度 h 处的路程变长,C 正确,D 错误. 【答案】 C
[例 3] 有一条两岸平直、河水均匀流动、流速恒为 v 的大河.小 明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线 与河岸垂直.去程与回程所用时间的比值为 k,船在静水中的速度大 小相同,则小船在静水中的速度大小为( ) kv v kv v A. 2 B. C. 2 2 D. k -1 1-k 1-k k2-1
考点三 小船渡河问题 1.船的实际运动:是水流的运动和船相对静水的运动的合运动. 2.三种速度:船在静水中的速度 v1、水的流速 v2、船的实际速 度 v.
3.三种情景 d (1)过河时间最短:船头正对河岸时,渡河时间最短,t 短= (d 为 v1 河宽). (2)过河路径最短(v2<v1 时):合速度垂直于河岸时,航程最短,x 短 =d. (3)过河路径最短(v2>v1 时):合速度不可能垂直于河岸,无法垂直 河岸渡河.确定方法如下:如图所示,以 v2 矢量末端为圆心,以 v1 矢量的大小为半径画弧,从 v2 矢量的始端向圆弧作切线,则合速度沿 v1 d v2 此切线方向航程最短.由图可知 sinθ= ,最短航程 x 短= = d. v2 sinθ v1
[思维诊断] (1)做曲线运动的物体,其所受合外力一定不为零,一定具有加速 度.( √ ) (2)做曲线运动的物体,其瞬时速度方向就是位移方向.( × ) (3)两个分运动的时间一定与它们合运动的时间相等.( √ ) (4)合速度大小一定大于任一分速度的大小.( × ) (5)两个直线运动的合运动一定是直线运动.( × )
真题检测 1.(多选)如图所示,吊车以 v1 速度沿水平直线匀速行驶,同时以 v2 速度收拢绳索提升物体时,下列表述正确的是( ) A.物体的实际运动速度为 v1+v2 2 B.物体的实际运动速度为 v2 + v 1 2 C.物体相对地面做曲线运动 D.绳索保持竖直状态
【解析】 物体同时参与了水平方向的匀速运动和竖直方向的匀 2 速运动,则 v= v2 + v 1 2,A 错误,B 正确;两个匀速运动合成后的合 运动仍为匀速运动,C 错误;绳索对物体的拉力和物体所受重力平衡, 则绳索对物体的拉力方向一定是竖直向上的,绳索保持竖直状态,D 正确. 【答案】 BD
[解析] 设河宽为 d,小船在静水中的速度大小为 u,去程时间 t1 d d t1 v = ;回程时间 t2= 2 2;又 =k,联立解得 u= 2,选项 B u t 2 u -v 1- k 正确. [答案] B
变式训练 3 如图所示,甲、乙两同学从河中 O 点出发,分别沿 直线游到 A 点和 B 点后,立即沿原路线返回到 O 点,OA、OB 分别 与水流方向平行和垂直,且 OA=OB.若水流速度不变,两人在静水中 游速相等,则他们所用时间 t 甲、t 乙的大小关系为( )
[典例] 用绳子通过定滑轮拉物体 A,A 穿在光滑的竖直杆上, 当 以速度 v0 匀速地拉绳使物体 A 到达如图示位置时, 绳与竖直杆的夹角 为 θ,则物体 A 实际运动的速度是( ) v0 A.v0sinθ B. sinθ v0 C.v0cosθ D. cosθ
[解析] 由运动的合成与分解可知,物体 A 参与两个分运动,一 个是沿着与它相连接的绳子的运动,另一个是垂直于绳子向上的运 动.而物体 A 实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的 运动就是物体 A 的合运动,它们之间的关系如图所示.由三角函数可 v0 得 v= ,所以 D 选项是正确的. cosθ [答案] D
【解析】 根据题意,物体开始做匀速直线运动,物体所受的合 外力一定为零, 突然撤去 F2 后, 物体所受其余力的合力与 F2 大小相等、 方向相反,而物体速度的方向未知,故有很多种情况:当速度的方向 和 F2 的方向在同一直线上,物体做匀变速直线运动;当速度的方向和 F2 的方向不在同一直线上,物体做曲线运动.A、B 正确. 【答案】 AB
4.(多选)一快艇要从岸边某处到达河中离岸 100 m 远的一排浮标 处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图 乙,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变, 则( ) A.快艇的运动轨迹可能是直线 B.快艇的运动轨迹只能是曲线 C.最快到达浮标处通过的位移为 100 m D.最快到达浮标处所用时间为 20 s
