【物理】物理稳恒电流练习题及答案

合集下载

大学物理稳恒磁场习题及答案 (1)

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

高中物理稳恒电流试题经典及解析

高中物理稳恒电流试题经典及解析

高中物理稳恒电流试题经典及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v .(a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】(1)(a )电流Q I t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ=柱体体积V Sl =柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总= 设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆ 由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯ 【解析】 【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++; 电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm=联立解得46.2510/q C kg m-=⨯3.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g .(1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL 【解析】【分析】【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52gr v =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R R εω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-= 从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mg E q= 杆转动的电动势21112BL εω=两板间电场强度11E d ε=联立解得12mgd qBL ω= 如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-= 杆转动的电动势22212BL εω=两板间电场强度22E d ε=联立解得227mgd qBL ω= 综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgd qBL qBL ω≤≤.4.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A;(2)0.096 N,方向沿导轨水平向左【解析】【分析】【详解】(1)由闭合电路欧姆定律可得:I=64.50.5EAR r=++=1.2A(2)安培力的大小为:F=BIL=0.04×1.2×2N=0.096N安培力方向为沿导轨水平向左5.如图所示,已知R3=3Ω,理想电压表读数为3v,理想电流表读数为2A,某时刻由于电路中R3发生断路,电流表的读数2.5A,R1上的电压为5v,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U 2 + I 2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLs qIt R ==得44220220B L s m gR t mgR B L += (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L ∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.如图所示电路中,R 1=6 Ω,R 2=12 Ω,R 3=3 Ω,C =30 μF ,当开关S 断开,电路稳定时,电源总功率为4 W ,当开关S 闭合,电路稳定时,电源总功率为8 W ,求:(1)电源的电动势E 和内电阻r ;(2)在S 断开和闭合时,电容器所带的电荷量各是多少?【答案】(1)8V ,1Ω (2)1.8×10﹣4C ,0 C【解析】【详解】(1)S 断开时有:E=I 1(R 2+R 3)+I 1r…①P 1=EI 1…②S 闭合时有:E=I 2(R 3+1212R R R R +)+I 2r…③ P 2=EI 2…④由①②③④可得:E=8V ;I 1=0.5A ;r=1Ω;I 2=1A(3)S 断开时有:U=I 1R 2得:Q 1=CU=30×10-6×0.5×12C=1.8×10-4CS 闭合,电容器两端的电势差为零,则有:Q 2=08.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:(1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量;(3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J 【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解.【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s感应电动势为:E 1=BL v 1根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则速度为:v 2=at =6 m/s感应电动势为:E 2=BLv 2=12 V根据闭合电路欧姆定律:224MNPQE I A R R ==+ 安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得:F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比, 安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.9.为了检查双线电缆CE 、FD 中的一根导线由于绝缘皮损坏而通地的某处,可以使用如图所示电路。

吉林大学大学物理练习册稳恒电流的磁场作业

吉林大学大学物理练习册稳恒电流的磁场作业

取半径为 r ~ r+dr 的细圆环
dq 2rdr
dI
2
2rdr rdr
O Rr
B1 B2 r 1 R
dI
2
dB dr
B1 B2
2r dB
2dI
r
dr
R r
2
I
dr
2r
2
0
(
2 R
r
)
2
5. 两条无穷长的平行直导线距2a,分别载有大小相等方 向相反的电流I。空间任一点P到两导线的垂直距离分别为 x1和x2,求P点的磁感应强度B。
(2)当φ= / 2 时,线圈所受的力矩最大。
5.半径为R细圆环均匀带电,电荷线密度为λ。
若圆环以角速度ω绕过环心且垂直于 环面转轴作
匀速转动,则环心处的磁感应强度B 的大小

0 / 2
。 I nq 2R
2
B
0 I
2R
0 /
2
6. 一均匀带电圆环,带电量为+q,其半径为R,
置于均匀磁场 中B, 的B方向与圆环所在平面成
和洛仑兹力
B.只有库仑力和洛仑兹力
C.只有三种中某一种
5.载流为I、磁矩为Pm的线圈,置于磁感应强度 为B的均匀磁场中。若Pm与B方向相同,则通过线 圈的磁通量Ф与线圈所受的磁力矩M的大小为
A. IBPm , M 0
B. BPm , M 0
I
C. IBPm , M BPm
D.
BPm I
b 2 x 2
b
F3
0I1I2 dl L 2 x
ba
0 I1I 2
dx
0 I1I 2
ba ln
b 2 cos45 x 2 cos45 b

