有限元分析报告
有限元分析报告

有限元分析报告
有限元分析是一种工程结构分析的方法,它可以通过数学模型和计算机仿真来
研究结构在受力情况下的应力、应变、位移等物理特性。
本报告将对某桥梁结构进行有限元分析,并对分析结果进行详细的阐述和讨论。
首先,我们对桥梁结构进行了几何建模,包括梁柱节点的建立以及材料属性的
定义。
在建模过程中,我们考虑了桥梁结构的实际工程情况,包括材料的弹性模量、泊松比、密度等参数的输入。
通过有限元软件对桥梁结构进行离散化处理,最终得到了数学模型。
接着,我们对桥梁结构施加了实际工况下的荷载,包括静载、动载等。
通过有
限元分析软件的计算,我们得到了桥梁结构在受力情况下的应力、应变分布,以及节点位移等重要参数。
通过对这些参数的分析,我们可以评估桥梁结构在实际工程情况下的安全性和稳定性。
在分析结果中,我们发现桥梁结构的主要受力部位集中在梁柱节点处,这些地
方的应力、应变值较大。
同时,桥梁结构在受力情况下产生了较大的位移,需要进一步考虑结构的刚度和稳定性。
基于这些分析结果,我们提出了一些改进和加固的建议,以提高桥梁结构的安全性和可靠性。
综合分析来看,有限元分析是一种非常有效的工程结构分析方法,它可以帮助
工程师们更加深入地了解结构在受力情况下的物理特性,为工程设计和施工提供重要的参考依据。
通过本次桥梁结构的有限元分析,我们不仅可以评估结构的安全性,还可以为结构的改进和优化提供重要的参考意见。
总之,有限元分析报告的编制不仅需要对结构进行准确的建模和分析,还需要
对分析结果进行科学的解读和合理的讨论。
只有这样,我们才能为工程结构的设计和施工提供更加可靠的技术支持。
有限元分析实验报告(总16页)

有限元分析实验报告(总16页)
一、实验介绍
《有限元分析实验》是一门介绍有限元(Finite Element,FE)分析技术和其应用的
实验课程。
本实验关注有限元分析的模拟原理和方法。
实验的主要内容是用有限元的概念
在ANSYS软件中进行结构力学分析。
主要涉及载荷分析、屈曲、几何非线性及拓扑优化等
内容。
二、实验仪器及软件
1.仪器设备:绘图仪、计算机、网络线缆
2.软件:ANSYS 、AutoCAM
三、设计要求
1.以ANSYS软件进行结构力学分析。
2.针对给定结构,设计并进行一维载荷分析,并对多自由度系统非线性载荷进行考虑,考虑实验/实测材料材料屈曲与应变的变形行为。
3.由于结构的复杂性,需要进行拓扑优化,提高结构的刚度和强度,并最终获得合理
的设计。
四、实验结果
通过软件模拟的过程,获得了结构的建模、载荷变形、板材截面结构的优化和变形分
析等数据。
通过这些数据,结构的刚度和强度得到了大幅增强,可以很好地满足设计要求。
在材料变形分析方面,不论是应变还是屈曲方面,力与变形之间的关系也得到了明确的表示,用于进一步对其进行后续实验处理。
五、结论
通过本次实验,我们能够得出以下几个结论:
1.通过有限元(Finite Element,FE)分析的模拟,我们可以更有效地求解复杂的结
构力学问题,从而提高能源利用效率。
2.有限元分析不仅可以识别结构的局部变形行为,还可以用于优化结构,提高其刚度
和强度。
3.有限元可以用于几何非线性及拓扑优化方面的研究,具有重要的技术意义和应用价值。
(完整word版)有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。
二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。
因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。
(6)模型施加约束:约束采用的是对底面BC 全约束。
大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。
以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
有限元分析试验报告

