高中数学专题练习---数列求和
高考数学专题复习练习题12---数列求通项、求和(理)含答案解析

高考数学专题复习练习题12---数列求通项、求和(理)1.已知数列{}n a 的前n 项和21n n S =-,则数列2{}n a 的前10项和为( )A .1041-B .102(21)-C .101(41)3-D .101(21)3-2.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,则{}n a 的通项公式为n a =( ) A .21n -B .12n -C .21n-D .21n +3.数列{}n a 满足1(1)nn n a a n ++=-⋅,则数列{}n a 的前20项和为( )A .100-B .100C .110-D .1104.已知数列{}n a 的通项公式为100n a n n=+,则122399100||||||a a a a a a -+-++-=L ( ) A .150B .162C .180D .2105.数列{}n a 中,10a =,1n n a a +-=,若9n a =,则n =( )A .97B .98C .99D .1006.在数列{}n a 中,12a =-,111n na a +=-,则2019a 的值为( ) A .2-B .13 C .12D .327.已知n S 是数列{}n a 的前n 项和,且13n n n S S a +=++,4523a a +=,则8S =( ) A .72B .88C .92D .988.在数列{}n a 中,12a =,已知112(2)2n n n a a n a --=≥+,则n a 等于( )A .21n + B .2n C .31n + D .3n9.已知数列21()n a n n =-∈*N ,n T 为数列11{}n n a a +的前n 项和,求使不等式20194039n T ≥成立的最小 正整数( )一、选择题A .2017B .2018C .2019D .202010.已知直线20x y ++=与直线0x dy -+=互相平行且距离为m ,等差数列{}n a 的公差为d ,7835a a ⋅=,4100a a +<,令123||||||||n n S a a a a =++++L ,则m S 的值为( )A .60B .52C .44D .3611.已知定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,数列{}n a 是等差数列, 若23a =,713a =,则1232020()()()()f a f a f a f a ++++=L ( ) A .2-B .3-C .2D .312.已知数列满足12323(21)3nn a a a na n ++++=-⋅L ,设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),n ∈*N ,则λ的最小值为( )A .32B .94C .3112D .311813.已知数列{}n a 的通项公式为12n n a n -=⋅,其前n 项和为n S ,则n S = .14.设数列{}n a 满足1(1)()2n n n na n a n n +-+=∈+*N ,112a =,n a = . 15.已知数列{}n a 满足1(1)(2)nn n a a n n ---=≥,记n S 为数列{}n a 的前n 项和,则40S = .16.等差数列{}n a 中,3412a a +=,749S =,若[]x 表示不超过x 的最大整数,(如[0.9]0=,[2.6]2=,).令[lg ]()n n b a n =∈*N ,则数列{}n b 的前2000项和为 .1.【答案】C答 案 与 解 析二、填空题一、选择题【解析】∵21n n S =-,∴1121n n S ++=-,∴111(21)(21)2n n nn n n a S S +++=-=---=, 又11211a S ==-=,∴数列{}n a 的通项公式为12n n a -=,∴2121(2)4n n n a --==,∴所求值为1010141(41)143-=--. 2.【答案】B【解析】当1n =时,11121S a a =-=,∴11a =;当2n ≥时,1122n n n n n a S S a a --=-=-,∴12n n a a -=,因此12n n a -=.3.【答案】A【解析】121a a +=-,343a a +=-,565a a +=-,787a a +=-,…, 由上述可知,1219201191(13519)1101002a a a a +++++=-⨯++++=-⨯⨯=-L L . 4.【答案】B【解析】由对勾函数的性质知:当10n ≤时,数列{}n a 为递减; 当10n ≥时,数列{}n a 为递增,故12239910012239101110||||||()()()()a a a a a a a a a a a a a a -+-++-=-+-++-+-L L12111009911010010()()1100(1010)(1001)a a a a a a a a +-++-=-+-=+-+++-L (1010)162+=.5.【答案】D【解析】由1n n a a +-==,利用累加法可得,∴11)n a a -=+++L 1=,∵10a =,∴19n a ==10=,100n =. 6.【答案】B【解析】由题意得,12a =-,111n n a a +=-,∴213122a =+=,321133a =-=,4132a =-=-,…, ∴{}n a 的周期为3,∴20193673313a a a ⨯===. 7.【答案】C【解析】∵13n n n S S a +=++,∴113n n n n S S a a ++-=+=, ∴13n n a a +-=,∴{}n a 是公差为3d =的等差数列,又4523a a +=,可得12723a d +=,解得11a =,∴81878922S a d ⨯=+=. 8.【答案】B 【解析】将等式1122n n n a a a --=+两边取倒数,得到11112n n a a -=+,11112n n a a --=, 1{}n a 是公差为12的等差数列,1112a =,根据等差数列的通项公式的求法得到111(1)222n n n a =+-⨯=,故2n a n=. 9.【答案】C【解析】已知数列21()n a n n =-∈*N ,∵111111()(21)(21)22121n n a a n n n n +==--+-+, ∴11111111(1)()()(1)2335212122121n n T n n n n ⎡⎤=-+-++-=-=⎢⎥-+++⎣⎦L , 不等式20194039n T ≥,即2019214039n n ≥+,解得2019n ≥, ∴使得不等式成立的最小正整数n 的值为2019. 10.【答案】B【解析】由两直线平行得2d =-,由两直线平行间距离公式得10m ==,∵77(2)35a a ⋅-=,得75a =-或77a =, ∵410720a a a +=<,∴75a =-,29n a n =-+,∴12310|||||||||7||5||5||7||9||11|52m S a a a a =++++=+++-+-+-+-=L L . 11.【答案】B【解析】由函数()f x 是奇函数且3()()2f x f x -=,得(3)()f x f x +=, 由数列{}n a 是等差数列,若23a =,713a =,可得到21n a n =-, 可得123456()()()()()()0f a f a f a f a f a f a ++=++=,则其周期为3,12320201()()()()()3f a f a f a f a f a ++++==-L .12.【答案】C【解析】∵12323(21)3nn a a a na n ++++=-⋅L ①,当2n ≥时,类比写出12323a a a ++++L 11(1)(23)3n n n a n ---=-⋅②, 由①-②得143n n na n -=⋅,即143n n a -=⋅.当1n =时,134a =≠,∴13,143,2n n n a n -=⎧=⎨⋅≥⎩,14,13,23n n n b n n -⎧=⎪⎪=⎨⎪≥⎪⎩, 214233333n n n S -=++++=L 021*********n n-+++++L ③, 2311112313933333n n n n nS --=++++++L ④, ③-④得,0231112211111231393333339313n n n n n n n S --=++++++-=+--L ,∴316931124312n n n S +=-<⋅,∵n S λ<(常数),n ∈*N ,∴λ的最小值是3112.13.【答案】(1)21nn -+【解析】由题意得01221122232(1)22n n n S n n --=⨯+⨯+⨯++-⋅+⋅L ①,∴1221222n S =⨯+⨯3132(1)22n n n n -+⨯++-⋅+⋅L ②,①-②得231121222222(1)2112nn nn n n S n n n ---=+++++-⋅=-⋅=-⋅--L ,∴(1)21nn S n =-+.14.