光泵磁共振实验报告

合集下载

实验光泵磁共振实验

实验光泵磁共振实验

实验 光泵磁共振实验在五十年代初期,法国物理学家卡斯特勒(A ·H ·Kastler )提出了光抽运(optical pumping ,又称光泵)技术,并发现和发展了研究原子核磁共振的光学方法,因此于1966年荣获诺贝尔物理学奖。

光抽运(即光泵)是用圆偏振光束激发气态原子的方法,以打破原子在所研究的能级间的玻耳兹曼热平衡分布,造成所需的布居数差,从而在低浓度的条件下提高了核磁共振强度,这时再用相应频率的射频场激励原子的磁共振。

在探测核磁共振方面,不是直接探测原子对射频量子发射或吸收,而是采用光电探测的方法,探测原子对光量子的发射或吸收。

由于光量子的能量比射频量子高八个数量级,所以探测信号的灵敏度比一般磁共振探测技术高八个数量级。

三十多年来,用光抽运——磁共振——光电探测技术对许多原子、离子和分子进行了大量研究,增进了对微观粒子结构的了解。

如对原子的磁矩、朗德因子g ,能级结构、塞曼分裂等,尤以对碱金属原子(铷等)激发态精细与超精细结构的研究方面起了很大推动作用。

此外光抽运技术在激光、原子频标和精测弱磁场等方面也都有广泛的应用。

本实验以碱金属——铷(Rb )原子做为研究对象,所涉及的物理内容丰富,应用到原子物理学,光学,电磁学及无线电电子学等方面的知识,并定性或定量地了解到原子内部的很多信息。

它是典型的波谱学教学实验之一。

实验原理1、 铷(Rb )原子的精细结构与超精细结构能级本实验研究气态的自由原子——铷(Rb ),它和所有碱金属原子Li 、Na 、K 一样,在紧紧束缚的满壳层外只有一个电子。

铷的价电子处于第五壳层,主量子数n = 5。

n 为5的电子,其轨道量子数L = 0,1,2,3,4,(n -1)。

基态L = 0,最低激发态L = 1,电子自旋量子数s = 1/2。

由于电子的轨道运动与自旋的相互作用(即L-S 耦含)而发生的能级分裂,称为原子的精细结构(见图1)。

轨道角动量L P 与自旋角动量S P 合成为总角动量S L J P P P+=。

光泵磁共振实验报告结论

光泵磁共振实验报告结论

一、实验概述光泵磁共振实验是一种重要的物理实验,通过观察原子在特定磁场和光场作用下的能级跃迁,研究原子能级结构、磁共振现象以及光抽运效应等。

本次实验采用DH807型光泵磁共振实验装置,通过观察铷原子的光抽运信号和光泵磁共振信号,加深对原子超精细结构和塞曼子能级的理解,并测定铷原子超精细结构塞曼子能级的朗德因子。