高中物理 第07章 恒定电流 典型例题(含答案)【经典】

高中物理   第07章 恒定电流    典型例题(含答案)【经典】

第七章 恒定电流基本公式:I =q t ; I =U R ; I =neSv . R =ρl S W 电=qU =IUt Q 热=I 2Rt. I =E R +r知识点一:电流的计算、电阻定律、电功(率)与热量(热功率)的计算与区别、欧姆定律、U-I 图像1.(单选)通常一次闪电过程历时约0.2~0.3 s ,它由若干个相继发生的闪击构成.每个闪击持续时间仅40~80 μs ,电荷转移主要发生在第一个闪击过程中.在某一次闪电前云地之间的电势差约为1.0×109V ,云地间距离约为1 km ;第一个闪击过程中云地间转移的电荷量约为6 C ,闪击持续时间约为60 μs.假定闪电前云地间的电场是均匀的.根据以上数据,下列判断正确的是( ).答案 ACA .闪电电流的瞬时值可达到1×105 AB .整个闪电过程的平均功率约为1×1014 WC .闪电前云地间的电场强度约为1×106 V/mD .整个闪电过程向外释放的能量约为6×106 J2.(单选)有Ⅰ、Ⅱ两根不同材料的电阻丝,长度之比为l 1∶l 2=1∶5,横截面积之比为S 1∶S 2=2∶3,电阻之比为R 1∶R 2=2∶5,外加电压之比为U 1∶U 2=1∶2,则它们的电阻率之比为( ). 答案 BA .2∶3B .4∶3C .3∶4D .8∶33、(单选)两根完全相同的金属裸导线,如果把其中的一根均匀拉长到原来的2倍,把另一根对折后绞合起来,然后给它们分别加上相同电压后,则在相同时间内通过它们的电荷量之比为( ). 答案 CA .1∶4B .1∶8C .1∶16D .16∶14.(单选)用电器距离电源为L ,线路上的电流为I ,为使在线路上的电压降不超过U ,已知输电线的电阻率为ρ.那么,输电线的横截面积的最小值为( ).答案 BA .ρL /RB .2ρLI /UC .U /(ρLI )D .2UL /(I ρ)5.(单选)欧姆不仅发现了欧姆定律,还研究了电阻定律.有一个长方体金属电阻,材料分布均匀,边长分别为a 、b 、c ,且a >b >c .电流沿以下方向流过该金属电阻,其中电阻阻值最小的是( ).答案 A6、(单选)额定电压都是110 V ,额定功率P A =100 W ,P B =40 W 的电灯两盏,若接入电压是220 V 的下列电路上,则使两盏电灯均能正常发光,且电路中消耗的电功率最小的电路是( ). 答案 C7.(单选)R 1和R 2分别标有“2 Ω,1.0 A”和“4 Ω,0.5 A”,将它们串联后接入电路中,如图7-1-6所示,则此电路中允许消耗的最大功率为( ).答案 AA .1.5 WB .3.0 WC .5.0 WD .6.0 W8.(单选)功率为10 W 的发光二极管(LED 灯)的亮度与功率为60 W 的白炽灯相当.根据国家节能战略,2016年前普通白炽灯应被淘汰.假设每户家庭有2只60 W 的白炽灯,均用10 W 的LED 灯替代,估算出全国一年节省的电能最接近( ).答案 BA .8×108 kW·hB .8×1010 kW·hC .8×1011 kW·hD .8×1013 kW·h9.(单选)当电阻两端加上某一稳定电压时,通过该电阻的电荷量为0.3 C ,消耗的电能为0.9 J .为在相同时间内使0.6 C 的电荷量通过该电阻,在其两端需加的电压和消耗的电能分别是( ).答案 DA .3 V 1.8 JB .3 V 3.6 JC .6 V 1.8 JD .6 V 3.6 J10.(多选)如图所示是电阻R 的I -U 图象,图中α=45°,由此得出( ).A .通过电阻的电流与两端电压成正比B .电阻R =0.5 Ω 答案 ADC .因I -U 图象的斜率表示电阻的倒数,故R =1/tan α=1.0 ΩD .在R 两端加上6.0 V 的电压时,每秒通过电阻横截面的电荷量是3.0 C11.(单选)某种材料的导体,其I-U图象如图所示,图象上A点与原点的连线与横轴成α角,A点的切线与横轴成β角.下列说法正确的是().答案 AA.导体的电功率随电压U的增大而增大B.导体的电阻随电压U的增大而增大C.在A点,导体的电阻为tan αD.在A点,导体的电阻为tan β12.(多选)如图所示,图线1表示的导体的电阻为R1,图线2表示的导体的电阻为R2,则下列说法正确的是().答案ACA.R1∶R2=1∶3B.把R1拉长到原来的3倍长后电阻等于R2C.将R1与R2串联后接于电源上,则功率之比P1∶P2=1∶3D.将R1与R2并联后接于电源上,则电流比I1∶I2=1∶313、(单选)在如图电路中,电源电动势为12 V,电源内阻为1.0 Ω,电路中的电阻R0为1.5 Ω,小型直流电动机M的内阻为0.5 Ω.闭合开关S后,电动机转动,电流表的示数为2.0 A.则以下判断中正确的是( ).A.电动机的输出功率为14 WB.