【答案】21n n +【解析】∵1(1)()2n n n na n a n n +-+=∈+*N ,∴11111(2)(1)12n n a a n n n n n n +-==-+++++,∴11111n n a a n n n n --=--+,…,21112123a a -=-,累加可得11121n a a n n -=-+, 二、填空题∵112a =,∴1111n a nn n n =-=++,∴21n n a n =+. 15.【答案】440【解析】由1(1)(2)nn n a a n n ---=≥可得:当2n k =时,2212k k a a k --=①;当21n k =-时,212221k k a a k --+=-②; 当21n k =+时,21221k k a a k ++=+③;①+②有:22241k k a a k -+=-,③-①得有:21211k k a a +-+=, 则40135739()S a a a a a =+++++L24640109()110(71523)1071084402a a a a ⨯+++++=⨯++++=+⨯+⨯=L L . 16.【答案】5445【解析】设等差数列{}n a 的公差为d ,∵3412a a +=,749S =,∴12512a d +=,1767492a d ⨯+=,解得11a =,2d =, ∴12(1)21n a n n =+-=-,[lg ][lg(21)]n n b a n ==-,1,2,3,4,5n =时,0n b =;650n ≤≤时,1n b =; 51500n ≤≤时,2n b =; 5012000n ≤≤时,3n b =,∴数列{}n b 的前2000项和454502150035445=+⨯+⨯=.。
高考数学专题—数列求前n项和的5种常用方法总结

高考数学专题——数列(求S n )求s n 的四种方法总结常考题型:共5种大题型(包含倒序相加法、错位相减法、裂项相消法、分组转化法、并项求和法。
1、倒序相加法:实质为等差数列求和。
例1、【2019·全国2·文T18】已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.【解析】(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0,解得q=-2(舍去)或q=4. 因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2. 2、错位相减法:实质为等差×等比求和。
错位相减法的万能公式及推导过程:公式:数列c n =(an +b )q n−1,(an +b )为等差数列,q n−1为等比数列。
前n 项和S n =(An +B )q n +C A =a q −1,B =b −Aq −1,C =−B S n =(a +b )+(2a +b )q +(3a +b )q 2+⋯[(n −1)a +b ]q n−2+(an +b )q n−1 ① qS n =(a +b )q +(2a +b )q 2+(3a +b )q 3+⋯[(n −1)a +b ]q n−1+(an +b )q n ② ②-①得:(q −1)s n =−(a +b )−a (q +q 2+⋯q n−1)+(an +b )q n=−(a +b )−a ⋅q(1−q n−1)1−q+(an +b )q n=(an +b −aq−1)q n −(b −aq−1)S n =(aq −1⋅n +b −a q −1q −1)⋅q n −b −aq −1q −1例2、【2020年高考全国Ⅰ卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-. 例3、【2020年高考全国III 卷理数】设数列{a n }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【解析】(1)235,7,a a == 猜想21,n a n =+ 由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①② 得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+例4、【2020届辽宁省大连市高三双基测试数学】已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(I )求12,a a 的值;(Ⅱ)试求数列{}n a 的前n 项和n S .【解析】(Ⅰ)方法一:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列 21221a a ∴=⨯ 214a a ∴=又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列 2121122a a ∴-=,解得1228a a =⎧⎨=⎩方法二:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列,1112,n n a n a n+∴=1(1)2n n n a a n ++∴=.①又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列, 11122n nn na a ++∴-=② 由①②解得:2nn a n =⋅1228a a =⎧⎨=⎩ (Ⅱ)1122,1n n n a a n -=⋅= 2n n a n ∴=⋅123n n S a a a a =+++⋅⋅⋅+1231222322n n =⋅+⋅+⋅+⋅⋅⋅+⋅ 234121222322n n S n +∴=⋅+⋅+⋅+⋅⋅⋅+⋅两式作差可得:23122222n n n S n +-=+++⋅⋅⋅+-⋅()1212212n n n n S +-=-⋅--1(1)22n n n S +=⋅---, 1(1)22n n S n +∴=-⋅+.例5、【2020届江西省吉安市高三上学期期末数学】数列{}n a 的前n 项和为n S ,且满足11a =,121n n a S +-=.(I )求{}n a 的通项公式;(Ⅱ)若3log n n b a =,数列2221n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:12nT <.【解析】(I )当1n =时,由11a =,2121a a -=得23a =;当2n ≥时,121n n a S --=,两式相减得()1120n n n n a a S S +----=, 即13n n a a +=(2)n ≥,又2133a a ==, 故13n n a a +=恒成立,则数列{}n a 是公比为3的等比数列,可得13-=n n a . (Ⅱ)由(I )得313log log 31n n n b a n -===-,则22211111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪⋅-⋅+-+⎝⎭,则111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭. 1021n >+ 11112212n ⎛⎫∴-< ⎪+⎝⎭ 故12n T <例6、【2017·天津·理T18】已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8.①由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 例7、【2020·石家庄模拟】设数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a n a n -1=3(n ≥2),又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3, 所以{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n 3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n . 3、裂项相消法:实质为a n =b n (n+a )形式的求和。
高中数学数列_错位相减法求和专题训练含答案