二、实验目的1. 观察铷原子光抽运信号,加深对原子超精细结构的理解。

2. 观察铷原子的磁共振信号,测定铷原子超精细结构塞曼子能级的朗德因子。

3. 学会利用光磁共振的原理和实验方法,提高实验技能。

三、实验原理光泵磁共振实验基于以下原理:1. 光抽运效应:当原子处于激发态时,吸收特定频率的光子,原子会跃迁到更高能级。

通过调节光场强度,可以使原子处于高能级状态的粒子数增加。

2. 磁共振:当原子处于特定磁场中,能级发生塞曼分裂。

通过调节磁场强度,可以使原子能级发生跃迁,产生磁共振现象。

3. 光泵磁共振:光泵磁共振实验中,利用光抽运效应和磁共振原理,观察原子能级跃迁和磁共振信号。

四、实验结果与分析1. 光抽运信号观察在实验中,我们观察到了铷原子的光抽运信号。

通过调节光场强度和频率,可以观察到不同能级跃迁的光抽运信号。

这表明光抽运效应在实验中得到了充分体现。

2. 磁共振信号观察在实验中,我们观察到了铷原子的磁共振信号。

通过调节磁场强度,可以观察到不同能级跃迁的磁共振信号。

这表明磁共振现象在实验中得到了充分体现。

3. 塞曼子能级朗德因子测定根据实验数据,我们计算了铷原子超精细结构塞曼子能级的朗德因子。

实验结果显示,铷原子超精细结构塞曼子能级的朗德因子与理论值基本吻合。

五、实验结论1. 通过本次实验,我们成功地观察到了铷原子的光抽运信号和磁共振信号,验证了光泵磁共振实验的原理。

2. 实验结果表明,铷原子超精细结构塞曼子能级的朗德因子与理论值基本吻合,表明实验具有较高的准确性。

3. 通过本次实验,我们加深了对原子超精细结构和塞曼子能级的理解,提高了实验技能。

光泵磁共振_3

光泵磁共振_3

中国石油大学 近代物理实验 实验报告 成 绩:实验B4 光泵磁共振【实验目的】1.观察铷原子光抽运信号,加深对原子超精细结构的理解。

2.观察铷原子的磁共振信号,测定铷原子超精细结构塞曼子能级的朗德因子。

3.学会利用光磁共振的方法测量地磁场。

【实验原理】一.铷原子基态和最低激发态的能级铷(Z =37)是一价金属元素,基态轨道量子数L =0,自旋量子数S =1/2,总角动量量子数J =1/2,因而它们的基态都是52S 1/2。

通过L —S 耦合形成了电子的总角动量P J ,与此相联系的核外电子的总磁矩J μ为 2J JJ eeg P m μ=- (B4-1) 式中)1(2)1()1()1(1++++-++=J J S S L L J J g J (B4-2)是著名的朗德因子,m e 是电子质量,e 是电子电量。

原子核也有自旋和磁矩,核自旋量子数用I 表示。

核角动量I P 和核外电子的角动量J P 耦合成一个更大的角动量,用符号 F P 表示,其量子数用F 表示,则I J F P P P+= (B4-3)与此角动量相关的原子总磁矩为2F FF eeg P m μ=- (B4-4) 式中图B4-1 Rb 原子精细结构的形成)1(2)1()1()1(++-+++=F F I I J J F F g g JF (B4-5)F g 是对应于F μ与F P 关系的朗德因子。

在有外静磁场B 的情况下,总磁矩将与外场相互作用,使原子产生附加的能量22F FF F F F F B e ee e E B g P B g M B g M B m m μμ=-⋅=⋅== (B4-6) 其中2B eem μ=124102741.9--⨯=JT 称为玻尔磁子,F M 是F P 在外场方向上分量的量子数,F M =-F ,-F +1,…F -1,F ,共有2F +1个值。

可以看到,原子在磁场中的附加能量E 随F M 变化,原来对F M 简并的能级发生分裂,称为超精细结构,一个F 能级分裂成2F +1个子能级,相邻的子能级的能量差为B g E B F μ=∆ (B4-7) 再来看一下具体的分裂情况。

光泵磁共振

光泵磁共振

光泵磁共振实验报告姓名:学号:专业:光电子一、实验背景光磁共振是光抽运和射频磁共振相结合的一种双共振过程,是用光抽运来研究原子超精细结构塞曼子能级间磁共振现象的双共振技术。

双共振技术是由诺贝尔物理学奖获得者A.Kastlor于20世纪50年代提出的。

该技术既保存了磁共振高分辨的特点,同时又将测量灵敏度提高了几个数量级,是研究原子、分子高激发态的精密测量的有力工具,因此在激光物理、量子频标、弱磁场探测等方面都有重要应用价值。

二、实验目的1通过研究铷原子基态的光磁共振,加深对原子超精细结构的认识;2掌握光磁共振的实验技术;3测定铷原子的g因子和测定地磁场。

三、实验原理1铷原子的能级分裂1.1精细结构的形成铷(Rb)的气态自由原子,价电子处于第五电子层,主量子数n=5,轨道量子数L=0,1,…,n-1,电子自旋量子数S=1/2原子精细结构的形成:由电子的自旋与轨道运动相互作用(L-S耦合)发生能级分裂铷原子基态与最低激发态的形成:用J表示电子总角动量量子数,J=L+S,L+S-1,…,|L-S|对于基态,L=0,S=1/2,得J=1/2,标记为 ;对于最低激发态,L=1,S=1/2,得J=3/2,1/2,标记为 ,如右图所示,形成两条谱线。

1.2原子超精细结构的形成核的自旋量子数表示为 ,铷原子的两种同位素的自旋量子数分别为:核的自旋角动量表示为,得原子总角动量:其中F 用来表示原子总角动量量子数,F=I+J,…,|I-J|。

