2020年清华附中数学中考综合训练试题
2020年九年级数学中考复习:北京各校几何综合集训(pdf版,无答案)

1(人大附)2(清华附中)3(首师大附中)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD 的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图1,点D在BC边上.①依题意补全图1;②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长;(2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系(直接写出结论).,DE与AF交于点O.已知正方形ABCD,点E、F分别在射线AB、射线BC上,AE BF(1)如图1,当点E、F分别在射向AB、BC上时,则线段DE于AF的数量关系是________________,位置关系是____________.(2)如图2,当点E在线段AB延长线上时,将线段AE沿AF进行平移至FG,连接DG.①依题意将图2补全;②在点E运动的过程中,DG、AD、AE之间始终保持一种等量关系,你能找到这个关系并证明吗?6(海淀外国语)7(十一学校)如图1,在△ABC中,∠ACB=90°,AC=BC,E为∠ACB平分线CD上一动点(不与点C 重合),点E关于直线BC的对称点为F,连接AE并延长交CB延长线于点H,连接FB 并延长交直线AH于点G.(1)求证:AE=BF.(2)用等式表示线段FG,EG与CE的数量关系,并证明.(3)连接GC,用等式表示线段GE,GC与GF的数量关系是.1.如图①,在等腰Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D.点P 为线段CD上一点(不与端点C,D重合),PE⊥PA,PE与BC的延长线交于点E,与AC 交于点F,连接AE,AP,BP.(1)求证:AP=BP;(2)求∠EAP的度数;(3)探究线段EC,PD之间的数量关系,并证明.图①备用图10(北师大附属实验中学)11(陈经纶望京实验中学)12(海淀实验中学)26.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF =90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC .(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及GCEC 的值;(2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE =1,AB =2,当E ,F ,D 三点共线时,求DF 的长及tan ∠ABF 的值.19(北京教师进修学校)在ABC ∆中,AB AC AD CE =,,分别平分BAC ∠和ACB ∠,且AD 与CE 交于点M .点N 在射线AD 上,且NA NC =.过点N 作NF CE ⊥于点G ,且与AC 交于点F ,再过点F 作//FH CE ,且与AB 交于点H .(1)如图1,当60BAC ∠= 时,点M N G ,,重合.①请根据题目要求在图1中补全图形;②连结EF HM ,,则EF 与HM 的数量关系是______.(2)如图2,当120BAC ∠= 时,求证:AF EH =;(3)当36BAC ∠= 时,我们称ABC !为“黄金三角形”,此时12BC AC -=.若4EH =,直接写出GM 的长.20(西城实验)如图,正方形ABCD中,P是BA延长线上一点,且∠PDA=α(0° ﰐᢜ .点A,点E 关于DP对称,连接ED,EP,并延长EP交射线CB于点F,连接DF.(1)请按照题目要求补全图形(2)求证:∠EDF=∠CDF(3)∠EDF=______________(含有α的式子表示)(4)过点P做PH⊥DP交DF于点H,连接BH,猜想AP与BH的数量关系并加以证明.21(北外附中)22(北师大朝阳附属中学)已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA´,将射线BO 绕点B逆时针旋转150°与射线CA´交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.图1备用图GF E如图,在△ABC 中,∠ACB =90°,AC=BC ,E 为外角∠BCD 平分线上一动点(不与点C 重合),点E 关于直线BC 的对称点为F ,连接BE ,连接AF 并延长交直线BE 于点G .(1)求证:AF =BE ;(2)用等式表示线段FG ,EG 与CE 的数量关系,并证明.BA C D25(清华附中朝阳分校)如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE 于点F,连接FC.(1)求证:∠FBC=∠CDF.(2)作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.26(十三分)在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形;②求证:()BF BC BD +=21;(2)点E 在AB 边上,连接CE .若()BF BC BD +=21,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路图1图2如图,在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.29(广渠门中学)如图,在△ABC中,∠ACB=90°,AC=BC,点D是射线CB上一点,连接AD,过D作DE ⊥AD交射线AB于点E,以A为旋转中心,将线段AD绕点A逆时针旋转90°得线段AF,过点F作FG⊥AF交AC的延长线于点G,连接EG.(1)如图1,点D在CB上.①依题意补全图1;②猜想DE、EG、FG之间的数量关系并证明;(2)如图2,点D在CB的延长线上.请直接写出DE、EG、FG之间的数量关系为.图1图230(北京四中璞瑅学校)在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连结EC.如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图1,请你判断线段CE、BD之间的位置和数量关系(直接写出结论);②当点D在线段BC的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD 于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求:∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.37(55中)如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)请根据题意补全图1;(2)猜测BD和CE的数量关系并证明;(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD =1时,补全图形,直接写出PB的长.38(161中学)39(八一)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.40(朝阳双语学校)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.41(陈经纶中学)已知:在△ABC中,∠BAC=90°,AB=AC.(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD于点E,连结CE.①求证:∠AED=∠CED;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果);(2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CD、BD,∠BAC 的平分线交BD的延长线于点E,连结CE.请补全图形,并用等式表示线段AE、CE、BD之间的数量关系,并证明.42(二中)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B 作BF⊥DE,交射线DE于点F,连接CF.(1)如图1,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=(用含α的式子表示);③判断线段BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE .连接DE 并延长交射线AP 于点F ,连接BF .(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示);(2)求证:BF DF ⊥;(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.在Rt△ABC中,∠ACB=90°,AC=BC,CD为AB边上的中线.在Rt△AEF中,∠AEF =90°,AE=EF,AF<AC.连接BF,M,N分别为线段AF,BF的中点,连接MN.(1)如图1,点F在△ABC内,求证:CD=MN;(2)如图2,点F在△ABC外,依题意补全图2,连接CN,EN,判断CN与EN的数量关系与位置关系,并加以证明;(3)将图1中的△AEF绕点A旋转,若AC=a,AF=b(b<a),直接写出EN的最大值与最小值.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.如图,等腰直角三角形ABC中,∠ACB=90°.D为射线BC上一动点.连接AD,将线段AD绕点A逆时针旋转90°至点E,连接AE、DE.点M、N分别是AB、DE的中点,连接MN.(1)如图1,点D在线段BC上.①猜想MN与AB的位置关系,并证明你的猜想;②连接EB,猜想BE与BC的位置关系;(2)在图2中,若点D在线段BC的延长线上,BE与BC的位置关系是否改变?请你补全图形后,证明你的猜想.49(牛栏山中学)50(人大附朝阳分校)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是__________;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.。
2020年北京市海淀区清华附中中考数学模拟试卷(4月份)

2020年北京市海淀区清华附中中考数学模拟试卷(4月份)
一、选择题(本题共16分,每小题2分)
1.(2分)下列常用手机APP的图标中,是中心对称图形的是()
A.B.C.D.
