高中物理稳恒电流题20套(带答案)

合集下载

【物理】 高考物理稳恒电流试题(有答案和解析)

【物理】 高考物理稳恒电流试题(有答案和解析)

【物理】高考物理稳恒电流试题(有答案和解析)一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T 范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.3.如图所示,一根有一定电阻的直导体棒质量为、长为L ,其两端放在位于水平面内间距也为L 的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。

高考物理稳恒电流专项训练及答案

高考物理稳恒电流专项训练及答案

高考物理稳恒电流专项训练及答案一、稳恒电流专项训练1.如图所示,已知电源电动势E=20V,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L和内阻R D=1Ω的小型直流电动机D都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A(2)7V(3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。

2.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222 ()2E EP I R RrRrR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.3.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g . (1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL【解析】 【分析】 【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52grv =(2)杆转动的电动势21122BLv BL L BL εωω==⨯=电阻R 的功率22424B L P R Rεω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-=从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mgE q=杆转动的电动势21112BL εω= 两板间电场强度11E dε=联立解得12mgdqBL ω=如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-=杆转动的电动势22212BL εω= 两板间电场强度22E dε=联立解得227mgdqBL ω=综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgdqBL qBL ω≤≤.4.如图所示,一根有一定电阻的直导体棒质量为、长为L ,其两端放在位于水平面内间距也为L 的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。

高考物理稳恒电流试题(有答案和解析)含解析

高考物理稳恒电流试题(有答案和解析)含解析

高考物理稳恒电流试题(有答案和解析)含解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。

高考物理稳恒电流试题(有答案和解析)

高考物理稳恒电流试题(有答案和解析)

高考物理稳恒电流试题(有答案和解析)一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。

高中物理稳恒电流题20套(带答案)含解析

高中物理稳恒电流题20套(带答案)含解析

高中物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm金属丝直径为(1.5+0.380) mm="1.880" mm.(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0V A 0100,0.5R RR R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.2.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电动机的电阻R 0=1.0Ω,电阻R 1=1.5Ω.电动机正常工作时,电压表的示数U 1=3.0V ,求:(1)电源释放的电功率;(2)电动机消耗的电功率.将电能转化为机械能的功率; 【答案】(1)20W (2)12W 8W . 【解析】 【分析】(1)通过电阻两端的电压求出电路中的电流I ,电源的总功率为P=EI ,即可求得; (2)由U 内=Ir 可求得电源内阻分得电压,电动机两端的电压为U=E-U 1-U 内,电动机消耗的功率为P 电=UI ;电动机将电能转化为机械能的功率为P 机=P 电-I 2R 0. 【详解】(1)电动机正常工作时,总电流为:I=1U RI=3.01.5A=2 A , 电源释放的电功率为:P=EI =10×2 W=20 W ; (2)电动机两端的电压为: U= E ﹣Ir ﹣U 1 则U =(10﹣2×0.5﹣3.0)V=6 V ;电动机消耗的电功率为: P 电=UI=6×2 W=12 W ; 电动机消耗的热功率为: P 热=I 2R 0 =22×1.0 W=4 W ;电动机将电能转化为机械能的功率,据能量守恒为:P 机=P 电﹣P 热 P 机=(12﹣4)W=8 W ;【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.3.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222()2E EP I R RrR rR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a .如图所示当外电路电阻R =r 时,电源输出的电功率最大,为2max =4E P r(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.4.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。

高考物理稳恒电流题20套(带答案)含解析

高考物理稳恒电流题20套(带答案)含解析

高考物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.2.要描绘某电学元件(最大电流不超过6m A,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10m A,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。

(1)实验时有两个滑动变阻器可供选择:a、阻值0到200Ω,额定电流b、阻值0到20Ω,额定电流本实验应选的滑动变阻器是(填“a”或“b”)(2)正确接线后,测得数据如下表12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.400.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(mA)a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”)b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)【答案】(1) a(2) a) Pb)【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。

(物理) 高考物理稳恒电流试题(有答案和解析)

(物理) 高考物理稳恒电流试题(有答案和解析)

(物理) 高考物理稳恒电流试题(有答案和解析)一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v .(a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】(1)(a )电流Q I t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ=柱体体积V Sl =柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总= 设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆ 由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。