电动机两端的电压为7.0 V 答案BC.电动机的发热功率为4.0 WD.电源输出的电功率为24 W14.(多选)如图所示,用输出电压为1.4 V,输电电流为100 mA的充电器对内阻为2 Ω的镍-氢电池充电.下列说法正确的是().答案ABA.电能转化为化学能的功率为0.12 W B.充电器输出的电功率为0.14 WC.充电时,电池消耗的热功率为0.12 W D.充电器把0.14 W的功率储存在电池内15.(单选)一只电饭煲和一台洗衣机并联接在输出电压220 V的交流电源上(其内电阻可忽略不计),均正常工作.用电流表分别测得通过电饭煲的电流是5.0 A,通过洗衣机电动机的电流是0.50 A,下列说法中正确的是().A.电饭煲的电阻为44 Ω,洗衣机电动机线圈的电阻为440 Ω答案CB.电饭煲消耗的电功率为1 555 W,洗衣机电动机消耗的电功率为155.5 WC.1 min内电饭煲消耗的电能为6.6×104 J,洗衣机电动机消耗的电能为6.6×103 JD.电饭煲发热功率是洗衣机电动机发热功率的10倍16、(单选)如图所示,电源电动势E=8 V,内阻为r=0.5 Ω,“3 V,3 W”的灯泡L与电动机M串联接在电=1.5 Ω.下列说源上,灯泡刚好正常发光,电动机刚好正常工作,电动机的线圈电阻R法中正确的是().答案DA.通过电动机的电流为1.6 A B.电源的输出功率是8 WC.电动机消耗的电功率为3 W D.电动机的输出功率为3 W17、有一提升重物的直流电动机,工作时电路如图7-1-4所示,内阻为r=0.6 Ω,R=10 Ω,直流电压为U=160 V,电压表两端的示数为110 V,则通过电动机的电流是多少?电动机的输入功率为多少?电动机在1 h内产生的热量是多少?答案 5 A550 W 5.4×104 J18.如图所示是一提升重物用的直流电动机工作时的电路图.电动机内电阻r=0.8 Ω,电路中另一电阻R=10 Ω,直流电压U=160 V,电压表示数U V=110 V.试求:(1)通过电动机的电流;答案(1)5 A(2)550 W(3)53 kg(2)输入电动机的电功率;(3)若电动机以v=1 m/s匀速竖直向上提升重物,求该重物的质量?(g取10 m/s2)19.四川省“十二五”水利发展规划指出,若按现有供水能力测算,我省供水缺口极大,蓄引提水是目前解决供水问题的重要手段之一.某地要把河水抽高20 m,进入蓄水池,用一台电动机通过传动效率为80%的皮带,带动效率为60%的离心水泵工作.工作电压为380 V,此时输入电动机的电功率为19 kW,电动机的内阻为0.4 Ω.已知水的密度为1×103 kg/m3,重力加速度取10 m/s2.求:(1)电动机内阻消耗的热功率;(2)将蓄水池蓄入864 m3的水需要的时间(不计进、出水口的水流速度).答案(1)1×103 W(2)2×104 s知识点二:闭合电路的欧姆定律、输出功率、效率、电源的U-I图像1.(单选)将一电源电动势为E,内电阻为r的电池与外电路连接,构成一个闭合电路,用R表示外电路电阻,I表示电路的总电流,下列说法正确的是().答案CA.由U外=IR可知,外电压随I的增大而增大B.由U内=Ir可知,电源两端的电压随I的增大而增大C.由U=E-Ir可知,电源输出电压随输出电流I的增大而减小D.由P=IU可知,电源的输出功率P随输出电流I的增大而增大2.(多选)一个T形电路如图7-2-1所示,电路中的电阻R1=10 Ω,R2=120 Ω,R3=40 Ω.另有一测试电源,电动势为100 V,内阻忽略不计.则().答案ACA.当cd端短路时,ab之间的等效电阻是40 ΩB.当ab端短路时,cd之间的等效电阻是40 ΩC.当ab两端接通测试电源时,cd两端的电压为80 VD.当cd两端接通测试电源时,ab两端的电压为80 V3.(单选)图所示的电路中,R1=20 Ω,R2=40 Ω,R3=60 Ω,R4=40 Ω,R5=4 Ω,下面说法中,正确的是().A.若U AB=140 V,C、D端开路,U CD=84 V 答案DB.若U AB=140 V,C、D端开路,U CD=140 VC.若U CD=104 V,A、B端开路,U AB=84 VD.若U CD=104 V,A、B端开路,U AB=60 V4.(多选)如图所示电路中,电源电动势E=12 V,内阻r=2 Ω,R1=4 Ω,R2=6 Ω,R3=3 Ω.若在C、D间连接一个电表或用电器,则有().答案ADA.若在C、D间连一个理想电压表,其读数是6 VB.若在C、D间连一个理想电压表,其读数是8 VC.若在C、D间连一个理想电流表,其读数是2 AD.若在C、D间连一个“6 V,3 W”的小灯泡,则小灯泡的实际功率是1.33 W5、(单选)如图所示,电源电动势E=12 V,内阻r=3 Ω,R0=1 Ω,直流电动机内阻R0′=1 Ω,当调节滑动变阻器R时可使甲电路输出功率最大,调节R2时可使乙电路输出功率最大,且此时电动机刚好正常工作(额定输出功率为P0=2 W),则R1和R2的值分别为().