车门铰链轴线内倾角设计探析
车门附件设计

帽形防撞梁
管状防撞梁 防撞梁的布置原则为: 1.防撞梁与车门外板的间隙为3~5mm,便于涂胶; 2.防撞梁的布置主要考虑充分有效的引导撞击载荷到车身刚度更好承载能力更强的地 方 ,前车门防撞梁一般布置为前高后低,其目的是将侧碰的能量传递到B柱下端及与 门槛的连接处,减少车门的侵入量; 3.后车门的防撞梁通常受到空间结构及与运动件间隙的限制,其布置形式有前低后高, 前高后低及水平形式。
限位器 限位器的作用是限制车门的开启角度。 限位器一般有拉杆式以及铰链自带扭簧式限位器。 对于拉杆式限位器的布置: 1.限位器的转轴应与铰链轴平行。 2.限位器转轴和铰链轴之间的距离一般要大于60mm,否则限位器的限位 力可能不够 3.限位器在高度方向上的布置应尽量布置在上、下铰链中间的位置上 4.限位器布置应考虑限位器与玻璃及导槽和周边零件的运动间隙。
车门附件设计
车门铰链 1.上、下铰链一定要同轴 2.为了使铰链受力情况良好,车门上下铰链间距应尽量大,一般为350mm—— 500mm 3.车门铰链要尽可能的向外布置,这样有利于车门的运动间隙 4.铰链轴线具有内倾角,一般角度为1~2度。其目的是让车门在打开时重心提高, 让车门有一个自关门力;车门下沿在开门时有一个提升,保证路边停车后在开门时 车门下沿与路肩有个安全距离。至于铰链轴的前、后倾角,主要是为了达到上述目 的,配合内倾角及根据分缝线综合考虑。前、后倾角一般为0~3度。铰链轴内倾角 是指轴线在X=0的平面上的投影和Z轴之间的夹角,前、后倾角是轴线在Y=0的平 面上的投影与Z轴之间的夹角。 前、后倾角 5.铰链的开启角度一般比限位器角度大5度。 6.铰链布置完成后应进行运动校核。 内倾角
车门玻璃: 随着现在汽车外型流线型的提高,汽车车门玻璃多采用双曲率面。 根据外造型提供的CAS面,拟合成符合工程要求的双曲率面,同时得到玻璃运动 的螺旋线。
车门的内外倾角 前后倾角

什么是车门内外倾角前后倾角
据了解铰链轴线在X=0的平面上的投影与Z轴的夹角是车门铰链轴的内倾角和外倾角,其中内倾角能够保证车门有自动关门的趋势,而外倾角使车门有自动开门趋势,一般很少使用,目前为止本人就只见过Vitz后门采用了外倾角的方式;
铰链轴线在Y=0的平面内的投影与Z轴之间的夹角是车门铰链轴的前倾角和后倾角,在车门铰链轴内倾的情况下,后倾角对于自动关门有加强的作用,而前倾角则导致车门部分自动关门,部分自动开门;
举个例子,假如铰链轴内倾2度,前倾2度,那么在车门开启至45度左右的时候是车门的失稳点,因为此时车门重心最高,车门开启角度小于45度时自动关门,车门开启角度大于45度时,自动开门。
另外,对于内倾角通常要求0度至3度,最佳角度为2度;最好没有前后倾角,如果一定要有,那么范围是0至5度。
车门铰链布置和运动校核

.车门铰链布置和运动校核车门铰链的设计是车门设计的一项重要工作,直接关系到车门能否正常开启。在铰链设计中,铰链中心线定位和铰链中心距是重要的设计硬点。铰链轴线一般设计成具有内倾角和后倾角。内倾角指铰链轴线在x=0平面上的投影与z轴之间的夹角,内倾角一般为0~4°,见图4;后倾角指铰链轴线在y=0平面上的投影与z轴之间的夹角,一般为0~2°,见图5。内倾角和后倾角都是为了使车门开启时获得自动关门力,也有个别汽车门铰链具有前倾角,但一般不会有外倾角。车门铰链轴线的设计先确定铰链轴线沿车身方向的尺寸变化范围(X1,X2),并在此范围内任选一值Xm,将轴线限制在与x轴垂直的平面x=Xm内,在x=Xm平面内确定铰链轴线的倾斜状态:先分别求出x=Xm平面与内外板曲面的交线C1和C2,并求出C1和C2对应的y方向的极限坐标位置Ymin(内板投影线最左端)、Ymax(外板投影线最右端);在x=Xm平面内通过输入直线方程y=B,B∈(Ymin,Ymax)来生成一条与z轴平行的轴线Z1Z2;确定铰链轴线中心点的z坐标值:通过内板上下边框或外板上下边框求出平均位置坐标z=C,并根据它在y=B直线上求出一点O;根据铰链轴线内倾角范围θ∈(0°,4°),将y=B直线绕O点逆时针旋转θ角度,得到轴线位置O1O2。