由核角动量作用(P I 与P J 耦合),而产生的由F 标志的分裂叫做铷原子光谱的超精细结构。

1.3塞曼子能级的形成原子处于弱磁场中,由于原子总磁矩与磁场的相互作用使能级进一步分裂,形成塞曼子能级。

这些能级用磁量子数来表示, ,能级间距相同。

和 相互作用能表示如下:相邻能级间距为: 其中 为玻尔磁子。

右图为塞曼能级形成示意图2/122/325,5P P 2/125S 5P5S21/25S 21/25P 23/25P 1D 2D 794.76nm780.0nmFig.1 铷原子精细结构的形成2/5%),15.72(2/3%),85.27(8587==I RbI Rb I JI F P P P +=I PFig.2 铷原子超精细结构的形成23/25P 21/25P 21/25S 2F =1F =1F =2F =……)(,...,1,F F F m F --=F u Bm g Bu E B F F F μ=⋅-=BBg EB F μ=∆B μFig.3 铷原子塞曼子能级的形成23/25P 21/25P 21/25S 1F =2F =……2F =1F =FM +2+10-1-2-10+1+2+10-1-2-10+12光抽运效应光抽运(光泵):利用光照射打破原子在所研究能级间的热平衡态,造成期望集居数差,它基于光和原子间的相互作用。

光泵磁共振实验

光泵磁共振实验

光泵磁共振一.实验目的(1)掌握光抽运和光检测的原理和实验方法,加深对原子超精细结构、光跃迁及磁共振的理解。

(2)测定铷同位素85Rb和87Rb的g F因子、地磁场垂直和水平分量。

、实验原理光泵磁共振就是用光来检测和发现磁共振。

这种磁共振可发生在一组塞曼能级之间或超精细结构之间,而不限定原子或分子是处于基态还是处于激发态,由于光子能量是射频量子能量的106~107倍,通过检测光子来探察射频量子的吸收或发射容易得多。

1、铷原子基态和最低激发态的能级天然铷中含量大的同位素有两种:85Rb占72.15%,87Rb占27.85%。

由于电子轨道总角动量P L与自旋总角动量P S的LS耦合,使原子能级具有精细结构,用电子的总角动量量子数J表示:J=L+S,…,IL—SI。

铷的基态,轨道量子数1=0,自旋量子数S=1/2,只有J=1/2一个态52s l/2。

铷原子的最低激发态,轨道量子数1=1,自旋量子数S=1/2,则有双重态52P3/2态J=3/2和52P l/2态J=1/2。

已知核自旋1=0的原子的价电子LS耦合后,总角动量耳与原子总磁矩匕的关系为:咛-g J eP J/(2m e)(13-1)J(J+1)—L(L+1)+S(S+1)g J=1+(13-2)2J(J+1)但铷原子的核自旋I W0。

所以核自旋角动量P I与电子总角动量耳耦合成原子总角动量P F,有P F=P J+P I,耦合后的总量子数是F=I+J,…,|I—J|。

87Rb的基态J=1/2、1=3/2,有F=2和F=1两个状态。

85Rb的基态J=1/2,I=5/2,则有F=3和F=2两个态。

把F量子数表征的能级称为超精细结构能级。

原子总角动量P F与总磁矩P F之间的关系(见本实验附录)为:口F=-g F e P F/22m e)F(F+1)+J(J+1)—I(I+1)g F=g J(13-3)2F(F+1)铷原子在磁场中的超精细能级产生塞曼分裂,可用磁量子数m F标定。

光泵磁共振实验报告

光泵磁共振实验报告

光泵磁共振实验数据处理与分析实验记录数据如下表:频率 (kHz )同向电流I 同(A )反向电流I 反(A )87Rb85Rb测量g F测量地磁场H87Rb 85Rb 87Rb85Rb700 0.232 0.337 0.2055 0.3125 0.358 0.4655 800 0.2595 0.3835 0.2355 0.3585 0.3885 0.5095 900 0.28950.42650.26550.4030.41750.5541 计算测量g F因子我们采取的是扫场法,因此,共振频率不变,0H 有同向反向之分。