答案BA.2 Ω,2 ΩB.2 Ω,1.5 ΩC.1.5 Ω,1.5 ΩD.1.5 Ω,2 Ω6、(多选)如图所示,直线A为电源的U-I图线,直线B和C分别为电阻R、R2的U-I图线,用该电源分别与R1、R2组成闭合电路时,电源的输出功率分别为P1、P2,电源的效率分别为η1、η2,则().答案BCA.P1>P2B.P1=P2C.η1>η2D.η1<η27.(多选)如图所示为两电源的U -I 图象,则下列说法正确的是( ).答案 ADA .电源①的电动势和内阻均比电源②大B .当外接同样的电阻时,两电源的输出功率可能相等C .当外接同样的电阻时,两电源的效率可能相等D .不论外接多大的相同电阻,电源①的输出功率总比电源②的输出功率大8.(多选)如图,图中直线①表示某电源的路端电压与电流的关系图象,图中曲线②表示该电源的输出功率与电流的关系图象,则下列说法正确的是( ).A .电源的电动势为50 VB .电源的内阻为253 Ω 答案 ACDC .电流为2.5 A 时,外电路的电阻为15 ΩD .输出功率为120 W 时,输出电压是30 V9.(多选)如图所示,直线a 、抛物线b 和曲线c 分别为某一稳恒直流电源在纯电阻电路中的总功率P 、电源内部发热功率Pr 、输出功率P R 随电流I 变化的图象,根据图象可知( ).答案 BDA .电源的电动势为9 V ,内阻为3 ΩB .电源的电动势为3 V ,内阻为1 ΩC .图象中任意电流值对应的P 、P r 、P R 间的关系为P >P r +P RD .电路中的总电阻为2 Ω时,外电阻上消耗的功率最大且为2.25 W10. (多选)如图甲所示,其中R 两端电压u 随通过该电阻的直流电流I 的变化关系如图乙所示,电源电动势为7.0 V(内阻不计),且R1=1 000 Ω(不随温度变化).若改变R 2,使AB 与BC 间的电压相等,这时( ).答案 BCA .R 的阻值为1 000 ΩB .R 的阻值为1 300 ΩC .通过R 的电流为1.5 mAD .通过R 的电流为2.0 mA11、如图所示,已知电源电动势E =5 V ,内阻r =2 Ω,定值电阻R 1=0.5 Ω,滑动变阻器R 2的阻值范围为0~10 Ω. 答案 (1)0 2 W (2)2.5 Ω 2.5 W (3)1.5 Ω(1)当滑动变阻器的阻值为多大时,电阻R 1消耗的功率最大?最大功率是多少?(2)当滑动变阻器的阻值为多大时,滑动变阻器消耗的功率最大?最大功率是多少?(3)当滑动变阻器的阻值为多大时,电源的输出功率最大?最大输出功率是多少?12.(单选)用图示的电路可以测量电阻的阻值.图中R x 是待测电阻,R 0是定值电阻,是灵敏度很高的电流表,MN 是一段均匀的电阻丝.闭合开关,改变滑动头P 的位置,当通过电流表的电流为零时,测得MP =l 1,PN =l 2,则R x 的阻值为( ).答案 C A.l 1l 2R 0 B.l 1l 1+l 2R 0 C.l 2l 1R 0 D.l 2l 1+l 2R 0 13、(多选)图所示,电动势为E 、内阻为r 的电池与定值电阻R 0、滑动变阻器R 串联,已知R 0=r ,滑动变阻器的最大阻值是2r .当滑动变阻器的滑片P 由a 端向b 端滑动时,下列说法中正确的是( ).答案 ACA .电路中的电流变大B .电源的输出功率先变大后变小C .滑动变阻器消耗的功率变小D .定值电阻R 0上消耗的功率先变大后变小14.(多选)直流电路如图,在滑动变阻器的滑片P 向右移动时,电源的( ).答案 ABCA .总功率一定减小B .效率一定增大C .内部损耗功率一定减小D .输出功率一定先增大后减小15.(单选)电源的效率η定义为外电路电阻消耗的功率与电源的总功率之比.在测电源电动势和内阻的实验中得到的实验图线如图所示,图中U 为路端电压,I 为干路电流,a 、b 为图线上的两点,相应状态下电源的效率分别为ηa 、ηb .由图可知ηa 、ηb 的值分别为( ).答案 DA.34、14B.13、23C.12、12D.23、13知识点三:电路的动态分析、电路故障分析、含容电路分析1、(多选)图所示的电路,L 1、L2、L 3是3只小电灯,R 是滑动变阻器,开始时,它的滑片P 位于中点位置.当S 闭合时,3只小电灯都发光.现使滑动变阻器的滑片P 向右移动时,则小电灯L 1、L 2、L 3的变化情况( ). 答案 BCA .L 1变亮B .L 2变亮C .L 3变暗D .L 1、L 2、L 3均变亮2.(单选)如图,E 为内阻不能忽略的电池,R1、R2、R 3为定值电阻,S 0、S 为开关,与分别为电压表与电流表.初始时S 0与S 均闭合,现将S 断开,则( ).答案 BA.的读数变大,的读数变小B.的读数变大,的读数变大C.的读数变小,的读数变小D.的读数变小,的读数变大3.