根据铰链间距L∈(300mm,500mm),以铰链中心O为初始点,沿直线y=B确定两点D和E,使两点间线段长度为L,调整L值以及轴线外板的距离,保证在铰链宽度方向不与外板干涉的情况下,轴线尽量靠近外板的极限位置(L值确定已知时)。若L值可以改变,则可以考虑稍微减小L值,轴线更靠近外板(车门外板曲率较大时)。可以通过改变最初的B值重新生成轴线O3O4或作O1O2的平行线来改变轴线到外板的距离。当轴线位置最终确定后,根据D、E两点位置可将铰链模型正确地放入车门门腔内,待进一步运动校核及干涉检验。铰链中心距的确定可参考车门长度,一般铰链中心距/车门长度=33%,或者更长。需要说明的是在布置铰链时,应注意在结构允许的情况下,车门上下两铰链之间的距离应尽可能大。为了避免打开车门时与其它部分干涉,铰链的轴线应尽可能外移,使其靠近车身侧面。铰链中心线位置和中心距确定后,需要进行运动干涉校核,这也在主断面设计中完成,可能出现的干涉位置有前后门干涉、前门与A柱翼子板干涉、门与铰链干涉等,在可能干涉的位置取主断面,将车门延中心线旋转,即可一目了然,如图6。1.6车门玻璃设计以及车门玻璃升降器的设计布置玻璃要设计为双圆环面,可以和外造型匹配,达到玻璃升降的平顺性,圆环面的数学方程如下,其思想简图与基本参数见图7、8:当R足够大且圆柱半径r远远小于R时,从圆环面上截取的玻璃曲面仍近似为柱面。玻璃的运动可以认为是一种绕圆环面中心引导线的旋转运动,其运动轨迹是与引导线成一定夹角的圆环截面线的一部分。R=15~25km,r=1200~2000m;大客车为R=∞,r=4000~7000m。玻璃升降器是车门设计中很重要的一个环节,它的合格与否直接影响到车窗的开闭。玻璃升降器在设计过程中,关键在于安装和玻璃导轨的曲线确定。有了玻璃的数据后,可求出玻璃的质心位置,根据以往设计经验和一些样车数据,一般单导轨的位置是在玻璃质心位置向B柱方向偏移15~25mm,双导轨的间距应在不干涉内门板和其它附件的情况下尽可能大,但两个导轨的中线应该在玻璃质心位置向B柱方向偏移15~25mm。导轨位置确定后,通过偏置玻璃面求出导轨的弧度,此导轨弧度为空间螺旋曲线。由于玻璃运动近似圆弧运动,但升降器的长导轨在自由状态下是平面运动,所以在玻璃升降过程中,升降臂和平衡臂会变形随长导轨一起运动。为了提高升降器的寿命,应使运动过程中升降臂和平衡臂的变形量尽可能小。图9表示了玻璃运动轨迹和长导轨在自由状态下的运动轨迹,A、B、C分别表示了玻璃在上、中、下3个位置时升降臂和平衡臂的最大变形量,其中C>A=B。2 结语设计硬点控制在车门设计的灵魂,主断面是车门设计的重要手段,以此为思路,使车门设计有条不紊,效率得以提高,质量得以保证。车门设计是车身设计中最复杂、难度最大,实际过程中可能会遇到很多情况,有时甚至会出现控制硬点之间相互矛盾,需要具体问题具体分析,不断调整以达到最优结果。。
车门铰链的设计

车门铰链的设计【摘要】本文主要以金杯换代车型车门铰链设计为基础,论述了车门铰链的设计流程,以及在车门铰链的设计过程中应注意的问题。
【关键词】车门;铰链车门铰链的设计是车门设计的一项重要的工作,直接关系到车门能否正常开启?在整车设计中铰链的设计也是相对的复杂,其要充分考虑门框的边界、人机工程、车门下垂的诸多问题。
1 车门铰链的位置布置1.1 基础定义(1)车门内、外倾角铰链轴线在X=0平的面上投影与z轴之间的夹角。
建议内或内倾角不超过2°;一般没有外倾角。