变式训练 2 (2016· 广东汕头一模)无风时气球匀速竖直上升,速 度为 3 m/s.现吹水平方向的风,使气球获得 4 m/s 的水平速度,气球经 一定时间到达某一高度 h,则有风后( ) A.气球实际速度的大小为 7 m/s B.气球的运动轨迹是曲线 C.若气球获 5 m/s 的水平速度,气球到达高度 h 处的路程变长 D.若气球获 5 m/s 的水平速度,气球到达高度 h 处的路程变短
2.(2015· 新课标全国Ⅱ)由于卫星的发射场不在赤道上,同步卫星 发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移 轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿 同步轨道运行.已知同步卫星的环绕速度约为 3.1×103 m/s,某次发射 卫星飞经赤道上空时的速度为 1.55×103 m/s,此时卫星的高度与同步 轨道的高度相同,转移轨道和同步轨道的夹角为 30° ,如图所示.发 动机给卫星的附加速度的方向和大小约为( ) A.西偏北方向,1.9×103 m/s B.东偏南方向,1.9×103 m/s C.西偏北方向,2.7×103 m/s D.东偏南方向,2.7×103 m/s
提能微课 10 牵连速度的分解 两个运动物体或质点通过绳或杆相牵连,由于绳不可伸长,杆 既不能伸长也不能压缩,连接体两端物体的速度在连接媒介方向上的 分量大小必定相同.即连接体一端物体速度沿着连接媒介方向和垂直 连接媒介方向分解,连接体另一端也同样如此分解,根据在媒介方向 的两个分速度相等列出等式即可将两端物体的速度进行关联.
[要点回顾] 知识点一 曲线运动 1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切 线方向. 2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所 以曲线运动一定是变速运动. 3.曲线运动的条件
知识点二 运动的合成与分解 1.基本概念 (1)运动的合成:已知分运动求合运动. (2)运动的分解:已知合运动求分运动. 2.分解原则:根据运动的实际效果分解,也可采用正交分解. 3.遵循的规律:位移、速度、加速度都是矢量,故它们的合成与 分解都遵循平行四边形定则.
【解析】
作出速度合成图如图所示,由平行四边形定则可知,速度应东偏 2 3 南.又由余弦定理得 v= v2 + v - 2v v cos 30° = 1.9 × 10 m/s,B 正 同 转 同 转 确. 【答案】 B
3.(多选)一个物体在 F1,F2,F3,„,Fn 共同作用下做匀速直线 运动,若突然撤去外力 F2,则该物体( ) A.可能做曲线运动 B.可能继续做直线运动 C.一定沿 F2 的方向做直线运动 D.一定沿 F2 的反方向做匀减速直线运动
变式训练 1
如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到 D 点时速度方向与加速度方向恰好互相垂直,则质点从 A 点运动到 E 点的过程中,下列说法中正确的是( ) A.质点经过 C 点的速率比 D 点的大 B.质点经过 A 点时的加速度方向与速度方向的夹角小于 90° C.质点经过 D 点时的加速度比 B 点的大 D.质点从 B 到 E 的过程中加速度方向与速度方向的夹角先增大 后减小
【解析】 质点做匀变速曲线运动,所以加速度不变;由于在 D 点时速度方向与加速度方向垂直,则在 C 点时速度方向与加速度方向 的夹角为钝角,所以质点由 C 到 D 速率减小,所以 C 点速率比 D 点 大.质点做匀变速曲线运动,则有加速度不变,所以质点经过 B、D 点时加速度相同. 【答案】 A
考点二 运动的合成与分解 1.合运动和分运动的关系 (1)等时性:各个分运动与合运动总是同时开始,同时结束,经历 时间相等(不同时的运动不能合成). (2)独立性: 一个物体同时参与几个分运动时, 各分运动独立进行, 互不影响. (3)等效性:各分运动叠加起来与合运动有完全相同的效果. 2.运动的合成与分解的运算法则 运动的合成与分解是指描述运动的各物理量即位移、速度、加速 度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边 形定则.