人教A版高中数学必修二全册课件

合集下载

人教A版(新教材)高中数学第二册(必修2)课件4:8.6.3 平面与平面垂直(二)

人教A版(新教材)高中数学第二册(必修2)课件4:8.6.3  平面与平面垂直(二)

【规律方法】
(1)空间中的垂直关系有线线垂直、线面垂直、面面垂直,这三种
关系不是孤立的,而是相互关联的.它们之间的转化关系如下:
判定定理
判定定理
线线垂直 线面垂直定义 线面垂直 性质定理 面面垂直
(2)空间问题化成平面问题是解决立体几何问题的一个基本原则,
解题时,要抓住几何图形自身的特点,如等腰(边)三角形的三线合
(1)求证:AD⊥PB; (2)若 E 为 BC 边的中点,则能否在棱上找到一点 F,使平面 DEF⊥平面 ABCD?并证明你的结论.
[解] (1)证明:设 G 为 AD 的中点,连接 PG,BG,如图.
∵△PAD 为正三角形,∴PG⊥AD. 在菱形 ABCD 中,∠DAB=60°,G 为 AD 的中点,∴BG⊥AD. 又 BG∩PG=G,∴AD⊥平面 PGB. ∵PB⊂平面 PGB,∴AD⊥PB.
(2)当 F 为 PC 的中点时,满足平面 DEF⊥平面 ABCD. 证明如下: 在△PBC 中,FE∥PB,在菱形 ABCD 中,GB∥DE. 又 FE⊂平面 DEF,DE⊂平面 DEF,EF∩DE=E, PB⊂平面 PGB,GB⊂平面 PGB,PB∩GB=B, ∴平面 DEF∥平面 PGB. 由(1)得 PG⊥平面 ABCD,而 PG⊂平面 PGB, ∴平面 PGB⊥平面 ABCD,∴平面 DEF⊥平面 ABCD.
答案 (1)C (2)5
【题型探究】
题型一 面面垂直性质的应用 例 1 如图所示,P 是四边形 ABCD 所在平面外的一点,四边形 ABCD 是∠DAB=60°且边长为 a 的菱形.侧面 PAD 为正三角形,其所在平 面垂直于底面 ABCD.
(1)若 G 为 AD 边的中点,求证:BG⊥平面 PAD; (2)求证:AD⊥PB.

人教A版高中数学必修第二册教学课件:第八章8.2立体图形的直观图(共29张PPT)

人教A版高中数学必修第二册教学课件:第八章8.2立体图形的直观图(共29张PPT)

知识梳理
一、 投影与直观图
1.投影的定义 由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这 种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫 做投影面.
2.直观图 (1)直观图是观察者站在某一点观察一个空间几何体获得的图形. (2)立体图形的直观图通常是在平行投影下得到的平面图形.
Hale Waihona Puke ① ② ③ ④ ⑤图8-2-4
A.①② B.①②③ C.②⑤ D.③④⑤
2. C 解析:由斜二测画法知,长方形的直观图应为平行 四边形,且锐角为45°,故②⑤正确.
训练题3 如图8-2-5所示是水平放置的三角形的直观图, A′B′∥y′轴,则原图中△ABC是 ( )
下列叙述中,正确的个数为
()
斜二测画法的位置关系与2.度用量斜特征二用测口诀画简法记为画:空间几何体的直观图的具体规则
了解空间几何体的不同表现形式.
用斜二测画法画出正六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面的投影是正六边形的中心O.
九十度,画一半,横不变,纵减半,
第八章 立体几何初步
三、用斜二测画法画空间几何体的直观图
原图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,在直观图中长度变为原来的一半”的规则,确定平面图
形的关键点.
点拨:斜二测画法中“斜二测”的意思:
(1)直观图是观察者站在某一点 观 察 一个 空 间几何体获得的图形.
1
C.
① ②
训练题1.下列叙述中,正确的个数为 ( )
①相等的角,在直观图中仍相等;
②长度相等的线段,在直观图中长度仍相等;
③若两条线段平行,则在直观图中对应的线段仍平行;

人教A版高中数学必修第二册教学课件:事件的相互独立性

人教A版高中数学必修第二册教学课件:事件的相互独立性


1 12
+
1 8
+
1 4

11 24
,所以事件A,B,C只发生两个的概率为
11 24
.
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
(3)记A:出现偶数点,B:出现3点或6点,
则A={2,4,6},B={3,6},AB={6},
所以P(A)= 3 = 1 ,P(B)= 2 = 1 ,P(AB)= 1 .
62
63
6
【变式训练2】端午节放假,甲回老家过节的概率为 1 ,乙、丙回老家 3
过节的概率分别为 1 ,1 .假定三人的行动相互之间没有影响,那么这段 45
时间内至少1人回老家过节的概率为 ( )
A. 59
B. 1
C. 3
D. 1
60
2
5
60
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
所以P(AB)=P(A)P(B),
所以事件A与B相互独立.