2.(2分)面对新冠肺炎疫情对经济运行的冲击,中国人民银行营业管理部(中国人民银行总行在京派驻机构)与相关部门多方动员,合力推动辖内9家全国性银行北京分行和3家地方法人银行为疫情防控重点企业提供优惠利率贷款,有力有序推动企业复工复产.截至2020年4月2日,已发放优惠利率贷款573笔,金额280亿元.将280亿元用科学记数法表示应为()
A.28×109元B.2.8×109元C.2.8×1010元D.2.8×1011元
3.(2分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()
A.|c|>3B.b﹣c>0C.ab>0D.a+c>0
4.(2分)一个多边形的每一个外角都是72°,这个多边形的内角和为()
A.360°B.540°C.720°D.900°
5.(2分)如果a2﹣a﹣6=0,那么代数式÷(﹣1)的值为()
A.B.3C.﹣D.﹣3
6.(2分)已知∠P AQ=36°,点B为射线AQ上一固定点,按以下步骤作图:
①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;
②作直线MN交射线AP于点D,连接BD;
③以B为圆心,BA长为半径画弧,交射线AP于点C.
根据以上作图过程及所作图形,下列结论中错误的是()
A.∠CDB=72°B.△ADB∽△ABC C.CD:AD=2:1D.∠ABC=3∠ACB。
2020-2021北京清华大学附属中学初三数学下期中试题含答案

2020-2021北京清华大学附属中学初三数学下期中试题含答案一、选择题1.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大2.已知线段a、b,求作线段x,使22bxa,正确的作法是()A.B.C.D.3.P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?()A.1条B.2条C.3条D.4条4.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;5.如图所示,在△ABC 中, cos B =22,sin C =35,BC =7,则△ABC 的面积是( )A .212B .12C .14D .216.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .377.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .48.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交CD 于点F ,交AD 的延长线于点E ,若AB =4,BM =2,则△DEF 的面积为( )A .9B .8C .15D .14.59.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .10310.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252 B .25- C .251 D 5211.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A.423B.22C.823D.3212.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.12二、填空题13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为________.14.若△ABC∽△A’B’C’,且△ABC与△A’B’C’的面积之比为1:4,则相似比为____.15.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.16.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,23),C 是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P的坐标为____17.如图,四边形ABCD、CDEF、EFGH都是正方形,则∠1+∠2= .18.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,这时CD=2,则AB=_____.19.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.20.若关于x的分式方程33122x mx x+-=--有增根,则m的值为_____.三、解答题21.某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A处测得山顶B的仰角为45°,他们从A处沿着坡度为i=1 : 3的斜坡前进1000 m到达D 处,在D处测得山顶B的仰角为58°,若点A处的海拔为12米,求该座山顶点B处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60,sin 58°≈0. 85,cos 58°≈0.53,3≈1. 732)22.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:DE AD CF CD=;(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得DE ADCF CD=成立?并证明你的结论.23.如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF 是⊙O 的切线;(2)若,且,求⊙O 的半径与线段的长.24.如图,在△ABC 中,∠B=90°,AB=4,BC=2,以AC 为边作△ACE ,∠ACE=90°,AC=CE ,延长BC 至点D ,使CD=5,连接DE .求证:△ABC ∽△CED .25.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.3.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.4.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.5.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.6.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.7.B解析:B【解析】【分析】由已知条件可得ABC DAC~V V,可得出AC BCDC AC=,可求出AC的长.【详解】解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以ABC DAC~V V,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=42故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.8.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE=AE=∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.9.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.10.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 11.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒, ∵BE 平分∠ABC ,∴∠EBD=30°,∴=3,∴AE=AD-DE=33=, 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.12.