【精品】备课参考概率

合集下载

九年级上册数学教案《概率》

九年级上册数学教案《概率》

九年级上册数学教案《概率》教材分析概率,是在承接上一节课随机事件概念之后安排的一个定性判断随机事件发生的可能性大小的新内容,它给出了从定量的角度,刻画随机事件发生可能性的大小。

课本通过实验分析,归纳出概率的古典定义,根据定义,课本采用列举实验结果的方法,计算一些简单事件的概率。

让学生在实验中,获得随机事件发生可能性的大小这一直观感知,体会概率与现实生活具有紧密联系,课本的例子和问题也充满了趣味性和吸引力。

学情分析通过上一节课的学习,学生对事件发生的可能性大小已经有了一个初步认识,本节课只要建立起学习研究这种不确定现象的模型——概率。

对于概率的认识,学生需要一个较长时期的认知,因此课本借助于实验和简单的问题计算,加深对概率的认识。

教学目标1、理解随机事件概率的意义和掌握计算公式,会求一些简单事件的概率。

2、经历猜想——实验——收集数据——分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学建模。

3、能根据概率的定义,求一些事件的概率。

教学重点在具体情景中体验概率的意义。

教学难点理解并应用概率的含义。

教学过程一、直接导入在同样条件下,某一随机事件可能发生也可能不发生。

那么,它发生的可能性究竟有多大?能否用数值刻画可能性的大小呢?下面我们讨论这个问题。

二、探究新知1、(1)从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1,2,3,4,5因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽到的可能性大小相等。

我们用15表示每一个数字被抽到的可能性大小。

(2)掷一枚骰子,向上一面的点数有6种可能,即1,2,3,4,5,6因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等。