有限元分析试验报告
一、试验目的
本次试验的目的是采用有限元分析方法对某零部件进行应力分析,为零部件的优化和设计提供参考。
二、试验原理
有限元分析是采用数学方法对工程结构进行分析,以预测其在外载作用下的变形和应力,从而确定结构的强度和刚度。
分析时将结构划分为有限数量的小单元,利用元件所具有的基本物理特性和相应的数学方程式,计算出每个单元或整个结构的位移、变形、应力等基本的力学量。
三、试验步骤
1.了解零部件的结构和使用环境,建立有限元模型。
2.导入有限元软件,对建立的有限元模型进行网格划分。
3.分配材料性质和加载条件。
4.运行分析,得出计算结果。
5.对计算结果进行分析和评估,对零部件的设计进行改进。
四、试验结果
通过有限元分析,我们得出了零部件在不同工况下的应力云图和变形云图,可以清晰地看到零部件的应力集中区域和变形程度。
同时,我们对零部件的设计进行了改进,使其在承受外力时具有更好的强度和刚度。
五、结论
通过这次试验,我们了解了有限元分析在工程设计中的应用,掌握了分析流程和技术方法。
在实际工程设计中,有限元分析是一种非常重要的工具,有助于提高设计质量和降低成本,值得工程师们广泛运用。
有限元分析报告书【范本模板】

轴流式通风机叶轮与机座有限元分析分析与优化报告书第2 页共47 页目录第一部分机座的有限元分析与优化—-———--—--—--—--———--——---——--——--—- 41。
1 机座分析的已知条件--—--—--—--—-----—-———---—-————--—-—-——-—— 41。
2 材料的力学性能--—--——-—-——--———-——-—--——---—--------—-————--- 41。
3 有限元分析模型——-—-—--—-—--—------——----———-————-———------—-- 41.3.1 分析前的假设--——-——-——---—-———-——-—---———-—---—-————— 41。
3.2 建立分析模型—--—-————--———---—————--—--—-————-——---—— 51。
3.3 建立有限元分析模型—-——-——-————---———--———-----—--—-- 71.4 计算结果——----——----—--—--—--—————---------———-—————————-—---— 71.4.1 变形结果———---—-——-—-—--——-------——-------—-——————-—-—- 71.4.2 应力结果-——-—--————-----——-—-——--—-—--—-——-—--————----— 81.4。
3 路径结果—-——-----——-—----——-—---—-—-—-———--——--————---- 111。
4。
4 分析结果评判-———-----———-----——-———-—-----——--—--—--—- 131.5 机座优化-———-—---—————-—-------——--——--——--——-——-—---——--—---- 141.5。
1 优化参数的确定—-—-—--—---—-——------——--——-----————-—— 141.5。
有限元分析实验报告

有限元分析实验报告有限元分析实验报告一、实验基本要求根据实验指导书的要求能够独立的使用ANSYS 软件操作并在计算机上运行,学会判断结果及结构的分析,学会建立机械优化设计的数学模型,合理选用优化方法,独立的解决机械优化设计的实际问题。
二、实验目的1. 加深对机械优化设计方法的理解2. 掌握几种常用的最优化设计方法3. 能够熟练使用ANSYS 软件操作,培养学生解决案例的能力4. 培养学生灵活运用优化设计方法解决机械工程中的具体实例三、实验软件及设备计算机一台、一种应用软件如ANSYS四、实验内容实验报告例题实训1——衍架的结构静力分析图2-2所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一个方向向下的力F y , 衍架的尺寸已在图中标出,单位: m。
试计算各杆件的受力。
其他已知参数如下: 弹性模量(也称扬式模量)E=206GPa;泊松比μ=0.3;作用力F y =-1000N;杆件的2横截面积A=0.125m.一、 ANSYS8.0的启动与设置图2-2 衍架结构简图1.启动。
点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。
图2-4 Preference 参数设置对话框2.功能设置。
电击主菜单中的“Preference ”菜单,弹出“参数设置”对话框,选中“Structural ”复选框,点击“OK ”按钮,关闭对话框,如图2-4所示。
本步骤的目的是为了仅使用该软件的结构分析功能,以简化主菜单中各级子菜单的结构。
3.系统单位设置。
由于ANSYS 软件系统默认的单位为英制,因此,在分析之前,应将其设置成国际公制单位。
在命令输入栏中键入“/UNITS,SI ”,然后回车即可。
(注:SI 表示国际公制单位)二单元类型,几何特性及材料特性定义1.定义单元类型。
2.定义几何特性。
3.定义材料特性。
三衍架分析模型的建立1.生成节点。
有限元分析报告