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.二、填空题13.【解析】已知BC=8AD 是中线可得CD=4在△CBA 和△CAD 中由∠B=∠DAC ∠C=∠C 可判定△CBA ∽△CAD 根据相似三角形的性质可得即可得AC2=CD•BC=4×8=32解得AC=4解析:【解析】已知BC=8, AD 是中线,可得CD=4, 在△CBA 和△CAD 中, 由∠B=∠DAC ,∠C=∠C , 可判定△CBA ∽△CAD ,根据相似三角形的性质可得AC CD BC AC, 即可得AC 2=CD•BC=4×8=32,解得. 14.1:2【解析】【分析】由△ABC 相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC 相似△A′B′C′面积比为1:4∴△ABC 与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC 相似△A ′B ′C ′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.解:∵△ABC相似△A′B′C′,面积比为1:4,∴△ABC与△A′B′C′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.15.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.16.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB 列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴解析:(1,3)【解析】【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【详解】由题意可知,OB=23,AO=8,∵CD⊥BO,C是AB的中点,∴BD=DO=12BO==PE,CD=12AO=4.设DP=a,则CP=4﹣a,当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴△EPC∽△PDB. DP DBPE PC∴=∴343a =-,∴a1=1,a2=3(舍去).∴DP=1,∵PE=3,∴P(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.17.45°【解析】【分析】首先求出线段ACAFAG的长度(用a表示)求出两个三角形对应边的比进而证明△ACF∽△GCA问题即可解决【详解】设正方形的边长为a则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△解析:45°.【解析】【分析】首先求出线段AC、AF、AG的长度(用a表示),求出两个三角形对应边的比,进而证明△ACF∽△GCA,问题即可解决.【详解】设正方形的边长为a,则22a a2a+=,∵AC22CFaa==CG2AC2a==∴AC CG CF AC=,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠1=∠CAF,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似然后利用相似三角形的性质求解【详解】∵OA=3ODOB =3CO∴OA:OD=BO:CO=3:1∠AOB=∠DO解析:6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴△AOB∽△DOC,∴31 AO ABOD CD==,∴AB=3CD,∵CD=2,∴AB=6,故答案为:6.【点睛】本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.19.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=620.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题21.1488米.【解析】【分析】过D作DE⊥BC于点E,作DF⊥AC于点F,易知四边形DECF为矩形,在Rt△ADF中,利用三角函数可求出DF和AF,设BE=x米,在Rt△BDE中,利用三角函数可表示出DE 的长度,再根据AC=BC建立方程求出x的值,最后用BC加上A点的海拔高度即为B处的海拔高度.【详解】解:如图,过D作DE⊥BC于点E,作DF⊥AC于点F,∵DE⊥BC,DF⊥AC,∠C=90°∴四边形DECF为矩形,∴DE=FC,DF=EC∵山坡AD的坡度为3∴∠DAF=30°,∴1DF=AD sin 30=1000=5002⋅⨯o 米,AF=AD cos30=1000⋅o 设BE=x 米,在Rt △BDE 中,∠BDE=58°, ∴BE DE=tan 58 1.6≈o x 米, 在Rt △ABC 中,∠BAC=45°,∴AC=BC∴AF+FC=BE+EC ,即5001.6=+x x解得976=≈x ∴BC=BE+EC=976+500=1476米∵A 处的海拔高度为12米,∴B 处的海拔高度为1476+12=1488米答:该座山顶点B 处的海拔高度为1488米.【点睛】本题考查解直角三角形的应用,作辅助线构造直角三角形,再根据三角函数建立方程是解题的关键.22.(1)详见解析;(2)当∠B +∠EGC =180°时,DE AD CF DC =成立,理由详见解析. 【解析】【分析】(1)根据矩形的性质可得∠A =∠ADC =90°,由DE ⊥CF 可得∠ADE =∠DCF ,即可证得△ADE ∽△DCF ,从而证得结论;(2)在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .根据平行线的性质可得∠A =∠CDM ,再结合∠B+∠EGC =180°,可得∠AED =∠FCB ,进而得出∠CMF =∠AED 即可证得△ADE ∽△DCM ,从而证得结论;【详解】解:(1)∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,∵DE ⊥CF ,∴∠ADE =∠DCF ,∴△ADE ∽△DCF , ∴DE AD CF DC= (2)当∠B +∠EGC =180°时,DE AD CF DC =成立,证明如下:在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM.∵AB ∥CD.∴∠A =∠CDM.∵AD ∥BC ,∴∠CFM =∠FCB.∵∠B +∠EGC =180°,∴∠AED =∠FCB ,∴∠CMF =∠AED ,∴△ADE ∽△DCM ,∴DE AD CM DC =,即DE AD CF DC=. 【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等腰三角形的性质以及平行线的性质,熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键. 23.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】【分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长.【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.24.证明见解析【解析】【分析】由已知易证∠BAC=∠ECD,在Rt△ABC中由已知可得2225AB BC+=,结合AB=4,CD=5,可证得AB CEAC CD=,由此即可由“两边对应成比例,且夹角相等的两三角形相似”得到△ABC∽△CED.【详解】∵∠B=90°,AB=4,BC=2,∴ 2225 AC AB BC=+=∵ CE=AC,∴ 5CE=∵ CD=5,∴ AB ACCE CD=.∵∠B=90°,∠ACE=90°,∴∠BAC+∠BCA=90°,∠BCA+∠DCE=90°.∴∠BAC=∠DCE.∴△ABC∽△CED.25.河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴∆ABC∽∆ADE,∴AD DE AB BC=,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴8.5 1.51 ABAB+=,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.。