(2)车门前、后倾角铰链轴线在Y=0平面上的投影与z轴之间的夹角。
建议前或后倾角不超过1.5°。
(3)门铰链的最大开度角车门铰链所能开启的最大角度值。
(4)车门最大开度角车门所能打开的最大角度值。
(5)上下门铰链中心的距离上下门铰链中心的距离一般与车门的自重、分缝线的曲率及固定立柱的外形等有关,中心距一般不小于350mm。
图1 车门铰链布置1.2 铰链轴线的设定铰链轴线的布置是整个开闭件后续结构设计的基础。
其具体原则如下:(1)铰链轴线应定成内倾或后倾,通常以内倾0~2度,后倾0~1.5度,以便有利于在保证铰链间距的条件下,增大轴线的外移程度。
同时车门在自身重力的作用下能够自动合上。
但在设计设计过程中因各种条件限制,铰链轴线无法保证内倾或后倾,可能与z方向平行。
(2)铰链轴线布置应尽量靠近车门外板和车门前端,因为轴线越靠近车门外板,门完全打开后,前门与翼子板间隙以及前后门间隙就越大,有效避免干涉;轴线越靠近车门前端,门旋转时,其对A、B柱的侵入量越小。
1.3 铰链间距的设定在结构允许的情况下,车门上下两铰链之间的距离应尽可能大,因为距离越大,铰链X向受力越小,可以有效防止车门下垂。
在实际设计过程中由于造型等各种原因限制,使得铰链间距离无法满足要求。
但应尽量保证前后门铰链中心距应不小于1/3 的车门宽度。
1.4 在车门铰链的布置设计中除上述外还应注意以下几个方面(1)为能获得更好的链接刚度,应在车门本体和门柱上设置必要的加强板或采用增厚的内板焊接,因为车门与铰链和门柱与铰链的连接刚度不足,往往是车门下沉的主要原因。
车门设计要领

车门设计要领
1、内外倾角及前后倾角0--4度
2、门铰链中心距/车门长度(到鱼嘴口)大于等于1/3,通常350--500,尽可能的大,布置位置尽可能的靠外铰链的设计要素:铰链形式,铰链的安装平面,铰链中心距,车门长度,门的开启度。
3、一般开闭件的缝隙小于等于5mm,非运动件小于等于4.5mm.密封条的压缩量等于板金距离的1/2--1/3。
设计前首先进行断面设计。
4、防撞杆和外表面的最小距离是5mm,玻璃升降器和内板的最小距离是12.5m m.
5、内板和外板是偏置关系,距离3--5mm.
6、后背门的开启是75-90度,或离地1880-2200mm.
7、后仓门开启是90度。
8、前发动机盖内板和外板之间3--5mm的间隙用传力胶连接,目的是增加外板强度,内板还有工艺孔,大的漏液孔的设计,便于涂装时快速漏液,还有折弯吸能的凹槽设计。
9、车门外板的包边长度为7--11mm,焊接件配合处没缝隙,不配合处放应该预留3mm以上的间隙,否则在车身振动或扭曲时会产生嘎吱声,另外内外板间隙至少3mm,最好5mm以上,否则不能保证底漆彻底,有生锈危险。
活动件(玻璃、手柄开启装置)与其他零件间隙10mm以上,否则在大力关门时可能会产生碰撞声。
车门铰链布置及分缝线设计指南

车门铰链的布置和分缝线设计是车辆设计中非常重要的一部分,它直接影响到车门的开启、关闭以及密封性能。
以下是关于车门铰链布置及分缝线设计的一些建议指南:
车门铰链布置设计指南
1. 结构强度:车门铰链的布置应考虑车门的重量和结构强度,确保在正常使用情况下不会出现变形或破损。
2. 开合角度:车门铰链的设计要充分考虑车门的开合角度,以便乘客能够方便地进出车辆,并且要避免与车身其他部件碰撞。
3. 平衡性:车门铰链设计应考虑车门的平衡性,使得车门在打开和关闭时能够平稳运动,避免产生过大的惯性力。
4. 润滑和防锈:考虑使用耐用的铰链材料和润滑系统,以减少摩擦和延长使用寿命。
同时,应考虑防锈处理,特别是对于车辆在恶劣环境下的使用情况。
分缝线设计指南
1. 密封性能:分缝线设计要确保在车门关闭时能够有效地密封,避
免外部灰尘、水汽等进入车内。
2. 外观和匹配度:分缝线设计应考虑与车身板金的匹配度和美观性,使得整体外观更加流畅自然。