由公式B B H +H +H g H -H -H g FFhv hv μμ== 同扫地反扫地()()两式相加得:B2g =(H +H )F hvμ同反其中73/216H 10()5N I T r π-=⨯N=250 r=0.2399m 346.62610 J S h -=⨯241B 9.273110J T μ--=⨯∙ 可得44.682810()H I T -=⨯,则6g =0.305210(+I )F vI -⨯同反将实验数据表格中的数据代入即可得下表:频率 (kHz )g F87Rb85Rb700 0.4883 0.3289 800 0.4933 0.3291 9000.4949 0.3311 g F平均值0.49220.3297查阅资料,87Rb 的g F 值为1/2,而85Rb 的gF 值为1/3,对比我们的测量结果,结果十分接近,可见此次测量精确度很高。

2、 测量地磁场 测量地磁场时,有公式B H +H +H g Fhv μ= 同扫地(),B H +H -H g Fhv μ= 反扫地()两式相减,得H -H H =2 同反地,即-4I -I H =4.682810T 2⨯ 同反地()()代入实验表格中的数据,即可得出下表:频率(kHz )H地(T )87Rb85Rb700 2.9502e-005 3.0087e-005 800 3.0204e-005 2.9502e-005 9002.9970e-005 2.9853e-005 H地(T)平均值2.9892e-0052.9814e-005。

实验29 光泵磁共振

实验29 光泵磁共振

实验29 光泵磁共振光泵磁共振是利用光抽运技术来研究原子超精细结构的塞曼子能级间磁共振现象的光磁双共振技术,在五十年代初由A.Kastler 等人提出。

虽然气体原子的塞曼子能级的磁共振信号非常微弱,但由于运用了光探测技术,光泵磁共振既保存了磁共振信号高分辨率的特点,又提高了探测信号的灵敏度,灵敏度比一般的磁共振探测提高了几个数量级。

因而,在研究原子、分子内部微观结构及弱磁场精密测量等方面具有广泛的应用。

一、 实验目的1.了解光泵磁共振的基本知识,熟悉光抽运-磁共振-光检测的实验方法。

2.测量87Rb 和85Rb 的g F 因子。

二、 实验原理1.铷原子的超精细结构及其塞曼分裂本实验的研究对象是铷(Rb)气态自由原子,天然Rb 由72.15%的85Rb 和27.85%的87Rb 组成。

Rb 原子是一价碱金属原子,原子序数是37,价电子处于第5壳层,主量子数n=5,L=0,1,…,n-1,基态L=0,最低激发态L=1。

由电子的自旋与轨道运动的相互作用(即L-S 耦合)而发生的能级分裂称为精细结构。

对于Rb 原子,基态为52S 1/2,最低激发态是52P 1/2,52P 3/2,5P 与5S 能级之间产生的跃迁是原子主线系的第一条线,对应的两条谱线是7948Å(D 1线)和7800Å(D 2线)。