错位相减法求和专题训练1.已知数列{}n a 满足22,{ 2,n n n a n a a n ++=为奇数为偶数,且*12,1,2n N a a ∈==.(1)求 {}n a 的通项公式;(2)设*1,n n n b a a n N +=⋅∈,求数列{}n b 的前2n 项和2n S ;(3)设()2121nn n n c a a -=⋅+-,证明:123111154n c c c c ++++< 2.设正项数列{}n a 的前n 项和为n S ,且满足37a =, 21691n n a S n +=++, *n N ∈.(1)求数列{}n a 的通项公式;(2)若正项等比数列{}n b 满足1132,b a b a ==,且n n n c a b =⋅,数列{}n c 的前n 项和为n T . ①求n T ;②若对任意2n ≥, *n N ∈,均有()2563135n T m n n -≥-+恒成立,求实数m 的取值范围.3.已知*n N ∈,设n S 是单调递减的等比数列{}n a 的前n 项和, 112a =且224433,,S a S a S a +++成等差数列.(1)求数列{}n a 的通项公式;(2)记数列{}n na 的前n 项和为n T ,求证:对于任意正整数n , 122n T ≤<. 4.递增的等比数列{}n a 的前n 项和为n S ,且26S =, 430S =. (1)求数列{}n a 的通项公式;(2)若12log n n n b a a =,数列{}n b 的前n 项和为n T ,求1250n n T n ++⋅>成立的正整数n 的最小值.5.已知数列{}n a 及()212n n n f x a x a x a x =+++,且()()11?nn f n -=-, 1,2,3,n =.(1)求123a a a ,,的值; (2)求数列{}n a 的通项公式;(3)求证:11133n f ⎛⎫≤< ⎪⎝⎭. 6.已知数列{}n a 是以2为首项的等差数列,且1311,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式及前n 项和()*n S n N ∈; (Ⅱ)若()1232n a n b -=,求数列{}1n n a b +的前n 项之和()*n T n N ∈.7.在数列{}n a 中, 14a =,前n 项和n S 满足1n n S a n +=+.(1)求证:当2n ≥时,数列{}1n a -为等比数列,并求通项公式n a ;(2)令11•213nn n n na b -⎛⎫= ⎪+⎝⎭,求数列{}n b 的前n 项和为n T .8.已知等差数列{}n a 的前n 项和n S ,且252,15a S ==,数列{}n b 满足11,2b =1n b += 12n n b n+. (1)求数列{}n a , {}n b 的通项公式; (2)记n T 为数列{}n b 的前n 项和, ()()222n n S T f n n -=+,试问()f n 是否存在最大值,若存在,求出最大值;若不存在,请说明理由.9.已知数列{}n a 的前n 项和22n S n n =+.(1)求数列{}n a 的通项公式n a ; (2)令()*211n n b n N a =∈-,求数列{}n a 的前n 项和n T . 10.已知单调递增的等比数列{}n a 满足: 2420a a +=, 38a = (1)求数列{}n a 的通项公式;(2)若12log n n n b a a =⋅,数列{}n b 的前n 项和为n S , 1250n n S n ++⋅>成立的正整数n 的最小值.参考答案1.解析:(1)当n 为奇数时, 22n n a a +-=,此时数列{}*21k a k N -∈()成等差数列. 2d = 当n 当为偶数时, 22n n a a +=,此时数列{}*2k a k N ∈()成等比数列 2q = ()()2{2nn n n a n ∴=为奇数为偶数(2)()()21221222121222142kkk k k k k k k b b a a a a k k k --++=+=-⋅++=⋅()()()21234212n n n S b b b b b b -=++++++23241222322n n S n ⎡⎤∴=⋅+⋅+⋅+⋅⎣⎦()2312241222122n n n S n n +⎡⎤=⋅+⋅++-+⋅⎣⎦12242222n n n S n +⎡⎤∴-=+++-⋅⎣⎦(3) ()()3121nnn C n =-+- ()()()()2121{ 2121nn nn n C n n -⋅-∴=-⋅+为奇为偶 ()()1111321212n n n n C n +=<≥-- n 为奇 ()()1111221212n n n n C +=<≥-+ n 为偶2.解析:(1) 2n 1n a 6S 9n 1+=++,()()2n n 1a 6S 9n 11n 2-=+-+≥,∴()22n 1n n a a 6a 9n 2+-=+≥,∴()22n 1n a a 3+=+ 且各项为正,∴()n 1n a a 3n 2+=+≥又3a 7=,所以2a 4=,再由221a 6S 91=++得1a 1=,所以21a a 3-=∴{}n a 是首项为1,公差为3的等差数列,∴n a 3n 2=-(2) 13b 1,b 4==∴n 1n b 2-=, ()n 1n n n c a b 3n 22-=⋅=-⋅①()01n 1n T 12423n 22-=⋅+⋅++-⋅,②()12n n 2T 12423n 22=⋅+⋅++-⋅∴()12n 1n T 13222--=++++ ()n 3n 22--⋅, ()n n T 3n 525=-⋅+()n 3n 52m -⋅⋅≥ ()2*6n 31n 35n 2,n N -+≥∈恒成立∴()2n 6n 31n 35m 3n 52-+≥-⋅ ()()()n n3n 52n 72n 73n 522---==-⋅,即n 2n 7m 2-≥恒成立. 设n n 2n 7k 2-=, n 1nn 1n n 12n 52n 792nk k 222+++----=-= 当n 4≤时, n 1n k k +>; n 5≥时, n 1n k k +< ∴()n 55max 33k k 232===,∴3m 32≥. 点睛:本题主要考查了数列的综合应用问题,其中解答中涉及到等差数列的通项公式的求解,数列的乘公比错位相减法求和,数列的恒成立的求解等知识点的综合运用,试题有一定的综合性,属于中档试题,解答中准确运算和合理转化恒成立问题是解答的关键. 3.解:(1)设数列{}n a 的公比q ,由()4422332S a S a S a +=+++, 得()()42434232S S S S a a a -+-+=+,即424a a =,∴214q =. {}n a 是单调递减数列,∴12q =, ∴12nn a ⎛⎫= ⎪⎝⎭(2)由(1)知2n n nna =, 所以234112*********n n n n nT --=++++++,①232123412122222n n n n nT ---=++++++,②②-①得: 211112222n n n n nT -=++++-,1122212212nn n n n n T ⎛⎫- ⎪+⎝⎭=-=--,由()111112n n n n n T T n a ++++-=+=,得123n T T T T <<<<,故112n T T ≥=又2222n n n T +=-<,因此对于任意正整数n , 122n T ≤<点睛:本题主要考查了数列的综合应用和不等式关系证明问题,其中解答涉及到等比数列的基本量的运算,数列的乘公比错位相减法求和,以及放缩法证明不等式,突出考查了方程思想和错位相减法求和及放缩法的应用,试题综合性强,属于难题. 4.解析:(1)设等比数列{}n a 的公比为q由已知, 42302S S =≠.则1q ≠,则()()212414161{1301a q S q a q S q-==--==-,,两式相除得2q =±,∵数列{}n a 为递增数列,∴2q =,则12a =,所以2n n a =.(2)122log 22n n n n b n ==-⋅,()1231222322n n T n =-⋅+⋅+⋅++⋅ 设1231222322n n H n =⋅+⋅+⋅++⋅,① 23412222322n n H n +=+⋅+⋅++⋅,②①-②得:()1231121222222212n n n n n H n n ++--=++++-⋅=-⋅-,11222n n n n T +-=-⋅+-=,1250n n T n ++⋅>, 即111222250n n n n n +++-⋅+-+⋅>,1252n +>,∴正整数n 的最小值是5.点睛:本题主要考查了等比数列的求和公式及通项公式的应用,错位相减求和方法的应用,及指数不等式的求解.5.解析:(1)由已知()1111f a -=-=-,所以11a =.()21212f a a -=-+=,所以23a =. ()312313f a a a -=-+-=-,所以35a =.(2)令1x =-,则()()()()2121111nn n f a a a -=-+-++-,①()()()()()21112111111nn n n n f a a a a +++-=-++-++-+-,②两式相减,得()()()1111?11n n n n a f f +++-=---= ()()()11?11?n nn n +-+--,所以()11n a n n +=++,即121n a n +=+, 又11a =也满足上式,所以数列{}n a 的通项公式为()211,2,3,n a n n =-=.(3)()233521n n f x x x x n x =++++-,所以()2311111352133333nn f n ⎛⎫⎛⎫⎛⎫⎛⎫=++++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,③()2341111111·3521333333n n f n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,④①-②得()2312111111222213333333nn n f n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以11133n nn f +⎛⎫=-⎪⎝⎭. 又1,2,3,n =,∴103n n +>,故113n f ⎛⎫< ⎪⎝⎭.