我们用16表示每一种点数出现的可能性大小。

数值15和16刻画了试验中相应随机事件发生的可能性大小。

一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)。

初中二年级数学概率教案

初中二年级数学概率教案

初中二年级数学概率教案一、引言数学概率是数学中的重要分支,也是初中数学教学中的一项重要内容。

通过学习概率,能够帮助学生培养数学思维能力、逻辑推理能力以及分析问题的能力。

为了有效地教授初中二年级的学生概率知识,本教案将提供一些教学方法和活动,使学生能够轻松理解和应用概率概念。

二、概率的基本概念1. 概率的定义概率是指某个事件在总事件中发生的可能性大小。

用数学语言描述,概率可以表示为“事件发生的次数/总事件的次数”。

2. 随机事件和结果随机事件是指在相同条件下具有不止一种可能结果的事件。

结果是指随机事件发生后的不同可能性。

三、基础概率与统计1. 样本空间和样本点样本空间是指一个随机事件中所有可能结果的集合。

样本点是指样本空间中的一个具体结果。

2. 频率与概率频率是指在多次试验中某个事件发生的次数与试验总次数的比值。

概率是某个事件发生的理论可能性,可以通过频率进行估计。

四、概率计算的方法1. 等可能性原理等可能性原理认为在某些条件下,所有可能结果发生的概率是相等的。

2. 排列与组合排列是指从一组对象中按顺序选取若干个对象形成一个有序序列的方法。

组合是指从一组对象中选取若干个对象形成一个无序集合的方法。

3. 加法原理加法原理适用于两个事件中至少发生一个的情况。

对于互斥事件,可以直接将两个事件的概率相加。

对于不互斥事件,需要减去事件重叠部分的概率。

4. 乘法原理乘法原理适用于两个事件必须同时发生的情况。

将两个事件的概率相乘可以得到同时发生的概率。

五、概率实际应用1. 样本调查通过对样本的调查,可以对整体群体的情况进行推断。

样本调查能够帮助学生学习如何收集和分析数据,并对结果进行概率估计。

2. 游戏与赌博游戏和赌博中的胜负结果可以用概率来计算。

通过控制概率,可以帮助学生理解胜率、输赢的概率和游戏策略。

六、教学活动与案例介绍1. 掷骰子实验通过让学生进行多次掷骰子实验,观察不同点数出现的频率,引导学生理解频率与概率的关系。

九年级数学上册《概率》教案、教学设计

九年级数学上册《概率》教案、教学设计
(四)课堂练习
1.教师布置具有代表性的练习题,涵盖概率的基本概念、计算方法等方面,让学生独立完成。
2.教师巡回指导,解答学生疑问,关注学生的解题过程,发现问题并及时纠正。
3.学生完成练习后,教师选取部分题目进行讲解,强调易错点和解题技巧。
4.鼓励学生互相讨论、交流解题心得,提高他们的合作能力和解决问题的能力。
3.将理论知识与实际生活中的问题相结合,进行合理的风险评估和决策。
教学设想:
1.创设情境,激发兴趣:通过现实生活中具有趣味性的随机事件,如彩票中奖、游戏概率等,引发学生对概率学习的兴趣,激发他们的学习热情。
2.分层次教学,循序渐进:针对学生的个体差异,设计不同难度的问题和练习,使学生在掌握基础知识的基础上,逐步提高解决问题的能力。
4.掌握利用概率知识进行决策和风险评估的基本方法,培养学生的数据分析能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作学习的能力,激发学生的学习兴趣。
2.引导学生运用观察、分析、归纳等方法,从实际问题中发现规律,培养学生的逻辑思维能力。
3.通过解决实际问题的过程,让学生体会数学建模的思想,提高学生解决实际问题的能力。
1.请学生完成课后练习题,包括基础题和拓展题,基础题主要针对概率的基本概念和计算方法进行巩固,拓展题则侧重于将概率知识应用于解决实际问题。
2.针对课堂中所学的概率性质和计算方法,请学生选取一个生活中的实例,运用所学知识进行分析,计算相关事件的概率,并撰写一篇简短的案例分析报告。
3.教师提供一些具有挑战性的问题,鼓励学生以小组合作的形式进行研究性学习,共同探讨解决方案。例如,探讨掷两个骰子时,两个骰子点数之和的概率分布情况。
a.课堂提问时,关注学生的思维过程,鼓励他们表达自己的观点。