(单选)在输液时,药液有时会从针口流出体外,为了及时发现,设计了一种报警装置,电路如图7-2-5所示.M 是贴在针口处的传感器,接触到药液时其电阻R M 发生变化,导致S 两端电压U 增大,装置发出警报,此时( ).答案 CA .R M 变大,且R 越大,U 增大越明显B .R M 变大,且R 越小,U 增大越明显C .R M 变小,且R 越大,U 增大越明显D .R M 变小,且R 越小,U 增大越明显4.(多选)如图所示电路, 电源电动势为E ,串联的固定电阻为R 2,滑动变阻器的总电阻为R 1,电阻大小关系为R 1=R 2=r ,则在滑动触头从a 端移动到b 端的过程中,下列描述中正确的是( ).答案 ABA .电路中的总电流先减小后增大B .电路的路端电压先增大后减小C .电源的输出功率先增大后减小D .滑动变阻器R 1上消耗的功率先减小后增大5.(多选)如图所示,闭合开关S 后,A 灯与B 灯均发光,当滑动变阻器的滑片P 向左滑动时,以下说法中正确的是( ).答案 ACA .A 灯变亮B .B 灯变亮C .电源的输出功率可能减小D .电源的总功率增大6.(单选)如图所示电路,电源内阻不可忽略.开关S 闭合后,在变阻器R0的滑动端向下滑动的过程中( ).答案 AA .电压表与电流表的示数都减小B .电压表与电流表的示数都增大C .电压表的示数增大,电流表的示数减小D .电压表的示数减小,电流表的示数增大7.(单选)在如图7-2-15所示的电路中,E 为电源,其内阻为r ,L 为小灯泡(其灯丝电阻可视为不变),R 1、R2为定值电阻,R 3为光敏电阻,其阻值大小随所受照射光强度的增大而减小,V 为理想电压表.若将照射R 3的光的强度减弱,则( ). 答案 BA .电压表的示数变大B .小灯泡消耗的功率变小C .通过R 2的电流变小D .电源内阻的电压变大8.(多选)如图所示,四个电表均为理想电表,当滑动变阻器的滑动触头P向左端移动时,下列说法中正确的是().答案BCA.电压表V1的读数减小,电流表A1的读数增大B.电压表V1的读数增大,电流表A1的读数减小的读数减小,电流表A2的读数增大C.电压表VD.电压表V2的读数增大,电流表A2的读数减小9.(多选)在如图所示的电路中,E为电源的电动势,r为电源的内阻,R1、R2为可变电阻.在下列操作中,可以使灯泡L变暗的是().答案ADA.仅使R1的阻值增大B.仅使R1的阻值减小C.仅使R2的阻值增大D.仅使R2的阻值减小10.(多选)如图所示,电源电动势为E,内阻为r,不计电压表和电流表内阻对电路的影响,当电键闭合后,两小灯泡均能发光.在将滑动变阻器的触片逐渐向右滑动的过程中,下列说法正确的是().答案BC A.小灯泡L、L2均变暗B.小灯泡L1变亮,小灯泡L2变暗C.电流表A的读数变小,电压表V的读数变大D.电流表A的读数变大,电压表V的读数变小11.(单选)如图所示电路中,由于某处出现了故障,导致电路中的A、B两灯变亮,C、D两灯变暗,故障的原因可能是().答案 DA.R1短路B.R2断路C.R2短路D.R3短路12.(多选)在如图所示的电路中,电源的电动势E和内阻r恒定,闭合开关S后灯泡能够发光,经过一段时间后灯泡突然变亮,则出现这种现象的原因可能是().答案ABA.电阻R1短路B.电阻R2断路C.电阻R2短路D.电容器C断路13.(单选)如图所示,C为两极板水平放置的平行板电容器,闭合开关S,当滑动变阻器R1、R2的滑片处于各自的中点位置时,悬在电容器C两极板间的带电尘埃P恰好处于静止状态.要使尘埃P向下加速运动,下列方法中可行的是().答案AA.把R2的滑片向左移动B.把R2的滑片向右移动C.把R1的滑片向左移动D.把开关S断开14.(单选)在如图所示的电路中,电源的电动势为E,内阻为r,平行板电容器C的两金属板水平放置,R1和R2为定值电阻,P为滑动变阻器R的滑动触头,G为灵敏电流表,A为理想电流表.开关S闭合后,C的两板间恰好有一质量为m、电荷量为q的油滴处于静止状态.在P向上移动的过程中,下列说法正确的是().答案BA.A表的示数变大B.油滴向上加速运动C.G中有由a→b的电流D.电源的输出功率一定变大15、(多选)在如图所示的电路中,闭合电键S,当滑动变阻器的滑动触头P向下滑动时,四个理想电表的示数都发生变化,电表的示数分别用I、U1、U2和U3表示,电表示数变化量的大小分别用ΔI、ΔU1、ΔU2和ΔU3表示.下列比值正确的是( ) 答案:ACDA.U1/I不变,ΔU1/ΔI不变B.U2/I不变,ΔU2/ΔI变大C.U2/I变大,ΔU2/ΔI不变D.U3/I变大,ΔU3/ΔI不变16、(单选)如图所示电路中,闭合电键S,当滑动变阻器的滑动触头P从最高端向下滑动时()A.电压表V读数先变大后变小,电流表A读数变大答案:AB.电压表V读数先变小后变大,电流表A读数变小C.电压表V读数先变大后变小,电流表A读数先变小后变大D.电压表V读数先变小后变大,电流表A读数先变大后变小。