又1111210333n n n n f f +++⎛⎫⎛⎫--=> ⎪ ⎪⎝⎭⎝⎭, 所以13n f ⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭是递增数列,故1111333n f f ⎛⎫⎛⎫≥=⎪ ⎪⎝⎭⎝⎭. 所以11133n f ⎛⎫≤< ⎪⎝⎭. 【点睛】本题考查数列的前3项及通项公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.6.解析:(Ⅰ) 设数列{}n a 的公差为d ,由条件可得23111a a a =,即()()2222210d d +=+,解得3d =或0d =(舍去),则数列{}n a 的通项公式为()23131n a n n =+-=-,()()23113122n n n S n n +-==+. (Ⅱ)由(Ⅰ)得()121322n a n n b --==,则()1231223341225282312n n n n T a b a b a b a b n +=++++=⨯+⨯+⨯++-⨯,①()23412225282312n n T n +=⨯+⨯+⨯++-⨯,②将①-②得()123122323232312n n n T n +-=⨯+⨯+⨯++⨯--⨯()()211132324312834212n n n n n +++⨯-⨯=+--⨯=---⨯-,则()18342n n T n +=+-⨯.【易错点晴】本题主要考等差数列的通项公式、等比数列的求和公式、以及“错位相减法”求数列的和,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -.7.解析:(1)11,4n a == 当2n ≥时, 1,n n n a s s -=-得()1121n n a a +-=-,1121n n a a +-=-112,n n a --=得 121n n a -=- n a = 14,1{21,2n n n -=+≥(2)当1n =时, 123b = 当2n ≥时, 13nn b n ⎛⎫=⋅ ⎪⎝⎭当1n =时, 123T =当2n ≥时, 232111233333nn T n ⎛⎫⎛⎫⎛⎫=+⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令2311123333nM n ⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3411111233333n M n +⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴ 23M = 122111191833n n n +-⎡⎤⎛⎫+--⋅ ⎪⎢⎥⎣⎦⎝⎭ 2111111312323nn M n -⎡⎤⎛⎫∴=+--⋅ ⎪⎢⎥⎣⎦⎝⎭132311243n nn T +⎛⎫∴=-⋅ ⎪⎝⎭ 经检验1n =时, 1T 也适合上式. 132311243n n n T +∴=-⋅ ()*n N ∈ . 点睛:数列问题是高考中的重要问题,主要考查等差等比数列的通项公式和前n 项和,主要利用解方程得思想处理通项公式问题,利用分组求和、裂项相消、错位相减法等方法求数列的和.在利用错位相减求和时,要注意提高运算的准确性,防止运算错误. 8.解析:(1)设等差数列{}n a 的首项为1a ,公差为d , 则11121{{,.510151n a d a a n a d d +==⇒∴=+==由题意得1111122n n b b b n n +=⋅=+,,∴数列n b n ⎧⎫⎨⎬⎩⎭是等比数列,且首项和公比都是12, 2n nn b ∴=. (2)由(1)得231232222n n n T =+++⋅⋅⋅+, 2341112322222n n n T +=+++⋅⋅⋅+, 两式相减得: 23111111=222222n n n n T ++++⋅⋅⋅+-, 222n n n T +∴=-;()()()2122222n n n nn n S T n nS f n n +-+=∴==+; ()()()()()221111121222n n n n n n n n n f n f n ++++++-+∴+-=-= 当3n ≥时, ()()10f n f n +-<;当3n <时, ()()10f n f n +-≥;()()()3311,2,322f f f === ∴()f n 存在最大值为32.点睛:数列问题是高考中的重要问题,主要考查等差等比数列的通项公式和前n 项和,主要利用解方程得思想处理通项公式问题,利用分组求和、裂项相消、错位相减法等方法求数列的和.在利用错位相减求和时,要注意提高运算的准确性,防止运算错误. 9.解析:(1)当1n =时, 11==3a S ;当2n ≥时, ()()221=212121n n n a S S n n n n n --=+----=+, 1=3a 也符合, ∴数列{}n a 的通项公式为=21n a n +.(2)2211111=14441n n b a n n n n ⎛⎫==- ⎪-++⎝⎭, ∴()111111111...1422314141n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 点睛:本题考查了等差数列的定义,求数列的前n 项和问题,属于中档题.解决数列的通项公式问题时,一般要紧扣等差等比的定义,利用方程思想求解,数列求和时,一般根据通项的特点选择合适的求和方法,其中裂项相消和错位相减法考查的比较多,主要是对通项的变形转化处理即可.10.解析:(1)设等比例列16.λ∴的最大值为的首项为1a ,公比为q依题意,有3112120{8a q a q a q +==,解之得12{ 2a q ==或132{ 12a q ==, 又数列{}n a 单调递增, 12{ 2.2n a a n q =∴∴==,(2)依题意, 12.log2.2,.2bn n n n n ==- 12222323.........2,Sn n n ∴-=⨯+⨯+⨯++①2122223324........21Sn n n -=⨯+⨯+⨯+++②由①—②得: 2222324......2.21Sn n n n =+++++-+()212.2112n n n -=-+-21.212n n n =+-+- , 1250n n S n +∴=⋅>,即12250,226n n +->∴>,当4n ≤时, 2241626n <=<;当5n ≥时,5223226n <=<, ∴使1250n n S n ++⋅>,成立的正整数n 的最小值为5.【 方法点睛】本题主要考查等比数列的通项公式与求和公式以及错位相减法求数列的的前n 项和,属于中档题.一般地,如果数列{}n a 是等差数列, {}n b 是等比数列,求数列{}n n a b ⋅的前n 项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解, 在写出“n S ”与“n qS ” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式.。
高中数学-数列经典例题(裂项相消法)(1)

数列裂项相消求和的典型题型1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为()A .100101B .99101C .99100D .1011002.数列,)1(1+=n n a n 其前n 项之和为,109则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距为()A .-10B .-9C .10D .93.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和.4.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ;(Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S .(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设数列}{n b 满足,,211*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T .6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .7.在数列}{n a 中n n a n a a 211)11(2,1,+==+.(Ⅰ)求}{n a 的通项公式;(Ⅱ)令,211n n n a a b -=+求数列}{n b 的前n 项和n S ;(Ⅲ)求数列}{n a 的前n 项和n T .8.已知等差数列}{n a 的前3项和为6,前8项和为﹣4.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设),,0()4(*1N n q q a b n n n ∈≠-=-求数列}{n b 的前n 项和n S .9.已知数列}{n a 满足,2,021==a a 且对*,N n m ∈∀都有211212)(22n m a a a n m n m -+=+-+--.(Ⅰ)求53,a a ;(Ⅱ)设),(*1212N n a a b n n n ∈-=-+证明:}{n b 是等差数列;(Ⅲ)设),,0()(*11N n q q a a c n n n n ∈≠-=-+求数列}{n c 的前n 项和n S .10.