人教A版高中数学必修第二册教学课件-第十章 -10-1-1有限样本空间与随机事件

人教A版高中数学必修第二册教学课件-第十章 -10-1-1有限样本空间与随机事件
解 事件M的含义是“从3双不同的鞋中随机抽取2只,取出的2只鞋不成双”.
高中数学 必修第二册 RJ·A
(2)N={A1B1,B1C1,A1C1}; 解 事件N的含义是“从3双不同的鞋中,随机抽取2只,取出的2只 鞋都是左脚的”.
(3)P={A1B2,A1C2,A2B1,A2C1,B1C2,B2C1}. 解 事件P的含义是“从3双不同的鞋中,随机抽取2只,取到的鞋一 只是左脚的,一只是右脚的,且不成双”.
高中数学 必修第二册 RJ·A
典例剖析
一、样本空间的求法
例1 写出下列试验的样本空间: (1)同时抛掷三枚骰子,记录三颗骰子出现的点数之和;
解 该试验的样本空间Ω1={3,4,5,…,18}.
高中数学 必修第二册 RJ·A
(2)从含有两件正品a1,a2和两件次品b1,b2的四件产品中任取两件,观察取出产品的结果; 解 该试验所有可能的结果如图所示,
高中数学 必修第二册 RJ·A
解 设石头为w1,剪刀为w2,布为w3,用(i,j)表示游戏的结果,其中i表示甲出的拳, j表示乙出的拳,则样本空间E={(w1,w1),(w1,w2),(w1,w3),(w2,w1),(w2,w2), (w2,w3),(w3,w1),(w3,w2),(w3,w3)}. 因为事件A表示随机事件“甲乙平局”, 则满足要求的样本点共有3个:(w1,w1),(w2,w2),(w3,w3), 所以事件A={(w1,w1),(w2,w2),(w3,w3)}. 事件B表示“甲赢得游戏”, 则满足要求的样本点共有3个:(w1,w2),(w2,w3),(w3,w1), 所以事件B={(w1,w2),(w2,w3),(w3,w1)}.
解 事件C中所含样本点中两个数的差的绝对值为2,且样本空间中两个数的差的绝对值 为2的样本点都在事件C中,故事件C的含义为连续抛掷一枚均匀的骰子2次,两次掷出的 点数之差的绝对值为2.

事件的关系和运算 课件(1)-人教A版高中数学必修第二册(共29张PPT)

事件的关系和运算 课件(1)-人教A版高中数学必修第二册(共29张PPT)

E1 “点数为1或2"={1, 2};
E2 "点数为2或3"={2,3}
F "点数为偶数"= {2, 4, 6}
G "点数为奇数"= {1,3,5}
我们借助集合与集合的关系和运算以及事件的相关定义,我们发现这些 事件之间有着奇妙的联系,可以分为以下几种情况.
概念解析 用集合的形式表示事件C1=“点数为1”和事件G=“点数为奇数”,它们分
事件 D1 为事件 E1 和事件 E2 的并事件. 一般地,事件A与事件B至少有一个发生,这样的一个事件中的样本点或者在事件A中,
或者在事件B中,我们称这个事件为事件A与事件B的并事件(或和事件),记作AUB(或A+B).
可以用图中的绿色区域和黄色区域表示这个并事件.
可以发现,事件E 和E 同时发生,相当于 12
判断下列结论是否正确.
(1)C1与C2互斥;
(2)C2,C3为对立事件;
(3)C3⊆D2; (5)D1∪D2=Ω,D1D2=Φ; (7)E=C1∪C3∪C5; (9)D2∪D3=D2;
探究新知
从前面的学习中可以看到,我们在一个随机试验中可以定义很多随机事件。这些事 件有的简单,有的复杂,我们希望从简单事件的概率推算出复杂事件的概率,所以需要研 究事件之间的关系和运算.
引例:在掷骰子试验中,观察骰子朝上面的点数,可以定义许多随机事件
例如:Ci=“点数为i”,i=1,2,3,4,5,6; D1=“点数不大于3”;D2=“点数大于3”; E1=“点数为1或2”;E2=“点数为2或3”; F=“点数为偶数”;G=“点数为奇数”;
时,称为事件A发生
必然 Ω作为自身的子集,包含了所有的样本点,在每次试验中总有 事件 一个样本点发生,所以Ω总会发生,我们称Ω为必然事件