考虑到原子核有自旋和磁矩,核磁矩与电子总磁矩之间相互作用将造成能级的附加分裂,这种附加分裂称为超精细结构。

87Rb 和85Rb 的核自旋量子数I 分别为3/2和5/2。

核自旋角动量P I 与电子总自旋角动量P J 相互耦合,这种耦合称为I-J 耦合,形成总角动量P F ,P F =P I +P J 。

I-J 耦合形成超精细结构能级,用总量子数F 标记,F=I+J ,…,∣I-J ∣。

对于87Rb ,对应I=3/2,基态J=1/2,F=1,2;对于85Rb ,对应I=5/2,基态J=1/2,F=2,3。

3光泵磁共振实验

3光泵磁共振实验

光泵磁共振实验物理学中研究物质内部结构,最初是利用光谱学的方法,推动了原子和分子物理学的进展。

如果要研究原子、分子等微观粒子内部更精细的结构和变化,光谱学的方法受到仪器分辨率和谱线线宽的限制。

在此情况下发展的波谱学方法利用物质的微波或射频共振研究原子的精细、超精细结构以及因磁场存在而分裂形成的塞曼子能级,这比光谱学方法有更高的分辨率。

但是,热平衡下磁共振涉及的能级上粒子布居数差别很小,加以磁偶极跃迁几率也较小,因此核磁共振波谱方法也有如何提高信息强度的问题。

对于固态和液态物质的波谱学,如核磁共振(NMR)和电子顺磁共振(EPR),由于样品浓度大,再配合高灵敏度的电子探测技术,能够得到足够强的共振信号。

但对气态的自由原子,样品的浓度降低了几个数量级,就得另外想新办法来提高共振信号强度。

A .Kastler 等人在20世纪50年代提出了光抽运(optical pumping ,又称光泵)技术,并在1966年荣获诺贝尔奖。

光抽运是用圆偏振光束激发气态原子的方法以打破原子在所研究的能级间的玻耳兹曼热平衡分布,造成所需的布居数差,从而在低浓度的条件下提高了共振强度。

这时再用相应频率的射频场激励原子的磁共振。

在探测磁共振方面,不直接探测原子对射频量子的发射或吸收,而是采用光探测的方法,探测原子对光量子的发射或吸收。

由于光量子的能量比射频量子高七八个数量级,所以探测信号的灵敏度得以提高。

使用光抽运——磁共振——光探测技术对许多原子、离子和分子进行的大量研究,增进了我们对微观粒子结构的了解,推动了结构理论方面的研究。

此外,光抽运技术在激光、电子频率标准和精测弱磁场等方面也有重要的应用。

本实验的物理内容很丰富,实验过程中不仅掌握其方法,也会见到比较复杂的现象。

若能根据基本原理给出正确的分析,将受到一次很好的原子物理实验和综合实验的训练。

1 实验目的加深对原子超精细结构的理解,测定铷原子(Rb )超精细结构塞曼子能级的朗德因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 3 (上)光抽运信号 (下)扫场波形
c.保持垂直场的大小和偏振片的位置不变,扫场方式改为“三角波”,打开频率计,设置 射频频率为 650KHz,在 0—1A 的电流范围内调节水平方向的电流,然后观察共振信号,特 别注意在三角波谷和波峰处的共振信号,然后对水平场和扫场信号与地磁场水平方向的不同 组合情况下测量四个共振信号所对应的水平场电流值,根据这些数值就可以算出铷原子的
一、引言: 光泵,也称光抽运,是借助于光辐射获得原子基态超精细结构能级或塞曼子能级间粒
子数的非热平衡分布的实验方法。光泵磁共振技术实际上是将光抽运技术和射频或微波磁共 振技术相结合的一种实验技术,它是 1955 年法国科学家卡斯特勒(A.Kastler)发明的。在 光泵磁共振技术中,一方面光抽运改变了磁能级上的粒子数分布,使更多的粒子参与磁共振; 另一方面采取光探测的方法而不直接测量射频量子,从而克服了磁共振信号弱的缺点,把探 测灵敏度提高了七八个数量级。如今,光泵磁共振已广泛应用于基础物理研究,比如原子的 磁矩、能级结构和 g 因子测量。此外,在原子频标、激光及弱磁场测量等方面,这一方法也 是极为有利的实验手段。 本实验研究铷原子的光泵磁共振现象,并测量铷原子的朗德 g 因子和地磁场强度。 二、 原理:
铷原子的光泵磁共振实验
学号
姓名:
实验日期:
指导老师:
【摘要】 在本实验中我们运用光泵磁共振技术,研究了铷原子的光抽运信号和磁共振信
号,最终测量得 87Rb 的朗德 g F 因子为 0.4981, 85Rb 的朗德 g F 因子为 0.3348,以及地磁
场的大小为 0.4245GS.
关键词:光抽运、磁共振、超精细结构、塞曼子能级、朗德 g F 因子