2019-2020学年北京市清华附中九年级(上)统练数学试卷(4)

北京市清华附中九年级(上)统练数学试卷(4)一、选择题(本题共16分每小题2分1.把函数y=﹣x2的图象,经过怎样的平移变换以后,可以得到函数y=﹣(x﹣1)2+1的图象()A.向左平移1个单位,再向下平移1个单位B.向左平移1个单位,再向上平移1个单位C.向右平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位2.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A.a>3 B.a<3 C.a>5 D.a<53.如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD 与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为()A.B.2C.D.24.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6C.m=﹣1,n=6 D.m=1,n=﹣25.彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案,以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是()A.饕餮纹B.三兔纹C.凤鸟纹D.花卉纹6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,使得点A′恰好落在AB边上,则α等于()A.150°B.90°C.60°D.30°7.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y18.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c 有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3 B.c<﹣2 C.c<D.c<1二、填空题(本题共16分,每小题2分)9.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为.10.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.11.如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=°.12.如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.13.如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2,则⊙O的面积是.14.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB =x,PC=y,则y与x的函数表达式为.15.如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.16.半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.三、解箸题(本题共68分,第17-22颗,每小题5分;第23-26题,每题6分;第27,28题,每题7分1)17.在平面直角坐标系xOy中,二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,m取满足条件的最小的整数(1)求此二次函数的解析式(2)当n≤x≤1时,函数值y的取值范围是﹣5≤y≤1﹣n,求n的值18.在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3(a≠0)与x轴交于A,B两点(点A在点B左侧)(1)求抛物线的对称轴;(2)若AB=4,求该抛物线的解析式;(3)若AB≤4,直接写出a的取值范围.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.20.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.21.如图,抛物线y=(p>0),点F(0,p),直线11:y=﹣p已知抛物线上的点到点F的距离与到直线的距离相等,过点F的直线与抛物线交于AB两点,AA1⊥l1,BB1⊥l1.垂足分别为A1、B1.连接A1F,B1F,A1O,B1O,若A1F=a,B1P=b,则△A1OB1的面积=(只用a,b表示).22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.23.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.24.如图1,AB、EF是⊙O的直径,点C、F在AB上,且F是的中点,弦BC与FE交于点D,连接AC、BC、FC、FB、AE.(1)求证:AC∥EF;(2)如图2,过点C作FB的平行线,交EF于点N,M为线段CF的中点,连接MD并延长MD交AB于点H,连接FH.若EN=2,AB=6,求FH的长.25.在平面直角坐标系中,函数y=﹣x2+x+m(x≥2)的图象记为G1,函数y=﹣x2+2x﹣m(x<2)的图象记为G2,其中m为常数,且m≠0.图象G1、G2合起来得到的图形记为G,直线y=﹣3上有两点A、B关于y轴对称,且点A的横坐标为m.(1)当点(1,3)在G上时,求m的值.(2)当点A在G上时,求线段AB的长.(3)设图形G上最高点的纵坐标为y0,当2≤y0≤时,直接写出m的取值范围.(4)当图形G与线段AB恰有两个公共点时,m=.26.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.27.在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的两个动点(不与点B,C,D重合),且AE⊥EF.(1)如图1,当BE=2时,求FC的长;(2)延长EF交正方形ABCD外角平分线CP于点P.①依题意将图2补全;②小京通过观察、实验提出猜想:在点E运动的过程中,始终有AE=PE.小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB上截取AG=EC,连接EG,要证AE=PE,需证△AGE≌△ECP.想法2:作点A关于BC的对称点H,连接BH,CH,EH.要证AE=PE,需证△EHP为等腰三角形.想法3:将线段BE绕点B顺时针旋转90°,得到线段BM,连接CM,EM,要证AE=PE,需证四边形MCPE为平行四边形.请你参考上面的想法,帮助小京证明AE=PE.