【物理】物理稳恒电流练习题及答案含解析

【物理】物理稳恒电流练习题及答案含解析

由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为
R R总-RL 20Ω 5Ω 15Ω
5.在如图所示的电路中,电源电动势 E=3V,内阻 r=0.5Ω,定值电阻 R1 =9Ω,R2=5.5Ω,电键 S 断 开.
①求流过电阻 R1 的电流; ②求电阻 R1 消耗的电功率; ③将 S 闭合时,流过电阻 R1 的电流大小如何变化? 【答案】(1)0.2A;(2)0.36W;(3)变大
① 求导线中的电流 I;
②为了更精细地描述电流的分布情况,引入了电流面密度 j,电流面密度被定义为单位面积
的电流强度,求电流面密度 j 的表达式;
③经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电
子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用
后,液体均以恒定速率 v0 沿 x 轴正方向流动。忽略液体流动时与管道间的流动阻力。
(1)开关 S 断开时,求 M、N 两导板间电压U0 ,并比较 M、N 导体板的电势高低;
(2)开关 S 闭合后,求: a. 通过电阻 R 的电流 I 及 M、N 两导体板间电压U ; b. 左右管道口之间的压强差 p 。
I(m A)
0.00 0.00 0.00 0.06 0.50 1.00 2.00 3.00 4.00 5.50
a)根据以上数据,电压表是并联在M与
之间的(填“O”或“P”)
b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)
【答案】(1) a
(2) a) P
b)
【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,
2 2
A=1.5

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律

dt
a
⎞ ⎟⎠
=
n
μ0 2π
l
I
⎛ ⎜⎝
1 R

1 R+
a
⎞ ⎟⎠
dR dt
=
μ0 2π
l
I
⎛ ⎜⎝
1 d

d
1 +
a
⎞ ⎟⎠
v
=

2× 10−7×5 Nhomakorabea0×
0.4
×
2
×
⎛ ⎜⎝
1 0.20

0.20
1 +
0.20
⎞ ⎟⎠
成绩:
r d I
= 2 ×10−6(V ) ………4 分
方法二、相当于四段导体切割磁力线在瞬间,线圈产生的电动势等效于并接的两电动势。 距离长直导线为 r 处的磁感应强度为:
势。若若线圈保持不动,而长直导线中的电流变为交变电流 i = 10 sin (100π t ) A i=10,求线圈中的感应电动
势。(不计线圈的自感) 解:(1)方法(一)如图,距离长直导线为 r 处的磁感应强度为:
B = μ0i ,………2 分 2πr
选回路的绕行方向为顺时针方向,则通过窄条
6
专业班级: 面积 ds 的磁通量为:
d l
I
a
5
专业班级:
学号:
姓名:
在竖直方向的分量为 B .求ab两端间的电势差Ua −Ub .
解: Ob 间的动生电动势:
∫ ∫ ε1
=
4L 0
5

×
B)id l
=
4L 0
5
ω Bldl
=
1ωB( 4 25

高中物理稳恒电流专项训练100(附答案)

高中物理稳恒电流专项训练100(附答案)