有限元法在工程领域的发展现状和应用有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。
有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。
对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。
近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:(1)增加产品和工程的可靠性(2)在产品的设计阶段发现潜在的问题(3)经过分析计算,采用优化设计方案,降低原材料成本(4)模拟试验方案,减少试验次数,从而减少试验经费一、有限元法的基本思想有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。
由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;然后对单元(小区域)进行力学分析,最后再整体分析。
这种化整为零,集零为整的方法就是有限元的基本思路。
有限元法分析计算的思路和做法可归纳如下:1物体离散化将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。
离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。
所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。
有限元分析报告

有限元分析报告1. 引言有限元分析(Finite Element Analysis)是一种数值计算方法,用于求解工程和科学领域中的复杂问题。
它利用离散化技术将连续问题转化为离散问题,并应用数值算法进行求解。
本报告将主要介绍有限元分析的基本原理、应用和分析结果。
2. 有限元分析基本原理有限元分析的基本原理是将求解区域划分为互不重叠的有限个小单元,并将问题转化为在每个小单元内求解。
这些小单元通常为简单的几何形状,如三角形或四边形。
然后,在每个小单元内应用适当的数学模型和力学方程,得到相应的微分方程。
接着,通过对每个小单元的微分方程进行积分,并利用边界条件和连续性条件,得到整个求解区域的离散形式。
最后,通过求解离散形式的方程组,得到整个系统的解。
3. 有限元分析应用有限元分析在工程领域有着广泛的应用。
以下是几个典型的应用案例:3.1 结构分析有限元分析在结构分析中的应用非常广泛,可以用于确定结构的强度和刚度,评估结构的安全性,并进行结构优化设计。
通过对结构施加正确的边界条件和加载条件,可以得到结构的应力、应变和变形等重要信息。
3.2 流体力学分析有限元分析在流体力学分析中的应用可以用于模拟流体的流动和传热过程,例如气体和液体的流动、传热设备的设计优化等。
通过分析流体系统的流速、压力和温度等参数,可以对流体系统的性能和行为进行合理评估。
3.3 热力学分析有限元分析在热力学分析中的应用可以用于分析和优化热传导、热辐射和热对流等热问题。
通过模拟物体的温度分布和热流动,可以评估物体的热性能和热耗散效果。
4. 有限元分析结果有限元分析的计算结果可以提供丰富的信息,帮助工程师和科学家理解和优化系统的行为和性能。
以下是一些常见的有限元分析结果:4.1 应力分布通过有限元分析,可以得到结构或部件内的应力分布情况。
这对于评估结构的强度和安全性非常重要,并可以指导优化设计。
4.2 变形分析有限元分析可以给出结构或部件的变形情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元仿真分析实验
一、实验目的
通过刚性球与薄板的碰撞仿真实验,学习有限元方法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使用方法。
本实验使用HyperMesh 软件进行建模、网格划分和建立约束及载荷条件,然后使用LS-DYNA软件进行求解计算和结果后处理,计算出钢球与金属板相撞时的运动和受力情况,并对结果进行可视化。
二、实验软件
HyperMesh、LS-DYNA
三、实验基本原理
本实验模拟刚性球撞击薄板的运动和受力情况。
仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。
前处理阶段任务包括:建立分析结构的几何模型,划分网格、建立计算模型,确定并施加边界条件。
四、实验步骤
1、按照点-线-面的顺序创建球和板的几何模型
(1)建立球的模型:在坐标(0,0,0)建立临时节点,以临时节点为圆心,画半径为5mm的球体。
(2)建立板的模型:在tool-translate面板下node选择临时节点,选择Y-axis,magnitude输入5.5,然后点击translate+,return;再在2D-planes-square 面板上选择Y-axis,B选择上一步移下来的那个节点,surface only ,size=30。
2、画网格
(1)画球的网格:以球模型为当前part,在2D-atuomesh面板下,surfs 选择前面建好的球面,element size设为0.5mm,mesh type选择quads,选择elems to current comp,first order,interactive。