3. 减少噪音:分缝线的设计要尽量减少风噪和路噪的传入,提高车内的舒适性。
4. 材料选择:选择耐用、柔软的密封材料,能够适应车门在开合时的变形,同时具有良好的回复性能。
5. 防水处理:在分缝线的设计中要考虑防水性能,特别是对于车辆在多雨或多泥泞的道路行驶时,确保车门的密封性。
以上只是一些车门铰链布置及分缝线设计的基本指南,实际设计中还需要根据具体车型、品牌和使用场景进行更为具体的设计和优化。
车门铰链设计规范

编号代替密级商密×级▲汽车工程研究院设计技术规范车门铰链设计规范2006-09-30制订2006-10-30发布前言3 车门铰链的定义及结构类型3.1 车门铰链的定义车门铰链是连接车身与车门的关键部件,也是车门主要受力部件,车门围绕门铰链轴开启与关闭。
3.2 车门铰链应满足的要求车门铰链应满足以下基本要求:1)门铰链支架可靠性好,满足重复试验要求,且碰撞或受冲击后不脱落;2)门铰链衬套转动灵活,不滞涩;3)两铰链轴的轴线必须在一条直线上,为了使车门有自动关闭的趋势,铰链轴线应有一定的内倾角度和前倾角度,不宜过大;4)两铰链的间距应尽量大,以减小铰链的受力;5)铰链轴线应尽量布置得靠车门外板和车门前端,以减少车门旋转时铰链轴前面的车门的旋入量;6)铰链要固定牢固,活动件间隙尽量小,避免车门下沉。
4车门铰链设计要点4.1 铰链的结构形式分类方式结构型式结构特点事例图片备注加工方式冲压铰链冲压铰链具有质量小、成本低等优点,但其缺点主要有制造一致性不易保证,承载能力较铸造铰链弱。
铸造铰链铸造铰链可以将结构做得比较复杂,能够保证良好的制造精度和一致性。
缺点是质量大,成本高。
装配方式焊接铰链焊接铰链主要集中在欧美车型上,其特点是连接强度可靠。
由于其产生热变形的缘故,越来越多的欧美车开始放弃这种安装方式。
总装铰链总装铰链采用螺栓安装的方式连接车门和车体。
螺栓安装可以避免焊接过程中产生的热变形及应力集中,安装工艺简单,得到广泛的应用。
4.2 铰链的材料选择铰链类型推荐材料备注冲压铰链钢板 5.0-GB709-8815-Ⅱ-S-GB710-91阳铰链厚5.0mm阴铰链厚4.5mm铸造铰链ZG35其厚度根据结构确定20Mn GB/T699-1999ZG230-450 GB/T11352-19894.3 铰链轴心线的布置轴心线的布置,考虑其前倾角和内倾角,要保证当车门打开到最大开度时,车门在高度方向上升30mm左右。
车门铰链构造及设计介绍

做为链接车身与车身重要零件,它的主要作用是:保证和保持车门相对与车身的位置,保证和便于车门的开合。
铰链除满足必要的功能性作用外,还要考虑人机工程,造型分缝,车门下垂等问题。
1车门铰链一般设计开发流程(见图1)2铰链的基本介绍2.1车门铰链形式铰链有明铰链与暗铰链之分,暗铰链比较常用,且有内开式与外开式两种运动形式。
根据铰链结构形式,天盛铰链可分为冲压式、焊接式,固定式,整体式,可拆卸式等。
2.2车门铰链固定形式门铰链一般采用三种连接方式:a.与车身与侧围采用螺栓连接方式;b.与车门采用焊接,与侧围采用螺栓连接方式;c.与车门,侧围采用焊接连接方式;2.3铰链轴线参数A.车身内,外倾角:铰链轴线在x=o平面上投影与Z轴之间的夹角,建议内倾角不超过2度;-般没有外倾角。
b.车门前,后倾角:铰链轴线在Y=O平面上投影与Z轴之间的夹角,建议前,后倾角不超过2度;c.门铰链最大开度角:车门铰链所能开启最大角度值,如带限位器铰链,最大角度值制造误差为±3度;d.车门最大开度值:车门所能打开角度值,一般是指限位器最大开启角度值,开启角度值制造误差为±3度;e.上下门铰链中心的距离:上下门铰链中心距离一般与车门自重,分缝线的曲率及固定立柱的外形等有关。