去 D2 线。用高碘硫酸奎宁偏振片和 40μm 左右的云母 1/4 波片可产生左旋圆偏振光 。
透镜 L1 可将光源发出的光变为平行光,其焦距常采用 f=5~8cm 的凸透镜。透镜 L2 将透过 样品泡的平行光会聚到光电接受器上。
3.实验方法: a.将“垂直场”、“水平场”、“扫场幅度”旋钮调至最小,按下池温开关。然后接通电源 线,按下电源开关。约 30 分钟后,灯温、池温指示灯点亮,实验装置进入工作状态。 b.扫场方式先选择“方波”,适当调大扫场幅度。设置扫场方向与地磁场水平分量方向 相反,预置垂直场电流为 0.07A,方向与地磁场垂直方向相反然后旋转偏振片的角度,调 节扫场幅度及垂直场大小和方向(综合调节),使光抽运信号(如图 3)幅度最大。再仔细 调节光路聚焦,使光抽运信号幅度最大。这样,我们就可以使出射的为圆偏振光,使垂直方 向的磁场刚好抵消地磁场。
780.0nm。 在核自旋 I=0 时,原子的价电子经 L-S 耦合后总角动量和原子的总磁矩的关系为
J
Байду номын сангаас
g J
e 2me
PJ
(1)
gJ
1 J(J
1) L(l 1) S(S 1) 2J(J 1)
(2)
当 I 不为零时,核磁矩与电子自旋及轨道磁矩相互作用,使能级进一步分裂,产生了超
精细结构。则耦合后的总量子数为 F I J , ,I J , 87Rb 的 I 3/ 2 ,它的基 态 J 1/ 2 ,具有 F 1和 F 2两个状态。 85Rb 的 I 5/ 2 ,它的基态 J 1/ 2 ,具有 F 3和 F 2 两个状态。整个原子的总角动量 PF 与总磁矩 F 之间的关系可写为 :
持原子分布的偏极化,我们要抑制弛豫过程。
三、 实验: 1.实验装置如图 2 示:
图 2 光泵磁共振装置
2.实验装置作用: 光源采用高频无极放电 Rb 灯,其优点是稳定性好,噪音小,光强大。由于 D2 线的存在 不利于 D1 线的光抽运,故用透过率大于 60%,带宽小于 15nm 的干涉滤光片就能很好地滤
F =-gF
e 2me
PF
(3)
gF
gJ
F(F
1) J(J 1) I(I 2F(F 1)
1)
(4)
在外加磁场作用下,超精细能级进一步分裂,形成塞曼子分裂。磁量子数
M F F, F 1,,F ,即分裂成 2F+1 个能量间距基本相等的塞曼子能级。相邻塞曼子
能级间的能量差为:
E gF B B0
越多,这就是光抽运。
这时其它能级上的粒子数已大大减小,若加一个使电子从 mF =+2 向 mF =+1 跃迁的频 射场,就产生了感应跃迁。这样,由于产生磁共振,对 D1的 光 的吸收增大,故可以通 过对 D1的 光 的吸收强度的变化判断是否产生了磁共振,而光的能量远大于射频场的能
量,这样就提高了实验的精度,可以使信号功率提高 7-8 个数量级。 另外,从非热平衡分布状态趋向于热平衡分布状态的过程叫弛豫过程,在实验中为了保
图 1 (a) 87Rb 基态粒子吸收 D1s+光子跃迁到激发态的过程; (b)87Rb 激发态粒子通过自发辐射返回基态各子能级。
由图知该圆偏振光能把除 mF =+2 以外的各子能级上的原子激发到 52 P1/ 2 的相应子能 级上,而向下辐射跃迁的概率相等,这样经过若干循环后 mF =+2 子能级上的粒子数就越来
(5)
在热平衡条件下,各能级的粒子数遵守玻尔兹曼分布,而超精细结构的塞曼子分裂能级 相差很小,导致各子能级上的粒子数基本上可认为是相等的,因此我们采用光抽运的方法, 使粒子数聚集分布在某一能级从而实现偏极化。
87 Rb 的 52 S1/ 2 态及 52 P1/ 2 态的磁量子数 mF 最大值都是+2,当入射光是 D1的 光 时, 由于只能产生Δ mF =+1 的跃迁,基态 mF =+2 子能级的粒子不能跃迁,如图 1 示:
实验研究的对象是 Rb 原子,其最外层有一个价电子,位于 5s 能级上,因此其电子轨道 角 动 量 量 子 数 L=0, 电 子 自 旋 轨 道 角 动 量 量 子 数 s=1/2. 其 总 角 动 量 量 子 数
J L S, L S 1, L s 。所以 Rb 原子的基态只有 J 1/ 2 ,标记为 52 S1/ 2 。5P 与基 态 5S 之间产生的跃迁是铷原子主线系的第一条谱线,谱线为双线。52 P1/ 2 到 52 S1/ 2 的跃迁 产生的谱线为 D1 线,波长是 794.8nm;52 P1/ 2 到 52 S1/ 2 的跃迁产生的谱线为 D2 线,波长是
相关文档
最新文档