(一种方法即可)28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y′=,则称点Q为点P的“可控变点“例如:点(1,2)的“可控变点”为点(1,2)点(﹣1,3)的”可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y'是7,求“可控变点”Q的横坐标:(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y'的取值范围是﹣16≤y'≤16,直接写出实数a的取值范围.参考答案与试题解析一.选择题(共8小题)1.把函数y=﹣x2的图象,经过怎样的平移变换以后,可以得到函数y=﹣(x﹣1)2+1的图象()A.向左平移1个单位,再向下平移1个单位B.向左平移1个单位,再向上平移1个单位C.向右平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位【分析】根据抛物线顶点的变换规律作出正确的选项.【解答】解:抛物线y=﹣x2的顶点坐标是(0,0),抛物线线y=﹣(x﹣1)2+1的顶点坐标是(1,1),所以将顶点(0,0)向右平移1个单位,再向上平移1个单位得到顶点(1,1),即将函数y=﹣x2的图象向右平移1个单位,再向上平移1个单位得到函数y=﹣(x﹣1)2+1的图象.故选:C.2.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A.a>3 B.a<3 C.a>5 D.a<5【分析】先利用配方法将y=x2﹣4x+a化为顶点式,再根据左加右减,上加下减的平移规律得出平移后直线的解析式,将y=2代入得到一元二次方程,然后根据判别式△>0列出不等式,求出a的取值范围.【解答】解:∵y=x2﹣4x+a=(x﹣2)2﹣4+a,∴将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,得到的函数解析式为y=(x﹣2+1)2﹣4+a+1,即y=x2﹣2x+a﹣2,将y=2代入,得2=x2﹣2x+a﹣2,即x2﹣2x+a﹣4=0,由题意,得△=4﹣4(a﹣4)>0,解得a<5.故选:D.3.如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD 与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为()A.B.2C.D.2【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故选:B.4.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6C.m=﹣1,n=6 D.m=1,n=﹣2【分析】根据关于y轴对称,a,c不变,b变为相反数列出方程组,解方程组即可求得.【解答】解:∵抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,∴,解之得,故选:D.5.彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案,以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是()A.饕餮纹B.三兔纹C.凤鸟纹D.花卉纹【分析】根据旋转的性质与特点判断即可.【解答】解:A、图中利用的是对称,错误;B、图中利用的是旋转,正确;C、图中利用的位似,错误;D、图中利用的是平移,错误;故选:B.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,使得点A′恰好落在AB边上,则α等于()A.150°B.90°C.60°D.30°【分析】由在Rt△ABC中,∠ACB=90°,∠ABC=30°,可求得∠A的度数,又由将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,易得△ACA′是等边三角形,继而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,∴∠A=90°﹣∠ABC=60°,∵将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,∴AC=A′C,∴△ACA′是等边三角形,∴α=∠ACA′=60°.故选:C.7.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1【分析】由点A(m,n)、C(3﹣m,n)的对称性,可求函数的对称轴为x=,再由B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离,即可判断y1>y3>y2;【解答】解:∵经过A(m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y1>y3>y2;故选:D.8.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c 有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3 B.c<﹣2 C.c<D.c<1【分析】由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由x1<1<x2知△>0且x=1时y <0,据此得,解之可得.【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x的两个不相等实数根,且x1<1<x2,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知△>0,令y=x2+x+c,画出该二次函数的草图如下:则.解得c<﹣2,故选:B.二.填空题(共8小题)9.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为52°.【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案.【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.10.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.11.如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=155 °.【分析】连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.【解答】解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.12.如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.【分析】根据中位线定理得到MN的长最大时,AB最大,当AB最大时是直径,从而求得直径后就可以求得最大值.【解答】解:∵点M,N分别是BC,AC的中点,∴MN=AB,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交⊙O于点B′,连接CB′,∵AB′是⊙O的直径,∴∠ACB′=90°.∵∠ABC=45°,AC=5,∴∠AB′C=45°,∴AB′===5,∴MN最大=.故答案为:.13.如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2,则⊙O的面积是4π.【分析】由∠A=∠BDC,而∠ACB=∠CDB=60°,所以∠A=∠ACB=60°,得到△ACB为等边三角形,又AC=2,从而求得半径,即可得到⊙O的面积.【解答】解:∵∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°,∴△ACB为等边三角形,∵AC=2,∴圆的半径为2,∴⊙O的面积是4π,故答案为:4π.14.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB =x,PC=y,则y与x的函数表达式为y=.