九年级数学概率教案

九年级数学概率教案

数学教案:九年级概率教学目标:1.了解概率的概念并能够用自己的语言解释概率的意义;2.能够计算事件发生的概率;3.能够利用概率进行实际问题的解决。

教学重点:1.概率的概念;2.概率的计算方法;3.利用概率解决实际问题。

教学难点:1.概率计算方法的应用;2.实际问题的解决。

教学准备:1.教师准备投掷硬币、骰子等实物;2.准备一些有关概率的实际问题的素材;3.提前复习一下九年级概率相关的知识点,如事件的概念、计算概率的方法等。

教学过程:Step 1:导入新知教师可使用一些实物来引入概率的概念,比如投掷硬币、掷骰子等。

教师可以问学生在掷硬币时,出现正面和反面的概率是多少?掷骰子时出现一些数字的概率是多少?通过这个导入,让学生了解到概率与随机事件有关。

Step 2:引入概率的概念教师通过上述导入,引出概率的概念。

概率是指一些事件发生的可能性大小,在数学中用一个介于0和1之间的数字表示。

教师可以用数学符号来表示概率,如P(A),其中A表示一些事件。

Step 3:概率的计算方法3.1频率法:通过实验得到事件发生的频率,即事件发生的次数除以实验总数。

3.2几何概型法:对于随机试验的结果可以通过几何图形来表示,通过计算几何图形中其中一区域的面积来计算概率。

3.3等可能性原则:如果一个试验中所有可能的结果都是等可能发生的,那么事件A发生的概率等于事件A所包含的基本事件数与所有基本事件总数的比值。

Step 4:实际问题解决通过一些实际问题的解决来巩固学生对概率计算方法的应用。

Step 5:概率的应用学生通过学习概率的计算方法和解决实际问题后,了解到概率在现实生活中的应用,如信封问题、球桌问题、生日问题等。

教师可以引导学生思考更多的应用场景,并让学生自主分析和解决实际问题。

Step 6:小结对本节课的知识点进行小结和梳理。

教学延伸:通过让学生完成一些概率相关的练习题、实际问题的解决,巩固和拓展学生对概率的理解和应用能力。

备课参考概率

备课参考概率

第四单元统计与概率第18课时概率教学目标【考试目标】1.了解概率的意义,会运用列举法(包括列表、画树状图)计算简单事件发生的概率;2.知道大量重复试验时频率可作为事件发生概率的估计值.【教学重点】1.了解事件的分类,知道什么是随机事件.2.掌握概率的概念.3..学会计算概率,掌握计算概率的方法.4.了解概率的应用.教学过程一、体系图引入,引发思考【例1】(2016年武汉)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是(A)A.摸出的是3个白球 B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解析】因为袋子中只有2个白球,所以从袋子中一次摸出3个球,不可能摸出3个都是白球,所以A符合题意.【例2】(2016年福州)下列说法中,正确的是(A)A.不可能事件发生的概率为0B.随机事件发生的概率为0.5C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【解析】不可能事件是指在一定条件下,一定不发生的事件,所以其发生的概率为0;随机事件是指在一定条件下,可能发生,也可能不发生的事件,其发生的概率在0~1之间(不含0和1),不一定是0.5;概率很小的事件可能发生,也可能不发生,只是发生的可能较小;投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,可能比50次少,也可能比50次多.综上所述,只有选项A正确.【例3】(2016年江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);①两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;①游戏结束前双方均不知道对方“点数”;①判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为 ;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解析】(1)①现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,①甲摸牌数字是4与5则获胜,①甲获胜的概率为: .故答案为: .2142 21(2)画树状图得:则共有12种等可能的结果;列表得:512一共有12种等可能结果,乙获胜有5种情况.①乙获胜的概率为:.三、师生互动,总结知识先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:同步导练教学反思本课时内容单独理解并不是很难,但是要熟练应用,还要结合其他知识熟练掌握很难,大家要多多练习,尽可能熟练的掌握本课时的知识.。

人教版数学九年级上册《概率》教案1

人教版数学九年级上册《概率》教案1

人教版数学九年级上册《概率》教案1一. 教材分析《概率》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念、事件的相互独立性、概率的计算方法等。

本章内容是学生对概率的初步认识,为后续更深入的学习打下基础。

二. 学情分析学生在学习本章内容前,已经掌握了相关数学知识,如函数、统计等,但对概率的概念和计算方法可能较为陌生。

因此,在教学过程中,需要引导学生理解概率的概念,并通过实例让学生掌握概率的计算方法。

三. 教学目标1.了解概率的基本概念,理解事件的相互独立性。

2.学会使用概率公式计算简单事件的概率。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.概率的概念和事件的相互独立性。

2.概率公式的运用和计算。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究概率的计算方法。

2.通过实例分析,让学生理解概率的概念和事件的相互独立性。

3.运用小组讨论的方式,培养学生的团队合作能力。

六. 教学准备1.教学PPT或黑板。

2.与概率相关的实例和习题。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考概率的概念。

提问:抛硬币实验中,正面朝上的概率是多少?为什么?2.呈现(10分钟)介绍概率的基本概念,如必然事件、不可能事件、随机事件等。

通过PPT或黑板,展示概率的定义和符号表示。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,如掷骰子、抽签等,计算其概率。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对各组的计算结果,进行讲解和分析,巩固概率的计算方法。