已知数列}{n a 是一个公差大于0的等差数列,且满足16,557263=+=a a a a .(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n a 和数列}{n b 满足等式),(2222*33221N n b b b b a n n n ∈++++= 求数列}{n b 的前n 项和n S .11.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列.(1)求数列}{n a 的通项公式;(2)令,4)1(112+--=n n n a a n b 求数列}{n b 的前n 项和n T .12.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ;(2)令,)2(122nn a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T .答案:1.A ;2.B3.解:(Ⅰ)设数列{a n }的公比为q ,由a 32=9a 2a 6有a 32=9a 42,∴q 2=.由条件可知各项均为正数,故q=.由2a 1+3a 2=1有2a 1+3a 1q=1,∴a 1=.故数列{a n }的通项式为a n =.(Ⅱ)b n =++…+=﹣(1+2+…+n )=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,∴数列{}的前n项和为﹣.4.解:(Ⅰ)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0,可有(a n﹣2n)(a n+1)=0∴a n=2n.(Ⅱ)∵a n=2n,b n=,∴b n===,T n===.数列{b n}的前n项和T n为.5.解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解有a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,有:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减有:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.6.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴有,解有a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n;(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.7.解:(Ⅰ)由条件有,又n=1时,,故数列构成首项为1,公式为的等比数列.∴,即.(Ⅱ)由有,,两式相减,有:,∴.(Ⅲ)由有.∴T n=2S n+2a1﹣2a n+1=.8.解:(Ⅰ)设{a n}的公差为d,由已知有解有a1=3,d=﹣1故a n =3+(n ﹣1)(﹣1)=4﹣n ;(Ⅱ)由(Ⅰ)的解答有,b n =n •q n ﹣1,于是S n =1•q 0+2•q 1+3•q 2+…+n •q n ﹣1.若q ≠1,将上式两边同乘以q ,有qS n =1•q 1+2•q 2+3•q 3+…+n •q n .上面两式相减,有(q ﹣1)S n =nq n ﹣(1+q+q 2+…+q n ﹣1)=nq n ﹣于是S n =若q=1,则S n =1+2+3+…+n=∴,S n =.9.解:(Ⅰ)由题意,令m=2,n=1,可有a 3=2a 2﹣a 1+2=6再令m=3,n=1,可有a 5=2a 3﹣a 1+8=20(Ⅱ)当n ∈N *时,由已知(以n+2代替m )可有a 2n+3+a 2n ﹣1=2a 2n+1+8于是[a 2(n+1)+1﹣a 2(n+1)﹣1]﹣(a 2n+1﹣a 2n ﹣1)=8即b n+1﹣b n =8∴{b n }是公差为8的等差数列(Ⅲ)由(Ⅰ)(Ⅱ)解答可知{b n }是首项为b 1=a 3﹣a 1=6,公差为8的等差数列则b n =8n ﹣2,即a 2n+1﹣a 2n ﹣1=8n ﹣2另由已知(令m=1)可有a n =﹣(n ﹣1)2.∴a n+1﹣a n =﹣2n+1=﹣2n+1=2n 于是c n =2nq n ﹣1.当q=1时,S n =2+4+6++2n=n (n+1)当q ≠1时,S n =2•q 0+4•q 1+6•q 2+…+2n •q n ﹣1.两边同乘以q ,可有qS n =2•q 1+4•q 2+6•q 3+…+2n •q n .上述两式相减,有(1﹣q )S n =2(1+q+q 2+…+q n ﹣1)﹣2nq n =2•﹣2nq n =2•∴S n =2•综上所述,S n =.10.解:(Ⅰ)设等差数列{a n }的公差为d ,则依题意可知d >0由a 2+a 7=16,有,2a 1+7d=16①由a 3a 6=55,有(a 1+2d )(a 1+5d )=55②由①②联立方程求,有d=2,a 1=1/d=﹣2,a 1=(排除)∴a n =1+(n ﹣1)•2=2n ﹣1(Ⅱ)令c n =,则有a n =c 1+c 2+…+c n a n+1=c 1+c 2+…+c n+1两式相减,有a n+1﹣a n =c n+1,由(1)有a 1=1,a n+1﹣a n =2∴c n+1=2,即c n =2(n ≥2),即当n ≥2时,b n =2n+1,又当n=1时,b 1=2a 1=2∴b n =于是S n =b 1+b 2+b 3+…+b n =2+23+24+…2n+1=2n+2﹣6,n ≥2,.11.解(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1).当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n 2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T nn 为奇数,n 为偶数.(或T n =2n +1+(-1)n -12n +1)12.(1)解由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0.所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n ,n =1时,a 1=S 1=2适合上式.∴a n =2n (n ∈N *).(2)证明由a n =2n (n ∈N *)得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=1161n 2-1(n +2)2T n…=1161+122-1(n +1)2-1(n +2)2<=564(n ∈N *).即对于任意的n ∈N *,都有T n <564.。
高中数学数列求和的五种方法

⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。
注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。
例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。
高中数学专题强化练习《数列求和》含答案解析

=2 -1,
1-2
=
∴Sn=(21-1)+(22-1)+…+(2n-1)
2 × (1 - 2)
-n=2n+1-n-2.故选
1-2
=
D.
2.B 由题意可得,当 n 为奇数时,an=f(n)+f(n+1)=n2-(n+1)2=-2n-1;
当 n 为偶数时,an=f(n)+f(n+1)=-n2+(n+1)2=2n+1.
公差不为 0,其前 n 项和为 Sn.若 a2,a4,a7 成等比数列,S3=12.
(1)求 an 及 Sn;
1
1
1
(2)已知数列{bn}满足+1-=an,n∈N*,b1=3,Tn 为数列{bn}的前 n 项和,
求 Tn 的取值范围.
答案全解全析
一、选择题
1.D ∵an=1+2+22+…+2n-1
又 a14=b4,所以 1+13d=1×33,解得 d=2,
( - 1)
1 - 3
2+3 - 1.
·2+
=n
2
1-3
2
所以数列{an+bn}的前 n 项和为 n+
8.答案 6
6
解析 设等比数列{an}的首项为 a1,公比为 q,由 a4=24,a6=96,得 q2=4
=4,所以 q=2 或 q=-2,
(n ≤ 6,n ∈ N*),
2
∴Tn= n2 - 11n + 60
(n ≥ 7,n ∈ N*).
2
=15+
高中数学数列求和列项相消专题练习

列项相消专题练习
1、已知数列是递增的等比数列,且,.
(1)求数列的通项公式;
(2)设为数列的前项和,,求数列的前项和.
2、已知数列的前项和为,且.
(1)求的通项公式;
(2)设,,数列的前项和为,证明:.
3、已知等差数列的前项和为,.
(1)求等差数列的通项公式;
(2)求.
4、若数列是递增的等差数列,它的前项和为,其中,且成等比数列.
(1)求的通项公式;
(2)设,数列的前项和为,若对任意,恒成立,求的取值范围.
5、已知数列满足,.
(1)证明:数列为等差数列,并求数列的通项公式;
(2)设,求数列的前项和.