【分析】连接PO并延长交⊙O于D,连接BD,根据圆周角定理得到∠C=∠D,∠PBD=90°,求得∠PAC=∠PBD,根据相似三角形的性质即可得到结论.【解答】解:连接PO并延长交⊙O于D,连接BD,则∠C=∠D,∠PBD=90°,∵PA⊥BC,∴∠PAC=90°,∴∠PAC=∠PBD,∴△PAC∽△PBD,∴=,∵⊙O的半径为5,AP=3,PB=x,PC=y,∴=,∴y=,故答案为:y=.15.如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.【分析】由等边三角形的性质得出∠ABC=∠BAC=60°,AC=AB=2,求出∠APC=120°,当PB⊥AC时,PB长度最小,设垂足为D,此时PA=PC,由等边三角形的性质得出AD=CD=AC=1,∠PAC=∠ACP=30°,∠ABD =∠ABC=30°,求出PD=AD•tan30°=AD=,BD=AD=,即可得出答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=1,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.16.半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.三.解答题(共12小题)17.在平面直角坐标系xOy中,二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,m取满足条件的最小的整数(1)求此二次函数的解析式(2)当n≤x≤1时,函数值y的取值范围是﹣5≤y≤1﹣n,求n的值【分析】(1)函数的图象与x轴有两个公共点,则方程mx2﹣(2m+1)x+m﹣4=0有两个不相等的实数根,求得:m>﹣且m≠0,m>且m≠0,m取其内的最小整数,故m=1,即可求解;(2)抛物线的对称轴为x=﹣=,n≤x≤1时,函数值y的取值范围是﹣5≤y≤1﹣n,即:n2﹣3n﹣3=1﹣n,1﹣3﹣3=﹣5,即可求解.【解答】解:(1)∵二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,∴关于x的方程mx2﹣(2m+1)x+m﹣4=0有两个不相等的实数根,∴解得:m>﹣且m≠0.∵m>且m≠0,m取其内的最小整数,∴m=1,∴二次函数的解析式为y=x2﹣3x﹣3;(2)∵抛物线的对称轴为x=﹣=,∵1>0,∴当x≤时,y随x的增大而减小.又∵n≤x≤1时,函数值y的取值范围是﹣5≤y≤1﹣n,∴n2﹣3n﹣3=1﹣n,1﹣3﹣3=﹣5,解得:n=1﹣.18.在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3(a≠0)与x轴交于A,B两点(点A在点B左侧)(1)求抛物线的对称轴;(2)若AB=4,求该抛物线的解析式;(3)若AB≤4,直接写出a的取值范围.【分析】(1)函数的对称轴为:x=﹣,即可求解;(2)AB=4,函数对称轴为:x=1,则点A坐标为(﹣1,0),即可求解;(3)函数对称轴为:x=1,设AB=2m≤4,则点A(1﹣m,0),同理将点A的坐标代入抛物线表达式并整理得:,即可求解.【解答】解:(1)函数的对称轴为:x=﹣=﹣=1;(2)AB=4,函数对称轴为:x=1,则点A坐标为(﹣1,0),将点A的坐标代入抛物线表达式得:0=a+2a﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3;(3)函数对称轴为:x=1,设AB=2m≤4,则点A(1﹣m,0),同理将点A的坐标代入抛物线表达式并整理得:,而0<m≤2,即:﹣1≤≤8,解得:a≤﹣3或a≥.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【分析】(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;【解答】解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.20.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt △CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.21.如图,抛物线y=(p>0),点F(0,p),直线11:y=﹣p已知抛物线上的点到点F的距离与到直线的距离相等,过点F的直线与抛物线交于AB两点,AA1⊥l1,BB1⊥l1.垂足分别为A1、B1.连接A1F,B1F,A1O,B1O,若A1F=a,B1P=b,则△A1OB1的面积=ab(只用a,b表示).【分析】利用AA1⊥l,BB1⊥l可得AA1∥BB1,证明∠AFA1+∠BFB1=90°,确定△∠A1FB1是直角三角形,则可求△A1OB1的面积=△A1FB1的面积=ab.【解答】解:∵AA1=AF,B1B=BF,∴∠AFA1=∠AA1F,∠BFB1=∠BB1F,∵AA1⊥l,BB1⊥l,∴AA1∥BB1,∴∠BAA1+∠ABB1=180°,∴180°﹣2∠AFA1+180°﹣∠BFB1=180°,∴∠AFA1+∠BFB1=90°,∴∠A1FB1=90°,∴△A1OB1的面积=△A1FB1的面积=ab;故答案为:ab.22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x﹣3x﹣3x=2x,求得BC=6+4=10,根据勾股定理得到AB==8=8x,求得x=1,在Rt△ACF中,根据勾股定理即可得到结论.【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=3,AC=6,∴CF==3,即⊙O的直径长为3.23.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.【分析】(1)连接OA、OC,过O作OH⊥AC于点H,由圆内接四边形的性质求得∠AMC,再求得∠AOC,最后解直角三角形得OA便可;(2)在BM上截取BE=BC,连接CE,证明BC=BE,再证明△ACB≌△MCE,得AB=ME,进而得结论.【解答】解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.24.如图1,AB、EF是⊙O的直径,点C、F在AB上,且F是的中点,弦BC与FE交于点D,连接AC、BC、FC、FB、AE.(1)求证:AC∥EF;(2)如图2,过点C作FB的平行线,交EF于点N,M为线段CF的中点,连接MD并延长MD交AB于点H,连接FH.若EN=2,AB=6,求FH的长.【分析】(1)由F为弧BC中点,且EF为圆的直径,利用垂径定理的逆定理得到EF与BC垂直,再由直径所对的圆周角为直角,得到一对直角相等,根据圆心角与圆周角的关系得到一对同位角相等,即可得证;(2)由CN与FB平行,以及等边对等角得到内错角相等,进而得到AE与FB平行,可得出AE与CN平行,得AENC 为平行四边形,得到AC=EN=2,利用垂径定理的逆定理得到BC与EF垂直,由AB=6,得到半径为3,利用勾股定理求出BD的长,再证明三角形OFH与三角形OBD全等,即可求出FH的长.【解答】(1)证明:∵点F是的中点,∴∠BAC=∠BOC=∠BOF,∴AC∥EF;(2)解:如图2,∵CN∥FB,OA=OE=OB=OF,∴∠CNF=∠OFB=∠OBF=∠E,∴AE∥FB,∴CN∥AE,∵AC∥EF,∴四边形AENC是▱AENC,∴AC=EN=2,∵OC=OB,∠COF=∠BOF,∴DC=DB,OD⊥BC于点D,∵OD是△ABC的中位线,∴OD=AC=1,∵OB=3,∴BD=2,又∵MD是△BCE的中位线,∴MH∥FB,∴∠ODH=∠OFB=∠OBF=∠DHO,∴OD=OH,又∠DOH为公共角,∴△FOH≌△BOD,∴FH=BD=2.25.