(物理)物理稳恒电流题20套(带答案)及解析

(物理)物理稳恒电流题20套(带答案)及解析

(物理)物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm金属丝直径为(1.5+0.380) mm="1.880" mm.(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0V A 0100,0.5R RR R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯4.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少. 【答案】(1)2V (2)4J 【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为:0.40.220.1E V V t ∆Φ-===∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为: Q=I 2Rt=0.22×10×10J=4J5.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率; ()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】 【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能. 【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=; (2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热;(3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.6.一交流电压随时间变化的图象如图所示.若用此交流电为一台微电子控制的电热水瓶供电,电热水瓶恰能正常工作.加热时的电功率P =880W ,保温时的电功率P ′=20W .求:①该交流电电压的有效值U ; ②电热水瓶加热时通过的电流I ;. ③电热水瓶保温5h 消耗的电能E . 【答案】①220V ②4A ③53.610J ⨯ 【解析】①根据图像可知,交流电电压的最大值为:2202m U V =, 则该交流电电压的有效值为:2202mU V ==; ②电热水瓶加热时,由P UI =得:8804220P I A A U === ③电热水瓶保温5h 消耗的电能为:52053600 3.610W P t J J ='=⨯⨯=⨯点睛:本题根据交流电图象要能正确求解最大值、有效值、周期、频率等物理量,要明确功率公式P UI =对交流电同样适用,不过U 、I 都要用有效值.7.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)(2)电源电动势E 和内电阻r 各是多少? 【答案】(1)1V 1Ω(2)10 V ;2Ω 【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U2 + I2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】8.某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L、长度为d的平行金属电极.电极间充满磁感应强度为B、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R,传送带背面固定有若干根间距为d的平行细金属条,其电阻均为r,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度v匀速运动时,(1)电压表的示数(2)电阻R产生焦耳热的功率(3)每根金属条经过磁场区域的全过程中克服安培力做功【答案】(1)BLvRUR r=+;(2)2222()B L v RPR r=+;(3)22B L vdWR r=+.【解析】试题分析:(1)金属条产生的感应电动势为E=BLv,电路中的感应电流为I=BLvR r+,故电压表的示数BLvRU IRR r==+;(2)电阻R产生焦耳热的功率P=I2R=2222 ()B L v RR r+;(3)每根金属条经过磁场区域的全过程中克服安培力做功W=F安d=BILd=22B L vdR r+.考点:电磁感应,欧姆定律,焦耳定律,安培力.9.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s . 【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V (2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A 则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V 联立解得v =1 m /s .10.电源是通过非静电力做功把其他形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势来表明电源的这种特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理稳恒电流题20套(带答案)一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。

3.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻? 【答案】串联一个15Ω的电阻 【解析】 【分析】 【详解】要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为6Ω=20Ω0.3U R I ==总 灯泡的电阻为1.5Ω=5Ω0.3L L U R I ==由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为20Ω5Ω15ΩL R R R ==-=总-4.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率; ()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】 【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能. 【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=; (2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热;(3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.5.某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R ,传送带背面固定有若干根间距为d 的平行细金属条,其电阻均为r ,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度v 匀速运动时,(1)电压表的示数(2)电阻R 产生焦耳热的功率(3)每根金属条经过磁场区域的全过程中克服安培力做功【答案】(1)BLvR U R r =+;(2)2222()B L v R P R r =+;(3)22B L vdW R r=+.【解析】试题分析:(1)金属条产生的感应电动势为E=BLv , 电路中的感应电流为I=BLv R r +,故电压表的示数BLvRU IR R r==+; (2)电阻R 产生焦耳热的功率P=I 2R=2222()B L v RR r +;(3)每根金属条经过磁场区域的全过程中克服安培力做功W=F 安d=BILd=22B L vdR r+.考点:电磁感应,欧姆定律,焦耳定律,安培力.6.如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道宽为d ,管道高度为h ,上、下两面是绝缘板,前后两侧M N 、是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连。

整个管道置于匀强磁场中,磁感应强度大小为B 、方向沿z 轴正方向。

管道内始终充满导电液体,M N 、两导体板间液体的电阻为r ,开关S 闭合前后,液体均以恒定速率0v 沿x 轴正方向流动。

忽略液体流动时与管道间的流动阻力。

(1)开关S 断开时,求M N 、两导板间电压0U ,并比较M N 、导体板的电势高低; (2)开关S 闭合后,求:a. 通过电阻R 的电流I 及M N 、两导体板间电压U ;b. 左右管道口之间的压强差p V 。