高中物理稳恒电流专项训练100(附答案)一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e.该导线通有电流时,假设自由电子定向移动的速率均为v.(a)求导线中的电流I;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F,推导 F 安=F.(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F与m、n和v的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)InvSe证明见答案F 1 2( 2) P nm 2S3【解析】(1)(a)电流I Q,又因为Q tne[v(St)] ,代入则I nvSe(b)F安=BIL,I nvSe,代入则:F 安=BnvSeL;因为总的自由电子个数N=nSL,每个自由电子受到洛伦兹力大小f=Bve,所以F=Nf=BnvSeL=F安,即 F 安=F.(2)气体压强公式的推导:设分子质量为m,平均速率为v,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S,长为l ,则l t柱体体积V Sl 柱体内分子总数N 总nV 因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为'1N总=N总总6总设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为p 2m N总,依据动量定理有 Ft p 又压力 Ft p 由以上各式得单位面积上的压力F 0 F 1 nm 2 0S3【点评】本题的第 1 题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修 3-1P.42 ,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很 容易的.第 2 问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进 行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导 过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运 动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的1.6【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为 mm .(2)用下列器材装成描绘电阻 R 0 伏安特性曲线的电路,请将实物图连线成为实验电路. 微安表 μA (量程 200 μA ,内阻约 200Ω); 电压表 V (量程 3V ,内阻约 10Ω); 电阻 R 0 (阻值约 20 k Ω);滑动变阻器 R (最大阻值 50Ω,额定电流 1 A ); 电池组 E (电动势 3V ,内阻不计);答案】( 1)1.880(1.878~ 1.882 均正确)2)开关 S 及导线若干.解析】1)首先读出固定刻度 1.5 mm再读出可动刻度38. 0 ×0. 01 mm="0.380" mm金属丝直径为( 1.5+0.380) mm="1.880" mm .2)描绘一个电阻的伏安特性曲线一般要求电压要从0 开始调节,因此要采用分压电路.由于R0 100, R V 0.5 ,因此μA 表要采用内接法,其电路原理图为R A R0连线时按照上图中所标序号顺序连接即可.3.如图所示,已知电源电动势E=20V,内阻r=l Ω,当接入固定电阻R=3Ω 时,电路中标有3V,6W的”灯泡L和内阻R D=1Ω的小型直流电动机 D 都恰能正常工作.试求:1)流过灯泡的电流2)固定电阻的发热功率3)电动机输出的机械功率答案】(1)2A(2)7V(3)12W解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率: =18W 一部分是线圈内阻的发热功率: =4W 另一部分转换为机械功率输出,则 =14W 【点睛】( 1)由灯泡正常发光,可以求出灯泡中的电流;( 2)知道电阻中流过的电流,就可利用热功率方程 ,求出热功率;( 3)电动机消耗的电功率有两个去向:一部 分是线圈内阻的发热功率;另一部分转化为机械功率输出。

《大学物理》习题册题目及答案第12单元稳恒电流的磁场

《大学物理》习题册题目及答案第12单元稳恒电流的磁场

第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3mg 由①~③,解得 Iab= 4B2L2 ④
mg (2)由(1)可得 I= B2 L2 ⑤
设导体杆切割磁感线产生的电动势为 E,有 E=B1L1v ⑥
设 ad、dc、cb 三边电阻串联后与 ab 边电阻并联的总电阻为 R,则 R= 3 r ⑦ 4
根据闭合电路欧姆定律,有 I= E ⑧ R
3mgr 由⑤~⑧,解得 v= 4B1B2L1L2 ⑨
r2
R
当外电路电阻
R=r
时,电源输出的电功率最大,为
Pmax
=
E2 4r
(3)电动势定义式: E W非静电力 q
根据能量守恒定律,在图 1 所示电路中,非静电力做功 W 产生的电能等于在外电路和内电 路产生的电热,即
W I 2rt I 2Rt Irq IRq
E Ir IR U内 U外 本题答案是:(1)U–I 图像如图所示,
其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a.如图所示
当外电路电阻
R=r
时,电源输出的电功率最大,为
Pmax
=
E2 4r
(3) E U内 U外
点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当 R=r 时,输出
功率最大.
5.如图所示,水平轨道与半径为 r 的半圆弧形轨道平滑连接于 S 点,两者均光滑且绝缘, 并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板 P、Q, 两板间的距离为 D.半圆轨道的最高点 T、最低点 S、及 P、Q 板右侧边缘点在同一竖直线上. 装置左侧有一半径为 L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为
m 3103 kg .当它在水平路面上以 v=36km/h 的速度匀速行驶时,驱动电机的输入电流
I=50A,电压 U=300V.在此行驶状态下
(1)求驱动电机的输入功率 P电 ;
(2)若驱动电机能够将输入功率的 90%转化为用于牵引汽车前进的机械功率 P 机,求汽车 所受阻力与车重的比值(g 取 10m/s2); (3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面 积.结合计算结果,简述你对该设想的思考.
【物理】物理稳恒电流练习题及答案
一、稳恒电流专项训练
1.如图 10 所示,P、Q 为水平面内平行放置的光滑金属长直导轨,相距为 L1 ,处在竖直 向下、磁感应强度大小为 B1 的匀强磁场中.一导体杆 ef 垂直于 P、Q 放在导轨上,在外力 作用下向左做匀速直线运动.质量为 m、每边电阻均为 r、边长为 L2 的正方形金属框 abcd 置于倾斜角 θ=30°的光滑绝缘斜面上(ad∥MN,bc∥FG,ab∥MG, dc∥FN),两顶点 a、d 通 过细软导线与导轨 P、Q 相连,磁感应强度大小为 B2 的匀强磁场垂直斜面向下,金属框恰 好处于静止状态.不计其余电阻和细导线对 a、d 点的作用力. (1)通过 ad 边的电流 Iad 是多大? (2)导体杆 ef 的运动速度 v 是多大?
动的角速度的范围.
【答案】(1) v 5gr 2
(2) P B2L4 2 4R
mgd 7mgd (3) qBL2 ≤ω≤ qBL2
【解析】 【分析】 【详解】
(1)两球碰撞过程动量守恒,则
1 2
mv0
(1 2
m
1 2
m)v
解得 v 5gr 2
(2)杆转动的电动势 BLv BL 1 L 1 BL2
联立⑥⑧得: L1
20 2 202 101
L0 ⑨
代入数据解得: L1 3.8103 m ⑩
【点睛】
考点:考查了电阻定律的综合应用
本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻 R 不 随温度 t 变化,需要满足的条件
3.环保汽车将为 2008 年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量
2
2
电阻 R 的功率 P 2 B2L42 R 4R
(3)通过金属杆的转动方向可知:P、Q 板间的电场方向向上,粘合体受到的电场力方向向
上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较
小,不能达到最高点 T,临界状态是粘合体刚好达到 T 点,此时金属杆的角速度 ω1 为最 小,设此时对应的电场强度为 E1,粘合体达到 T 点时的速度为 v1.
B 的匀强磁场,一个根长度略大于 L 的金属棒一个端置于圆环上,另一个端与过圆心 O1 的
竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线 分别与 P、Q 连接,图中电阻阻值为 R,不计其它电阻,右侧水平轨道上有一带电量为+q、
质量为
1 2
m
的小球
1
以速度 v0
5gr ,向左运动,与前面静止的、质量也为 1 m 的不