在平面直角坐标系中,函数y=﹣x2+x+m(x≥2)的图象记为G1,函数y=﹣x2+2x﹣m(x<2)的图象记为G2,其中m为常数,且m≠0.图象G1、G2合起来得到的图形记为G,直线y=﹣3上有两点A、B关于y轴对称,且点A的横坐标为m.(1)当点(1,3)在G上时,求m的值.(2)当点A在G上时,求线段AB的长.(3)设图形G上最高点的纵坐标为y0,当2≤y0≤时,直接写出m的取值范围.(4)当图形G与线段AB恰有两个公共点时,m= 4 .【分析】(1)直接代入求值即可;(2)根据题意,建立方程求解即可;(3)分两种情况:①图形G上最高点落在函数y=﹣x2+x+m(x≥2)的图象上时,则最高点坐标为(2,m﹣2),根据题意解不等式组即可,②图形G上最高点落在函数y=﹣x2+2x﹣m(x<2)的图象上时,最高点坐标为(1,﹣m+1),解不等式组即可;(4)分两种情况:两个公共点均在函数y=﹣x2+2x﹣m(x<2)的图象上或分别在G1,G2上,分别求解即可.【解答】解:(1)把点(1,3)代入y=﹣x2+2x﹣m,则﹣1+2﹣m=3,∴m=﹣2.(2)当m≥2时,﹣m2+m+m=﹣3,解得:m1=3,m2=﹣1(舍去);∴AB=2m=6.当m<2时,﹣m2+2m﹣m=﹣3,解得:m1=(舍去),m2=;∴AB=﹣2m=﹣1;(3)当图形G上最高点落在函数y=﹣x2+x+m(x≥2)的图象上时,则最高点坐标为(2,m﹣2)∴2≤m﹣2≤,解得:4≤m≤;当图形G上最高点落在函数y=﹣x2+2x﹣m(x<2)的图象上时,∵y=﹣x2+2x﹣m=﹣(x﹣1)2﹣m+1,∴最高点坐标为(1,﹣m+1)∴2≤﹣m+1≤,解得:≤m≤﹣1综上所述,m的取值范围为:≤m≤﹣1或4≤m≤;(4)∵图形G与线段AB恰有两个公共点,A(m,﹣3),B(﹣m,﹣3)∴分两种情况:两个公共点均在函数y=﹣x2+2x﹣m(x<2)的图象上或分别在G1,G2上,当两个公共点均在函数y=﹣x2+2x﹣m(x<2)的图象上时,则﹣22+2×2﹣m=﹣3,解得:m=3,但此时,线段AB的端点B刚好在G1上,即线段AB与图形G有三个公共点,不符合题意.当线段AB与G1,G2上各有一个交点时,∴﹣m+1=﹣3,解得m=4,综上所述,m=4;故答案为:4.26.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.【分析】(1)把原点坐标代入y=ax2﹣4ax+3a﹣2可计算出对应a的值;(2)①②把抛物线解析式配成顶点式可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设A(m,0),B(n,0),利用抛物线与x轴的交点问题,则m、n为方程ax2﹣4ax+3a﹣2=0的两根,利用判别式的意义解得a>0或a<﹣2,再利用根与系数的关系得到m+n=4,mn=,然后根据完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4•≤16,接着解关于a的不等式,最后确定a的范围.【解答】解:(1)把(0,0)代入y=ax2﹣4ax+3a﹣2得3a﹣2=0,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,抛物线的对称轴为直线x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)设A(m,0),B(n,0),∵m、n为方程ax2﹣4ax+3a﹣2=0的两根,∴△=16a2﹣4a(3a﹣2)>0,解得a>0或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4•≤16,即≥0,解得a≥或a<0.∴a的范围为a<﹣2或a≥.27.在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的两个动点(不与点B,C,D重合),且AE⊥EF.(1)如图1,当BE=2时,求FC的长;(2)延长EF交正方形ABCD外角平分线CP于点P.①依题意将图2补全;②小京通过观察、实验提出猜想:在点E运动的过程中,始终有AE=PE.小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB上截取AG=EC,连接EG,要证AE=PE,需证△AGE≌△ECP.想法2:作点A关于BC的对称点H,连接BH,CH,EH.要证AE=PE,需证△EHP为等腰三角形.想法3:将线段BE绕点B顺时针旋转90°,得到线段BM,连接CM,EM,要证AE=PE,需证四边形MCPE为平行四边形.请你参考上面的想法,帮助小京证明AE=PE.(一种方法即可)【分析】(1)根据正方形的性质求出EC,证明△ABE∽△ECF,根据相似三角形的性质列出比例式,计算即可;(2)①根据题意画图;②在AB上截取AG=EC,连接EG,证明△AGE≌△ECP,根据全等三角形的性质证明.【解答】解:(1)∵正方形ABCD的边长为5,BE=2,∴EC=3.∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥EF,∴∠FEC+∠AEB=90°,∴∠BAE=∠CEF.∴△AGE∽△ECF,∴,即,∴FC=;(2)①依题意补全图形:②证明:在AB上截取AG=EC,连接EG.∵AB=BC,∴GB=EB.∵∠B=90°,∴∠BGE=45°,∴∠AGE=135°.∵∠DCB=90°,CP是正方形ABCD外角平分线,∴∠ECP=135°.∴∠AGE=∠ECP.在△AGE和△ECP中,,∴△AGE≌△ECP.∴AE=PE.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y′=,则称点Q为点P的“可控变点“例如:点(1,2)的“可控变点”为点(1,2)点(﹣1,3)的”可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2);(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y'是7,求“可控变点”Q的横坐标:(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y'的取值范围是﹣16≤y'≤16,直接写出实数a的取值范围.【分析】(1)根据可控变点的定义,可得答案(2)根据可控变点的定义,可得函数解析式,根据自变量与函数值的对应关系,可得答案(3)根据可控变点的定义,可得函数解析式,根据自变量与函数值的对应关系,可得答案【解答】解(1)∵﹣5<0∴y'=﹣y=2即点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2)(2)由题意得y=﹣x2+16的图象上的点P的“可控变点”必在函数y′=的图象上,∵“可控变点”Q的纵坐标y′的是7∴当﹣x2+16=7时,解得x=3,当x2﹣16=7时,解得x=﹣故答案为:3或﹣(3)由题意得∵﹣16≤y′≤16,∴﹣16=﹣x2+16∴x=4当x=﹣5时,x2﹣16=9当y′=9时,9=﹣x2+16(x≥0)∴x=∴实数a的取值范围≤a≤4。
2020-2021清华附中初三统练8

A
B
C
D
)
厨余垃圾
400
100
40
60
可回收物
25
140
20
15
有害垃圾
5206015其他垃圾25
15
20
40
求“厨余垃圾”投放正确的概率.
孙老师聊初中数学
26 在平面直角坐标系 xOy 中,已知抛物线 G: y 4x2-8ax 4a2-4 ,A(-1,0),N( n ,0). (1)当 a 1时, ①求抛物线 G 与 x 轴的交点坐标; ②若抛物线 G 与线段 AN 只有一个交点,求 n 的取值范围; (2)若存在实数 a ,使得抛物线 G 与线段 AN 两个交点,结合图象,直接写出 n 的取值范围.