2.4门铰链的运动干涉检查铰链必须保证车门从闭合到铰链最大开启角度+3度过程中不与车身上任何部位发生干涉;在运动中,车身与车门最小间隙:设计门缝间隙4mm时,最小间隙为1.8—2.5mm,最小间隙一般出现在车门开启(3度一8度)及车门外板最大凸弧面处。
前门开启角度一般不小于60度,极限的超程角度为64±3度;后门开启角度一般不小于66度,极限超程角度为70±3度:车门打开过程中,不能和铰链本体及铰链本体固定螺栓干涉,推荐最小间隙3-5mm。
2.5门铰链轴线优化在正向设计车门过程中,根据外造型和车门分缝线。
铰链位置的确定步骤如下:第一步:选定铰链的结构形式与安装方式;第二步:初步指定铰链的倾角,然后把上下铰链安装在适当位置上,同时检查铰链车门旋转到最大开度加超程角过程中,保证车门与车身不干涉,车门外板与铰链本体不干涉;铰链验证时,要考虑生产中可能的误码差,一般铰链轴线的验证时按(X:±2mm:Y:±1mm)进行;如图2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车门铰链轴线内倾角设计探析
作者:张朝林
来源:《时代汽车》2019年第04期
摘要:车门铰链轴线是车门设计的核心部位,同时也是检验车门造型可行性的重要依据,是整个车门附件布置的基础所在。
随着人们生活水平的提升,不论是从汽车产品的性能还是整体品质来讲,人们的汽车消费需求越来越多,而作为相对独立的部分,车门的设计更是备受关注。
而对于汽车制造行业来讲,车门铰链轴线布置是设计人员需要考虑的重要因素,本文以此为背景,重点对车门铰链轴线内倾角设计要点进行了分析。
关键词:车门铰链;轴线;内倾角
1 车门铰链轴线设置关键影响要素
1.1 车门铰链轴线倾角
车门铰链轴线倾角主要分为内倾角、外倾角、前倾角和后倾角。
内倾角和后倾角主要是为车门开启提供势能、为关闭车门提供自动关闭能量,其中铰链轴线内倾角提供的关门能量最具明显。
铰链间距指的是车门上下铰链中心平面距离,在汽车空间允许的条件下,间距越大产生的效果越好,因为间距越大,车门铰链在x方向上的受力也会越小,这样可以避免车门下沉,提升车门刚度。
然而在设计过程中,可能会受到整车外观设计、钣金成形性等因素的限制,所以铰链间距实际上无法达到最理想的状态。
1.2 车门最大开度
所谓车门最大开度实际上指的是车门能够打开的最大角度,通常最大开度就是限位器的最大限位角度(一般在65-75°),铰链的最大开度是其具备的限位角度,通常车门最大开度为3°。
校核角度是车门运动校核角度,通常在铰链最大开度基础上增加2-4°。
1.3 车门提升量
车门开启的时候,Z向向上的运动趋势让车门产生势能,关闭车门时,势能转化为关门能量,即为车门提升量,也就是Z向产生的高度差,通常前门提升量在12.7-13.3mm之间,因为后门重量要大于前门,所以提升量也较大,在20.3-27.94mm之间。
1.4 车门开关方便性评价指标
1.4.1 静态关闭力
所谓静态关闭力指的是车门从半锁状态到全锁状态的过程中,车门外把手拉置需要的操作力,静态关闭力的测量需要借助维力计,量程为500N。
1.4.2 瞬时最小关闭速度
瞬时最小关闭速度指的是车门在关闭的时候,能够让车门达到全锁状态的最小关闭速度。
量化评价主要是测量车门在全锁位置的最小瞬时速度,当然在具体的测量中,需要使用光学测速仪经过多次的实验测量,才能获取最小关闭速度。
1.4.3 车门开关方便性的影响因素
车门密封条反弹力、空气阻力、车门自身重力以及车门铰链限位器也是影响开关方便性的因素。
例如密封条反弹力能够通过调整胶条泡管厚度和薄弱点等来实现最理想的压缩负荷,进而给乘客良好的车门开关体验;空气阻力通过汽车排气格栅数量、面积等射击使其达到自家装填;铰链限位器等结构的阻力通常很小,甚至可以忽略不计;车门自身的重力对车门开关方便性的影响主要体现在铰链倾角(内倾角),而这也是本文研究的重点方向。