6、已知等比数列中,公比,前项和为,且.
(1)求的通项公式;
(2)若,求数列的前项和.
列项相消专题练习答案
1、(1)由题设知,又,可解得或(舍去),
由得公比,故,.
(2),又,
所以
.
2、(1)有,得,因为,(),
所以,化简得,
即数列是以为首项,为公比的等比数列,所以.
(2)证明:因为,所以,则,
因为,所以当时,取得最小值,当接近无限大时,趋于,故.
3、(1)由题可知,从而有,.
(2)由(1)知,,从而
.
4、(1)∵,∴又∵成等比数列,∴,
∴`∴.
(2)∴,
∴,
对任意的,恒成立
只需的最大值小于或等于,而∴,∴或.
5、(1)因为,所以,所以是以为首项,为公差的等差数列,从而
,所以.
(2)由(1)得,∴
.
6.(1)∵,∴,∴.
(2)∵,∴,
∴,
∴.。
【高中数学】习题课二 求数列的和

习题课二 求数列的和题型一 分组分解求和【例1】 已知正项等比数列{a n }中,a 1+a 2=6,a 3+a 4=24. (1)求数列{a n }的通项公式;(2)数列{b n }满足b n =log 2a n ,求数列{a n +b n }的前n 项和. 解 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧a 1+a 1·q =6,a 1·q 2+a 1·q 3=24,解得⎩⎪⎨⎪⎧a 1=2,q =2, ∴a n =a 1·q n -1=2×2n -1=2n .(2)b n =log 22n =n ,设{a n +b n }的前n 项和为S n , 则S n =(a 1+b 1)+(a 2+b 2)+…+(a n +b n ) =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =(2+22+…+2n )+(1+2+…+n ) =2×(2n -1)2-1+n (1+n )2=2n +1-2+12n 2+12n .规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 解 (1)设等差数列{a n }的公差为d , 由S 3+S 4=S 5可得a 1+a 2+a 3=a 5, 即3a 2=a 5,∴3(1+d )=1+4d ,解得d =2, ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1×(2n -1),∴T 2n =(1-3)+(5-7)+…+[(4n -3)-(4n -1)] =(-2)·n =-2n .题型二 裂项相消法求和【例2】 已知数列{a n }的前n 项和为S n ,满足S 2=2,S 4=16,{a n +1}是等比数列. (1)求数列{a n }的通项公式;(2)若a n >0,设b n =log 2(3a n +3),求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和.解 (1)设等比数列{a n +1}的公比为q ,其前n 项和为T n , 因为S 2=2,S 4=16,所以T 2=4,T 4=20, 易知q ≠1,所以T 2=(a 1+1)(1-q 2)1-q =4①,T 4=(a 1+1)(1-q 4)1-q =20②,由②①得1+q 2=5,解得q =±2. 当q =2时,a 1=13,所以a n +1=43×2n -1=2n +13;当q =-2时,a 1=-5,所以a n +1=(-4)×(-2)n -1=-(-2)n +1. 所以a n =2n +13-1或a n =-(-2)n +1-1.(2)因为a n >0,所以a n =2n +13-1,所以b n =log 2(3a n +3)=n +1,所以1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2 =12-1n +2=n 2(n +2). 规律方法 (1)把数列的每一项拆成两项之差,求和时有些部分可以相互抵消,从而达到求和的目的.常见的拆项公式: (ⅰ)1n (n +1)=1n -1n +1;(ⅱ)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(ⅲ)1n +n +1=n +1-n .(2)裂项原则:一般是前边裂几项,后边就裂几项直到发现被消去项的规律为止. (3)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,求数列{b n }的前n 项和为T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12[⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2]=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2.题型三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解 (1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得:a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1 =32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1 =52-2n +52n +1, 所以T n =5-2n +52n .规律方法 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列. (1)求数列{a n b n }的通项公式; (2)求数列{a n b n }的前n 项和T n .解 (1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5. 设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列, ∴(1+5-d )(9+5+d )=64,解得d =-10或d =2. ∵b n >0,∴d =-10应舍去,∴d =2, ∴b 1=3,∴b n =2n +1. 故a n b n =(2n +1)·3n -1,n ∈N *.(2)由(1)知T n =3×1+5×3+7×32+…+(2n -1)3n -2+(2n +1)3n -1,① 3T n =3×3+5×32+7×33+…+(2n -1)3n -1+(2n +1)3n ,②①-②,得-2T n =3×1+2×3+2×32+2×33+…+2×3n -1-(2n +1)3n =3+2(3+32+33+…+3n -1)-(2n +1)3n =3+2×3-3n1-3-(2n +1)3n=3n -(2n +1)3n =-2n ·3n . ∴T n =n ·3n ,n ∈N *.一、素养落地1.通过学习数列求和的方法,提升数学运算和逻辑推理素养.2.求数列的前n 项和,一般有下列几种方法. (1)错位相减适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (2)分组求和把一个数列分成几个可以直接求和的数列. (3)裂项相消有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和. (4)奇偶并项当数列通项中出现(-1)n 或(-1) n +1时,常常需要对n 取值的奇偶性进行分类讨论.(5)倒序相加例如,等差数列前n 项和公式的推导方法. 二、素养训练1.数列214,418,6116,…的前n 项和S n 为( )A.n 2+1+12n +1B.n 2+2-12n +1C.n (n +1)+12-12n +1D.n (n +1)+12n +1解析 S n =(2+4+6+…+2n )+⎝⎛⎭⎫14+18+…+12n +1=12n (2+2n )+14⎝⎛⎭⎫1-12n 1-12 =n (n +1)+12-12n +1.答案 C2.等比数列{a n }中,a 5=2,a 6=5,则数列{lg a n }的前10项和等于( ) A.6 B.5 C.4D.3解析 ∵数列{a n }是等比数列,a 5=2,a 6=5, ∴a 1a 10=a 2a 9=a 3a 8=a 4a 7=a 5a 6=10, ∴lg a 1+lg a 2+…+lg a 10=lg(a 1·a 2·…·a 10) =lg(a 5a 6)5=5lg 10=5. 故选B. 答案 B3.数列⎩⎨⎧⎭⎬⎫2n (n +1)的前2 020项和为________.解析 因为2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S 2 020=2⎝⎛⎭⎫1-12+12-13+…+12 020-12 021 =2⎝⎛⎭⎫1-12 021=4 0402 021. 答案4 0402 0214.