所求

考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化
【名师点睛】解决本题的关键知道分析导体棒受力情况,应用闭合电路欧姆定律和牛顿第
二定律求解,注意对于线性变化的物理量求平均的思路,本题中先后用到平均电动势、平
均电阻和平均加速度。
7.在如图所示的电路中,电源内阻 r=0.5Ω,当开关 S 闭合后电路正常工作,电压表的读数 U=2.8V,电流表的读数 I=0.4A。若所使用的电压表和电流表均为理想电表。求: ①电阻 R 的阻值; ②电源的内电压 U 内; ③电源的电动势 E。

T
点,由牛顿第二定律得
mg
qE1
m
v12 r

S

T,由动能定理得
qE1
2r
mg
2r
1 2
mv12
1 2
mv2
解得
E1
mg 2q
杆转动的电动势
1
1 2
BL21
两板间电场强度
E1
1 d
联立解得 1
mgd qBL2
如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在 S 点就可能脱离圆轨
道,临界状态是粘合体刚好在 S 点不脱落轨道,此时金属杆的角速度 ω2 为最大,设此时对 应的电场强度为 E2.

S
点,由牛顿第二定律得
qE2
mg
m
v2 r
杆转动的电动势 2
1 2
BL22
两板间电场强度
E2
2 d
联立解得 2
7mgd qBL2
综上所述,要使两球碰后的粘合体能从半圆轨道的最低点 S 做圆周运动到最高点 T,金属
杆转动的角速度的范围为:
mgd qBL2
7mgd qBL2
.
6.如图所示,一根有一定电阻的直导体棒质量为 、长为 L,其两端放在位于水平面内间 距也为 L 的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨 置于匀强磁场中,磁场的磁感应强度大小为 B,方向垂直于导轨所在平面, 时刻,给 导体棒一个平行与导轨的初速度,此时可控电阻的阻值为 ,在棒运动过程中,通过可控 电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。
所以 P 130% P
由于
P电
15%P
,所以电池板的最小面积
P0
P
1 30%
S S0
S PS0 4πr2P电 101?m2 0.7P0 0.15 0.7P0
考点:考查非纯电阻电路、电功率的计算
点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是 UI 的乘 积,求解第 3 问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放
已知太阳辐射的总功率 P0 4 1026 W ,太阳到地球的距离
,太阳光传播
到达地面的过程中大约有 30%的能量损耗,该车所用太阳能电池的能量转化效率约为
15%.
【答案】(1) P电 1.5103 W
(2) f / mg 0.045
(3) S 101m2
【解析】
试题分析:⑴ P电 IU 1.5103 W
3mg 【答案】(1) 8B2 L
【解析】
3mgr (2) 8B1B2dL
试题分析:(1)设通过正方形金属框的总电流为 I,ab 边的电流为 Iab,dc 边的电流为 Idc,
有 Iab= 3 I ① 4
Idc= 1 I ② 4
金属框受重力和安培力,处于静止状态,有 mg=B2IabL2+B2IdcL2 ③
2
2
带电小球 2 发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞
过程没有电荷损失,设 P、Q 板正对区域间才存在电场.重力加速度为 g.
(1)计算小球 1 与小球 2 碰后粘合体的速度大小 v;
(2)若金属杆转动的角速度为 ,计算图中电阻 R 消耗的电功率 P;
(3)要使两球碰后的粘合体能从半圆轨道的最低点 S 做圆周运动到最高点 T,计算金属杆转
考点:受力分析,安培力,感应电动势,欧姆定律等.
2.材料的电阻率 ρ 随温度变化的规律为 ρ=ρ0(1+αt),其中 α 称为电阻温度系数,ρ0 是材料 在 t=0℃时的电阻率.在一定的温度范围内 α 是与温度无关的常量.金属的电阻一般随温 度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用 具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的 电阻.已知:在 0℃时,铜的电阻率为 1.7×10-8Ω·m,碳的电阻率为 3.5×10-5Ω·m;在 0℃附 近,铜的电阻温度系数为 3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相 同的碳棒与铜棒串接成长 1.0m 的导体,要求其电阻在 0℃附近不随温度变化,求所需碳棒 的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】
相关文档
最新文档