(2)画板的网格:做法和设置同上。
3、对球和板赋材料和截面属性
(1)给球赋材料属性:在materials面板内选择20号刚体,设置Rho为2.000e-08,E为200000,NU为0.30。
(2)给球赋截面属性:属性选择SectShll,thickness设置为0.1,QR设为0。
(3)给板赋材料属性:材料选择MATL1,其他参数:Rho为2.000e-08,E 为100000,Nu为0.30,选择Do Not Export。
(4)给板赋截面属性:截面选择SectShll,thickness设为0.2。
其他参数:SHRE为8.333-01,QR为0,T1为0.2。
(5)给板设置沙漏控制:在Properties-Create面板下Card image选择HourGlass,IHQ为4,QM为0.100。
更新平板。
4、加载边界条件
(1)将板上最外面的四行节点分别建成4个set。
(2)建立一个load collector。
(3)Analysis-constraints面板中,设置SIZE为1,nodes通过by sets 选择set_1、set_2、set_3、set_4,然后点击creat即可,边界条件加载完毕。
5、建立载荷条件(给球一个3mm的位移)
(1)建立一个plot: post-xy plots-plots-creat plot,然后点击return;
(2)在post-xy plots-edit curves面板中输入X{0,0,0.0001},Y{0,3}。
(3)给刚性球一个3mm的沿y正方向的位移:card image设为PrcrRgd,DOF 为2,VAD为2,LCID为1,SF为1,option选择Rigid。
6、接触处理
(1)做两个用于接触的segment:在Analysis-set_segment面板中,Card image选择setSegment,elems选择球这个part。
重复操作对平板创建segment。
要同时保证球的setsegment的方向朝外,plane的setsegment方向朝上。
(2)建立接触:
①对称接触:在Analysis-interfaces面板中,type选择SurfaceToSuface,Card image选择SingleSurface。
master的contactsurfs选择球的setgment;slave的contactsurfs选择平板的setgment。
点击edit后,设置FS为10,FD为10,SFS为100,SFM为100,Automatic一项勾选OneWay。
②非对称接触:在Analysis-interfaces面板中,type选择SingleSurface,Card image选择SingleSurface。
master的contactsurfs选择球的setgment;slave的contactsurfs选择平板的setgment。
点击edit后,设置FS为10,FD为10,SFS为100,SFM为100,Automatic一项勾选smooth。
7、定义控制卡片
在Analysis-control cards面板中,
(1)选择Control_Enegy,将hgen设置为2;
(2) 选择Control_Termination,将ENDTIM设为0.0001s;
(3) 选择Control_Time_step,将DTINIT设为1*10-6s,将TSSFAC设置为0.6;
(4) 选择DATABASE_BINARY_D3PLOT,将DT设置为5*10-6;
(5) 选择DATABASE_OPTION,将MATSUM设置为1*10-6,将RCFORC 设置为1*10-6。
8、删除临时节点
在geom中选择temp nodes,点击node,选择all,然后点击clear。
9、节点重新排号。
tool中选择renumber,然后选择all,最后点击renumber。
10、将文件导出成KEY文件。
11、生成的KEY文件导入LS-DYNA中,并运行。
12、打开后处理程序Ls-Prepost,点击file-open-ls-dyna binary plot,选择计算得到的d3plot结果。
13、点击下方运行按钮,观看碰撞动画。
选择右边的ASCII按钮,选择rcforc 后,点击左边的Load按钮,再选择Sl或者Ma,然后选择最下方的Resultant force,最后点击Plot,观看冲击力随时间的变化曲线。
五、实验结果
1、对称接触情况
对称接触定义下,冲击过程中薄板的弹塑性变形过程如图1至图5所示。
图1
图2
图3
图4
冲击过程中刚性球与薄板层接触力时间历程如图6所示。
图6
2、非对称接触情况
非对称接触定义下,冲击过程中薄板的弹塑性变形过程如图7至图11所示。
图7
图9
冲击过程中刚性球与薄板层接触力时间历程如图12所示。
图12
六、实验总结
根据对称接触定义与非对称接触定义的对比实验计算过程和实验结果可以看出,对称接触定义下刚性球撞击薄板的冲击现象更加明显,接触力更大,计算所花费的时间也更长,这与理论上双接触面与单接触面的结论是相同的。