已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.解析 由题意得S 100=a 1+a 2+…+a 99+a 100 =(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100) =(0+2+4+…+98)+(2+4+6+…+100) =5 000. 答案 5 0005.在数列{a n }中,a 1=1,a n +1=2a n +2n ,n ∈N *. (1)设b n =a n2n -1,证明:数列{b n }是等差数列;(2)在(1)的条件下求数列{a n }的前n 项和S n . (1)证明 由已知a n +1=2a n +2n , 得b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1.∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列. (2)解 由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2×21+3×22+…+n ×2n -1, 两边同时乘以2得2S n =1×21+2×22+…+(n -1)·2n -1+n ·2n , 两式相减得-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1, ∴S n =(n -1)×2n +1. 三、审题答题示范(一) 数列求和问题【典型示例】 (12分)已知数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =na n +n ①,n ∈N *. (1)求数列{a n }的通项公式;(2)若取出数列{a n }中的部分项a 2,a 6,a 22,…依次组成一个等比数列{c n },若数列{b n }满足a n =b n ·c n ,求证:数列{b n }的前n 项和T n <23.②联想解题看到①,想到a n =S n -S n -1(n ≥2),利用S n 与a n 的关系结合定义法或等差中项法证明数列{a n }为等差数列并求通项公式.看到②,想到利用错位相减法求数列{b n }的前n 项和T n ,从而得到T n 的取值范围,即可证明T n <23. 满分示范(1)解 数列{a n }的前n 项和为S n , 且2S n =na n +n ,n ∈N *, 当n =1时,2a 1=a 1+1,则a 1=1. 当n ≥2时,a n =S n -S n -1①, a n +1=S n +1-S n ②.2分由②-①得,S n +1-2S n +S n -1=a n +1-a n ,所以(n +1)(a n +1+1)2-n (a n +1)+(n -1)(a n -1+1)2=a n +1-a n ,所以(n -1)a n +1+(n -1)a n -12=(n -1)a n ,即a n +1+a n -12=a n ,所以数列{a n }为等差数列.5分 又a 1=1,且a 2=4,整理得a n =3n -2.6分 (2)证明 由a 2=4,a 6=16,解得c n =4n ,所以b n =(3n -2)×14n .8分则T n =1×14+4×142+…+(3n -2)×14n ③,14T n =1×142+4×143+…+(3n -2)×14n +1④,9分 由③-④得,34T n =14+3⎝⎛⎭⎫142+…+14n -(3n -2)×14n +1=12-3n +24n +1,解得T n =23-3n +23×4n <23.12分 满分心得(1)利用数列的递推公式求通项公式主要应用构造法,即构造出等差、等比数列,或可应用累加、累乘求解的形式.(2)利用错位相减法求数列的和最容易出现运算错误,运算时要注意作差后所得各项的符号,所得等比数列的项数.(3)与数列的和有关的不等式证明问题,一般是先求和及其范围,再证明不等式.基础达标一、选择题1.已知数列{a n }的通项a n =2n +1,n ∈N *,由b n =a 1+a 2+a 3+…+a n n 所确定的数列{b n }的前n 项的和是( ) A.n (n +2) B.12n (n +4) C.12n (n +5) D.12n (n +7) 解析 ∵a 1+a 2+…+a n =n2(2n +4)=n 2+2n .∴b n =n +2,∴{b n }的前n 项和S n =n (n +5)2.答案 C2.数列12×5,15×8,18×11,…,1(3n -1)×(3n +2),…的前n 项和为( )A.n 3n +2B.n 6n +4C.3n 6n +4D.n +1n +2 解析 由数列通项公式1(3n -1)(3n +2)=13⎝⎛⎭⎫13n -1-13n +2,得前n 项和S n =13(12-15+15-18+18-111+…+13n -1-13n +2)=13⎝⎛⎭⎫12-13n +2=n6n +4. 答案 B3.1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+1210的值为( ) A.18+129B.20+1210C.22+1211D.18+1210解析 设a n =1+12+14+…+12n -1=1×⎣⎡⎦⎤1-⎝⎛⎭⎫12n1-12=2⎣⎡⎦⎤1-⎝⎛⎭⎫12n, ∴原式=a 1+a 2+…+a 11=2⎣⎡⎦⎤1-⎝⎛⎭⎫121+2⎣⎡⎦⎤1-⎝⎛⎭⎫122+…+2⎣⎡⎦⎤1-⎝⎛⎭⎫1211=2⎣⎡⎦⎤11-⎝⎛⎭⎫12+122+…+1211 =2⎣⎢⎡⎦⎥⎤11-12⎝⎛⎭⎫1-12111-12=2⎣⎡⎦⎤11-⎝⎛⎭⎫1-1211 =2⎝⎛⎭⎫11-1+1211=20+1210. 答案 B4.已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 021=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 021)=( ) A.2 021 B.2 0212C.2D.12解析 ∵函数f (x )=21+x 2(x ∈R ),∴f (x )+f ⎝⎛⎭⎫1x =21+x 2+21+⎝⎛⎭⎫1x 2=21+x 2+2x 2x 2+1=2.∵数列{a n }为等比数列,且a 1·a 2 021=1, ∴a 1a 2 021=a 2a 2 020=a 3a 2 019=…=a 2 021a 1=1.∴f (a 1)+f (a 2 021)=f (a 2)+f (a 2 020)=f (a 3)+f (a 2 019)=…=f (a 2 021)+f (a 1)=2,∴f (a 1)+f (a 2)+f (a 3)+…+f (a 2 021)=2 021.故选A. 答案 A5.定义np 1+p 2+…+p n 为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知数列{a n }的前n 项的“均倒数”为13n +1,又b n =a n +26,则1b 1b 2+1b 2b 3+…+1b 9b 10=( )A.111 B.1011 C.910D.1112解析 由题意得n a 1+a 2+…+a n =13n +1,所以a 1+a 2+…+a n =n (3n +1)=3n 2+n ,记数列{a n }的前n 项和为S n ,则S n =3n 2+n .当n =1时,a 1=S 1=4;当n ≥2时,a n =S n -S n -1=3n 2+n -[3·(n -1)2+(n -1)]=6n -2.经检验a 1=4也符合此式,所以a n =6n -2,n ∈N *,则b n =a n +26=n ,所以1b 1b 2+1b 2b 3+…+1b 9b 10=11×2+12×3+…+19×10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫19-110=1-110=910.故选C. 答案 C 二、填空题 6.设a n =1n +1+n,数列{a n }的前n 项和S n =9,则n =________.解析 a n =1n +1+n=n +1-n ,故S n =2-1+3-2+…+n +1-n =n +1-1=9. 解得n =99. 答案 997.在数列{a n }中,已知S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),n ∈N *,则S 15+S 22-S 31的值是________.解析 S 15=-4×7+a 15=-28+57=29, S 22=-4×11=-44,S 31=-4×15+a 31=-60+121=61, S 15+S 22-S 31=29-44-61=-76. 答案 -768.已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *),则数列{na n }的前n 项和T n 为________.