【答案】(1)U 0=Bdv 0,M N ϕϕ> (2)a .0BdRv U R r=+;b .20()B dv p h R r =+V【解析】 【详解】(1)该发电装置原理图等效为如图,管道中液体的流动等效为宽度为d 的导体棒切割磁感线,产生的电动势E =Bdv 0则开关断开时U 0=Bdv 0由右手定则可知等效电源MN 内部的电流为N 到M ,则M 点为等效正极,有M N ϕϕ>; (2)a .由闭合电路欧姆定律00U Bdv I R r R r==++ 外电路两端的电压:00U R BdRv U IR R r R r===++ b .设开关闭合后,管道两端压强差分别为p V ,忽略液体所受的摩擦阻力,开关闭合后管道内液体受到安培力为F 安,则有phd F =V 安 =F BId 安联立可得管道两端压强差的变化为:20()B dv p h R r =+V7.如图所示,电源电动势E=50V ,内阻r=1Ω, R1=3Ω,R2=6Ω.间距d=0.2m 的两平行金属板M 、N 水平放置,闭合开关S ,板间电场视为匀强电场.板间竖直放置一根长也为d 的光滑绝缘细杆AB ,有一个穿过细杆的带电小球p ,质量为m=0.01kg 、带电量大小为q=1×10-3C (可视为点电荷,不影响电场的分布).现调节滑动变阻器R ,使小球恰能静止在A 处;然后再闭合K ,待电场重新稳定后释放小球p .取重力加速度g=10m/s2.求:(1)小球的电性质和恰能静止时两极板间的电压; (2)小球恰能静止时滑动变阻器接入电路的阻值; (3)小球p 到达杆的中点O 时的速度. 【答案】(1)U =20V (2)R x =8Ω (3)v =1.05m/s 【解析】 【分析】 【详解】 (1)小球带负电;恰能静止应满足:U mg Eq q d==30.01100.220110mgd U V V q -⨯⨯===⨯ (2)小球恰能静止时滑动变阻器接入电路的阻值为R x ,由电路电压关系:22x E UR R r R =++代入数据求得R x =8Ω(3)闭合电键K 后,设电场稳定时的电压为U',由电路电压关系:1212'x E U R R r R =++代入数据求得U'=10011V 由动能定理:211222d mgU q mv ='- 代入数据求得v=1.05m/s 【点睛】本题为电路与电场结合的题目,要求学生能正确掌握电容器的规律及电路的相关知识,能明确极板间的电压等于与之并联的电阻两端的电压.8.如图甲,电阻为R=2Ω的金属线圈与一平行粗糙轨道相连并固定在水平面内,轨道间 距为d =0.5m ,虚线右侧存在垂直于纸面向里的匀强磁场,磁感应强度为B 1=0.1T ,磁场内外分别静置垂直于导轨的金属棒P 和Q ,其质量m 1=m 2= 0.02kg ,电阻R 1=R 2= 2Ω.t=0时起对左侧圆形线圈区域施加一个垂直于纸面的交变磁场B 2,使得线圈中产生如图乙所示的正弦交变电流(从M 端流出时为电流正方向),整个过程两根金属棒都没有滑动,不考虑P 和Q 电流的磁场以及导轨电阻.取重力加速度g= l0m/s 2,(1)若第1s 内线圈区域的磁场B 2正在减弱,则其方向应是垂直纸面向里还是向外? (2)假设最大静摩擦力等于滑动摩擦力,金属棒与导轨间的滑动摩擦因数至少应是多少? (3)求前4s 内回路产生的总焦耳热. 【答案】(1) 垂直纸面向里(2) 0.25.(3) 24J 【解析】试题分析:(1)第1s 内线圈区域的磁场2B 正在减弱,由图乙知:线圈中电流方向沿顺时针方向,根据楞次定律判断得知,磁场2B 的方向垂直纸面向里.(2)由图乙知,线圈中电流最大值为02I A =,则通过Q 棒的电流最大值为1;m I A =要使金属棒静止,安培力不大于最大静摩擦力,则有1m B I d mg μ≤ 得 ,故金属棒与导轨间的滑动摩擦因数至少应是0.25. (3)前4s 内电流的有效值为 回路的总电阻为0222I I A ===2Ω+1Ω=3Ω 回路产生的总焦耳热224Q I R t J ==总考点:楞次定律;物体的平衡;焦耳定律.9.有“200V 、40W ”灯泡40盏,并联于电源两端,这时路端电压,当关掉20盏,则路端电压升为试求:(1)电源电动势,内阻多大?(2)若使电灯正常发光还应关掉多少盏灯? 【答案】(1)210V ;10(2)15盏 【解析】试题分析:(1)电灯的电阻40盏灯并联的总电阻:R 1=R D /40=25; 20盏灯并联的总电阻:R 2=R D /20=50;根据欧姆定律可得:解得E=210V,r=10(2)根据欧姆定律可得:,解得:=200,,解得n=5,所以要关15盏。

相关文档
最新文档