新人教A版高中数学第二册(必修2)课件:8.4.1 平面

新人教A版高中数学第二册(必修2)课件:8.4.1   平面

答案 B
[微思考] 1.几何里的“平面”有边界吗?用什么图形表示平面?
提示 没有.平行四边形. 2.一个平面把空间分成了几部分?
提示 两部分. 3.基本事实1有什么作用?
提示 ①确定平面的依据;②判定点线共面. 4.基本事实2有什么作用?
提示 ①确定直线在平面内的依据;②判定点在平面内. 5.基本事实3有什么作用?
点,有且只有一个平面
经过两条相交直线,有且只有 推论2
一个平面 经过两条平行直线,有且只有 推论3 一个平面
图形
作用 定平面的依据
[微判断]
拓展深化
1.一个平面的面积是16 cm2.( × ) 2.直线l与平面α有且只有两个公共点.( × ) 3.四条线段首尾相连一定构成一个平面四边形.( × ) 4.8个平面重叠起来要比6个平面重叠起来厚.( × ) 5.空间不同三点确定一个平面.( × )
证明 如图所示.由已知a∥b,
所以过a,b有且只有一个平面α. 设a∩l=A,b∩l=B, ∴A∈α,B∈α,且A∈l,B∈l, ∴l⊂α,即过a,b,l有且只有一个平面.
规律方法 在证明多线共面时,可用下面的两种方法来证明: (1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内. (2)同一法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内, 然后证明这两个平面重合,即证得所有元素在同一个平面内.
2.如图表示两个相交平面,其中画法正确的是( ) 答案 D
3.已知点A,直线a,平面α.
①若A∈a,a⊄α,则A∉α;
②若A∈α,a⊂α,则A∈a;
③若A∉a,a⊂α,则A∉α;
④若A∈a,a⊂α,则A∈α.
以上说法中,表达正确的个数是( )

人教A版(新教材)高中数学第二册(必修2)课件:9.2.2 总体百分位数的估计

人教A版(新教材)高中数学第二册(必修2)课件:9.2.2 总体百分位数的估计

2.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是________. 解析 因为8×30%=2.4,故30%分位数是第三项数据8.4. 答案 8.4
3.一组样本数据的频率分布直方图如图所示,试估计此样本数据的第50百分位数为 ________.
解析 样本数据低于 10 的比例为(0.08+0.02)×4=0.40,样本数据低于 14 的比例为
规律方法 计算一组n个数据的第p百分位数的一般步骤: (1)排列:按照从小到大排列原始数据; (2)算i:计算i=n×p%; (3)定数:若i不是整数,大于i的最小整数为j,则第p百分位数为第j项数据;若i是整 数,则第p百分位数为第i项与第(i+1)项数据的平均数.
【训练1】 如图所示是某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折 线统计图,由图可知这10天最低气温的第80百分位数是( )
一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有__p_%____ 的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
2.计算一组n个数据的第p百分位数的步骤 第1步,按__从__小__到__大___排列原始数据. 第2步,计算i=n×p%. 第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整 数,则第p百分位数为第i项与第(i+1)项数据的___平__均__数___.
解 (1)将所有数据从小到大排列,得 7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9, 因为共有12个数据, 所以12×25%=3,12×50%=6,12×95%=11.4, 则第 25 百分位数是8.0+2 8.3=8.15, 第 50 百分位数是8.5+2 8.5=8.5, 第 95 百分位数是第 12 个数据为 9.9.

人教A版高中数学必修第二册教学课件-第九章 -9-2-1总体取值规律的估计

人教A版高中数学必修第二册教学课件-第九章 -9-2-1总体取值规律的估计
反思感悟
绘制频率分布直方图的注意点 (1)各组频率的和等于1,因此,各小矩形的面积之和也等于1. (2)同样一组数据,如果组距不同,横轴、纵轴单位不同,得到的频率分布直方图的 形状也会不同.
高中数学 必修第二册 RJ·A
跟踪训练
为了了解九年级学生中女生的身高(单位:cm)情况, 某中学对九年级部分女生身高进行了一次测量,所 得数据整理后列出的频率分布表如右: (1)求出表中m,n,M,N所表示的数分别是多少;
所以 b=频组率距=0.225=0.125.
高中数学 必修第二册 RJ·A
(3)假设同一组中的每个数据可用该组区间的中点值代替, 试估计样本中的100名学生该周课外阅读时间的平均数在 第几组(只需写出结论).
解 样本中的100名学生该周课外阅读时间的平均数在 第4组.
组号 1 2 3 4 5 6 7 8 9
分组 [145.5,149.5) [149.5,153.5) [153.5,157.5) [157.5,161.5) [161.5,165.5) [165.5,169.5]
合计
频数 1 4 20 15 8 m M
频率 0.02 0.08 0.40 0.30 0.16
n N
高中数学 必修第二册 RJ·A
频数
③相应的频率=样本容量. (2)频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本 在某一范围内的频率,可近似地估计总体在这一范围内的可能性.
高中数学 必修第二册 RJ·A
跟踪训练
从某校随机抽取100名学生,获得了他们一周课外阅读 时间(单位:小时)的数据,整理得到数据分组及频数分 布表和频率分布直方图:
高中数学 必修第二册 RJ·A
(2)画出频率分布直方图; 解 频率分布直方图如图所示.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档