提问:如何判断两个事件是否相互独立?5.拓展(10分钟)介绍事件的相互独立性,并通过实例让学生理解。

提问:如何计算两个相互独立事件同时发生的概率?6.小结(5分钟)对本节课的内容进行总结,强调概率的概念和事件的相互独立性。

7.家庭作业(5分钟)布置相关习题,让学生巩固所学知识。

8.板书(5分钟)总结本节课的主要内容和重点知识点。

概率的教案7篇

概率的教案7篇

概率的教案7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!概率的教案7篇教师可以通过不同的教学策略和方法来增加教案的适切性,教案的有效性可以通过学生成绩、学生反馈和教师自我评估来评估,下面是本店铺为您分享的概率的教案7篇,感谢您的参阅。

概率教案(5篇)

概率教案(5篇)

概率教案(5篇)第一篇:概率教案26.1.1随机事件与概率课堂导入:抽球事件10个白球10个黄球,白球是惩罚,黄球是奖励,小强说快点抽,一会奖励都被抽没了,小张说什么时候抽概率都是一样的,小李说,抽完了不放回去,每次概率都是不一样的。

谁说的对一、创设情境,引入课题(两组比赛)1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。

2.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?事件包括确定时间和随机事件,其中确定时间包括:必然事件和不可能事件,必然事件:在一定的条件下,这些事件肯定发生的事件。

不可能事件:在一定的条件下,这些事情我们能事先肯定它不发生的事件。

随机事件:在一定条件下可能发生也可能不发生的事件。

练习:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。

签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。

小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。

请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。

活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。

请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?提出问题,探索概念(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?三、应用练习,巩固新知练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】精品
第四单元统计与概率
第18课时概率
教学目标
【考试目标】
1.了解概率的意义,会运用列举法(包括列表、画树状图)计
算简单事件发生的概率;
2.知道大量重复试验时频率可作为事件发生概率的估计值.
【教学重点】
1.了解事件的分类,知道什么是随机事件.
2.掌握概率的概念.
3..学会计算概率,掌握计算概率的方法.
4.了解概率的应用.
教学过程
一、体系图引入,引发思考
【例1】(2016年武汉)不透明的袋子中装有形状、大小、质地完
全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是(A)A.摸出的是3个白球 B.摸出的是3个黑球
C.摸出的是2个白球、1个黑球
D.摸出的是2个黑球、1个白球【解析】因为袋子中只有2个白球,所以从袋子中一次摸出3个球,
不可能摸出3个都是白球,所以A符合题意.
【例2】(2016年福州)下列说法中,正确的是(A)
A.不可能事件发生的概率为0
B.随机事件发生的概率为0.5
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
【解析】不可能事件是指在一定条件下,一定不发生的事件,所以
其发生的概率为0;随机事件是指在一定条件下,可能发生,也可
能不发生的事件,其发生的概率在0~1之间(不含0和1),不一定是0.5;概率很小的事件可能发生,也可能不发生,只是发生的可能
较小;投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50
次,可能比50次少,也可能比50次多.综上所述,只有选项A正
确.
【例3】(2016年江西)甲、乙两人利用扑克牌玩“10点”游戏,
游戏规则如下:
①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数
与牌的花色无关);
②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小
于或等于10,此时“点数”之和就是“最终点数”;若“点数”之
和大于10,则“最终点数”是0;
③游戏结束前双方均不知道对方“点数”;
④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点
数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.
(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概
率为;
(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中
摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸
牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙
获胜的概率.
【解析】(1)
∵现甲、乙均各自摸了两张牌,数字之和都是5,
甲从桌上继续摸一张扑克牌,乙不再摸牌,
∵甲摸牌数字是4与5则获胜,
∵甲获胜的概率为:.
故答案为:.
(2)画树状图得:
则共有12种等可能的结果;
列表得:
一共有12种等可能结果,乙获胜有5种情况.
∵乙获胜的概率为:.
三、师生互动,总结知识
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业
布置作业:同步导练
教学反思
本课时内容单独理解并不是很难,但是要熟练应用,还要结合其他知识熟练掌握很难,大家要多多练习,尽可能熟练的掌握本课时的知识.
此文档是由网络收集并进行重新排版整理.word可编辑版本!。

相关文档
最新文档