2 车门铰链轴线内倾角设计
2.1 车门铰链原理
车门铰链也叫作合页,在车门开启的时候,支架和门型连门架开始相对转动,U型弹簧带着定位滚轮在扇形定位曲线上滚动,由于U型弹簧的存在,在滚动的过程中,定位滚轮在凸轮顶点移动过程中会对车门开启产生阻力,通过凸轮定点后在弹簧作用力下产生一定的助开力。
当滚轮移动到定位凹槽时,凹槽会对车门产生定位作用,相反,关门的时候也会产生相应的阻力和助闭力。
当滚轮到达最大限位卡时,车门打开到最大位置。
原理如图1所示:
其中:D为车门重心到铰链轴线的距离;
α为车门的开启角度;
η为车门关闭状态下车门重心到铰链轴线垂线和y平面的夹角;
G为车门关闭状态下的重心位置;
G'为开启角度α时车门重心位置;
G1、G2为车门重力在开启平面上的分力。
根据上面的原理图,车门自关力、自关力矩计算公式如下:
以上为车门自关力计算公式。
以上为车门自关力矩计算公式。
其中:α为车门的开启角度;
γ为车门铰链轴线内倾角。
2.2 车门铰链轴线内倾角设计应用
根据上面提到的车门轴线工作原理以及车门自关力、自关力矩计算公式,以下重点对车门铰链轴线内倾角设计应用进行分析,对于车门铰链轴线内倾角设计应用的分析本文借助某大质量汽车为例。
2.2.1 车门轴线倾角目标设定
车门轴线倾角设计之前,首先针对市场中已经存在的同一层次的汽车车门开关方便性进行了主观评价,与此同时还对这些车门的铰链轴线倾角做了三坐标测量,通过主观评价结果和三坐标测量结果可以看出,所有汽车的车门铰链轴线内倾角对于车门开关方便性产生的影响最大,通常内倾角大于2.5°的时候,车门操作更加便捷,如果内倾角小于2°,则操作方便性相对较差,内倾角在1°以下的时候车门操作便捷性最差。
根据开关方便性主观评价以及最终的坐标测量结果,我们将该大质量车门铰链轴线内倾角目标设定为3°。
2.2.2 车门自关力矩计算
车门自关力矩计算过程按照上面的公式进行带入,带入的时候按照上面的自关力计算公式,分别对α去不同的数值,如α等于0、5、10....70,而相应的G1水平均为0.0,G2水平均为20.9N,通过将这些数据带入到计算公式中计算Mg水平,最终的结果发现,随着α的增加,在保证车门重力在开启平面上的分力不变的情况下,车门自关力矩会随着α的增加逐渐减小。
具体计算结果如表1所示:
2.3 实物测量实验与主观评价结果
实际上从上面的车门自关力计算结果可以看出,实车重力矩测量结果与设计之初的计算结果基本上相同,之间不会存在较大的误差,而通过对车门重心位置、车门重量等参数的估算,最终得出该大质量汽车的车门开关方便性主观评价良好,既能够满足车辆应有的开关方便性,同时也能够达到最初主观评价效果。
3 结论
总的来讲,车门作为车辆上的重要运动件,通过车门铰链连接在整车车身上,铰链的存在对于车门开关方便性有重要的作用,而本文也重点对车门开关方便性的量化评价方法以及影响这种结果的主要因素进行了重点分析,同时对车门铰链原理、车门自关力、车门自关力矩计算公式做了简单介绍,并借助具体的车门设计实例分析了车门铰链倾角设计对于车门开关方便性以及主观体验影响的重要性,通过最终的分析结果可以看出,汽车车门铰链轴线内倾角对于车门开关方便性有决定性的影响,最终得出结论,如果内倾角小于2°,则操作方便性相对较差,内倾角在1°以下的时候车门操作便捷性最差,车门铰链轴线内倾角设计角度在2.5°以上的条件下,车门开关方便性能够达到理想的状态。
参考文献:
[1]胡建锋.基于CATIA的侧门铰链布置设计[J].汽车实用技术,2018(16):143-145.
[2]高尚鹏,刘海根,邴建.乘用车车门铰链正向布置技术研究[J].北京汽车,2018(03):33-37.
[3]刘漪青.车门铰链轴线布置方法[J].汽车与配件,2018(05):75-77.。