解析 ∵S n =2a n -1(n ∈N *),∴n =1时,a 1=2a 1-1,解得a 1=1,n ≥2时,a n =S n -S n -1=2a n -1-(2a n -1-1),化为a n =2a n -1,∴数列{a n }是首项为1,公比为2的等比数列, ∴a n =2n -1. ∴na n =n ·2n -1.则数列{na n }的前n 项和T n =1+2×2+3×22+…+n ·2n -1. ∴2T n =2+2×22+…+(n -1)×2n -1+n ·2n ,∴-T n =1+2+22+…+2n -1-n ·2n =1-2n1-2-n ·2n =(1-n )·2n -1, ∴T n =(n -1)2n +1. 答案 (n -1)2n +1 三、解答题9.已知函数f (x )=2x -3x -1,点(n ,a n )在f (x )的图象上,数列{a n }的前n 项和为S n ,求S n . 解 由题意得a n =2n -3n -1,S n =a 1+a 2+…+a n =(2+22+…+2n )-3(1+2+3+…+n )-n =2(1-2n )1-2-3·n (n +1)2-n=2n +1-n (3n +5)2-2.10.已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2,所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.能力提升11.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项和为( )A.1 009B.1 010C.2 019D.2 020解析 设数列{a n }的公差为d ,由⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1. 设b n =a n cos n π,∴b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…, ∴数列{a n cos n π}的前2 020项和S 2 020=(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×2 0202=2 020.故选D. 答案 D12.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数). (1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1; 当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ. (2)由(1)知a n =2n -1,所以n (a n +1)=n ·2n , T n =2+2×22+3×23+…+n ·2n ,① 2T n =22+2×23+3×24+…+n ·2n +1,② ①-②得:-T n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1=(1-n )2n +1-2.所以T n =(n -1)2n +1+2.创新猜想13.(多空题)设等差数列{a n }满足a 2=5,a 6+a 8=30,则a n =________,数列⎩⎨⎧⎭⎬⎫1a 2n-1的前n 项和为________.解析 设等差数列{a n }的公差为d .∵{a n }是等差数列,∴a 6+a 8=30=2a 7,解得a 7=15,∴a 7-a 2=5d .又a 2=5,则d =2.∴a n =a 2+(n -2)d =2n +1. ∴1a 2n -1=14n (n +1)=14⎝⎛⎭⎫1n -1n +1, ∴⎩⎨⎧⎭⎬⎫1a 2n-1的前n 项和为14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n4(n +1). 答案 2n +1n4(n +1)14.(多空题)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n =⎝⎛⎭⎫1-13n a n +1,b n =(-1)n ·(log 3a n )2,则a n =________,数列{b n }的前2n 项和为________.解析 根据题意,数列{a n }满足2S n =⎝⎛⎭⎫1-13n a n +1①,则当n ≥2时,有2S n -1=⎝⎛⎭⎫1-13n -1a n ②,由①-②可得⎝⎛⎭⎫1-13n (a n +1-3a n )=0,所以a n +1-3a n =0,即a n +1=3a n (n ≥2).由2S n =⎝⎛⎭⎫1-13n a n +1,可求得a 2=3,a 2=3a 1,则数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,b n =(-1)n ·(log 3a n )2=(-1)n ·(log 33n -1)2=(-1)n (n -1)2,则b 2n -1+b 2n =-(2n -2)2+(2n -1)2=4n -3.所以数列{b n }的前2n 项和T 2n =1+5+9+…+(4n -3)=n (1+4n -3)2=2n 2-n .答案 3n -12n 2-n高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
8.(Ⅰ) ;(Ⅱ) .
试题解析:(I)设等比数列的公比为 ,由题意知 ,且 ,
∴ ,解得 ,故 .………………5分
(II)由(I)得 ,所以 .………………6分
∴ ,………………8分
故数列 的前 项和为
.………………12分
9.(1)证明见解析;(2)① ;② ,且 .
(1)由已知, ,即 ,
5.在数列 中, , .
(1) ,求证数列 是等比数列;
(2)求数列 的通项公式及其前 项和 .
6.已知正项数列 满足 且 .
(I)证明数列 为等差数列;
(II)若记 ,求数列 的前 项和 .
7.已知 是等差数列, 是等比数列,且 , , , .
(1)求 的通项公式;
(2)设 ,求数列 的前 项和.
试题解析:(1)∵ 对于任意的正整数都成立,∴ ,
两式相减,得 ,
∴ ,即 ,∴ ,
即 对一切正整数都成立,∴数列 是等比数列.
由已知得 ,即 ,∴ ,
∴首项 ,公比 ,∴ .
(2)∵ ,
∴ ,
,
,
∴ .
3.(1) , ;(2)不存在 ,使得 成立.
试题解析:(1)设等差数列 的公差为 ,
∴ ,联立解得 .
课间辅导---数列求和
1.已知等差数列 的前 项和为 ,且 , 成等比数列.
(1)求数列 的通项公式;
(2)若数列 的公差不为 ,数列 满足 ,求数列 的前 项和 .
2.设数列 的前 项和为 ,若对于任意的正,并求出 的通项公式;
(2)求数列 的前 项和.
(2)由(1)知,等比数列 中 ,公比 ,
所以 .
于是 ,
因此数列 是首项为 ,公差为 的等差数列.
,
所以 ,
所以 .
6.(I)证明见解析;(II) .
试题分析:(I)将原式变形得 ,利用累乘法得: , 是以 为首项,以 为公差的等差数列;(II)由(I)知 .
7.(1) ;(2) .
试题分析:(1)易得 ,
,∴数列 是以 为首项,公差为 的等差数列,∴ .
(2)∵ ,∴ ,
,①
,②
①-②得: ,
∴ 代入不等式得 ,即 ,
设 ,则 ,
∴ 在 上单调递减,
∵ ,
∴当 时, ,当 时, ,
所以 的取值X围为 ,且 .
∴ ,∵ ,∴ .
(2) ,
∴ ,
∴ ,而 是单调递减的,∴ ,
而 ,∴不存在 ,使得 成立.
4.(1) (2)
试题解析:(1)当 时, ,
当 时, , ,
∴ ,即
∴ .
(2) ,∴ , ,
∴ ,
即 ,解得 .
5.(1)由已知有 ,解得 ,故 ,
于是 ,即 .
因此数列 是首项为3,公比为2的等比数列.
3.已知数列 是公差不为零的等差数列,其前 项和为 ,满足 ,且 恰为等比数列 的前三项.
(1)求数列 , 的通项;
(2)设 是数列 的前 项和,是否存在 ,使得 成立若存在,求出 的值;若不存在,说明理由.
4.已知数列 的前 项和为 ,且 .
(1)求数列 的通项公式;
(2)设 ,求满足方程 的 值.
课间辅导---数列求和
1.(1) ;(2) .
试题解析:(1) ,即 ,化简得 或 .
当 时, ,得 或 ,
∴ ,即 ;
当 时,由 ,得 ,即有 .
(2)由题意可知 ,
∴ ①
②,
①-②得: ,
∴ .
考点:1.等差数列的综合;2.等比数列的综合;3.错位相减法的运用.
2.(1)证明见解析, ;(2) .
8.已知各项都为正数的等比数列 满足 是 与 的等差中项,且 .
(Ⅰ)求数列 的通项公式;
(Ⅱ)设 ,且 为数列 的前 项和,求数列 的前 项和 .
9.已知数列 中, ,其前 项和 满足 ,其中 .
(1)求证:数列 为等差数列,并求其通项公式;
(2)设 , 为数列 的前 项和.
①求 的表达式;
②求使 的 的取值X围.