孙老师聊初中数学
18.如图,将△ABC 绕点 B 旋转得到△DBE,且 A、D、C 三点在同一条直线上.求证:BD 平分∠ADE.
19. 已知一 1 是方程 x2 ax-b 0 的一个根,求 a2-b2 2b 的值.
20.下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程. 已知:如图 1,⊙O 及⊙O 上一点 P. 求作:过点 P 的⊙O 的切线. 作法:如图 2 ①作射线 OP;
(3)结合画出的函数图象,解决问题:当 BD=AC 时,AM 的长为
cm.
24. 如图,在△ABC 中,AB=AC,以 AB 为直径作⊙O 交 BC 于点 D,过点 D 作 AC 的 垂线交 AC 于点 E,交 AB 的延长线于点 F. (1)求证:DE 与⊙O 相切; (2)若 CD=BF,AE=3,求 DF 的长.
清华大学附属中学2019-2020年年九年级数学3月统练试题

初三第二学期延时开学自主学习检测试题数学(清华附中初17级) 2020.3一、选择题:本大题共8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.当前,新冠肺炎疫情防控仍处在关键阶段,全国人民团结一致,坚决打赢这场疫情防控阻击战,其中广大共产党员积极响应党中央号召,踊跃捐款,用“特殊党费”支持疫情防控工作,截至2月29日,共捐款11.8亿元,将11.8亿元用科学计数法表示应为( )A .81.1810⨯B .91.1810⨯C .101.1810⨯D .111.1810⨯ 2. 下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .3. 内角和为540o 的多边形是( )A .三角形B .四边形C .五边形D .六边形4.在数轴上,点A B ,在原点O 的两侧,分别表示数,2a ,将点A 向左平移1个单位长度,得到点C .若,CO BO =则a 的值为( )A .3-B .2- C. 1- D .1 5.已知线段AB如图,()1以线段AB 为直径作半圆弧AB ,点O 为圆心;()2过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交AB 于点E F 、; ()3连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .AE BF = C. =60EOF ∠︒ D .=2CE CO 6. 如果5x y +=,那么代数式221y xx y x y⎛⎫+÷ ⎪--⎝⎭的值为( ) A .1 B .1- C .5 D .5-7.用三个不等式中,0,a b ab a b >>>的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .38. 如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( )A .甲的数学成绩高于班级平均分,且成绩比较稳定B .乙的数学成绩在班级平均分附近波动,且比丙好C .丙的数学成绩低于班级平均分,但成绩逐次提高D .就甲、乙、丙三个人而言,乙的数学成绩最不稳二、填空题(每题2分,满分16分,将答案填在答题纸上)9.若分式12x x +-无意义,则x = . 10.如图,已知平行四边形ABCD ,通过测量、计算得平行四边形ABCD 的面积约为_ ____2 c m .(结果保留一位小数)11.如图所示的几何体中,主视图与左视图都是长方形的是 .12.如图所示的网格是正方形网格,点A B C D 、、、均落在格点上,则BAC ACD ∠+∠=__ __o13. 在平面直角坐标系中,点(),A a b 在双曲线2y x =-上,点A 关于y 轴的对称点B 在曲线ky x=上,则2k -的值为 .14. 菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为菱形或矩 形的“接近度”.设菱形相邻两个内角的度数分别为m n 、.()1若我们将菱形的“接近度”定义为,m n -于是m n -越小,菱形就接近正方形.若菱形的一个内角为70o ,则“接近度”= .()2若我们将菱形的“接近度”定义为(),m m <则菱形的“接近度”= 时,菱形就是正方形.15.如果一组数据123,,,,n x x x x ⋅⋅⋅的方差是20S .把这组数据中每个数都减去同一个非零常数k .得到一组新数:123-,-,-,,-n x k x k x k x k ⨯⨯⨯记这组新数据的方差为21S .则21S 20S (填“>”“=”或“<”) 16.如图,在ABC V 中,90ACB ∠=o ,5,3AB BC P ==,是AB 边上的动点(不与点B 重合),将BCP V 沿CP 所在的直线翻折,得到'B CP V ,连接'B A ,则下列判断: .①当AP BP =时,//AB CP ; ②当AP BP =时,'2'B PC B AC ∠=∠③当CP AB ⊥时,175AP ='B A ④长度的最小值是1.其中正确的判断是____ _(填入正确结论的序号)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27, 28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:()0131023130cos π---⎛⎫⎝+⎪⎭+o .18. 解不等式组:()5,3163x x x x ⎧⎪⎨->+>-⎪⎩19.关于x 的方程24320x x m -+-=有两个不等实根,且m 为正整数,求m 的值及此时方程的根. 20.如图,在ABC V 中,AB BC =,110,ABC AB ∠=︒ 的垂直平分线DE 交AC 于点,D 连接BD ,求DBC ∠的度数.21.如图,E F 、分别是菱形ABCD 的边AB AD 、的中点,且角ABD 的正切值为126AC =.()1求对角线BD 的长;()2求证:四边形AEOF 为菱形.22.为了调查居民对新型冠状病毒预防知识的知晓情况,从甲、乙两社区各随机抽取40名居民进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息. a.甲、乙两社区40名居民成绩的频数分布统计表如下:(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格) b.甲社区成绩在7080x ≤<这一组的是:70 70 70 71 72 73 73 73 74 75 76 77 78c.甲、乙两社区成绩的平均分、中位数、众数如下:根据以上信息,回答下列问题:()1写出表中n 的值;()2在此次测试中,某居民的成绩是74分,在他所属社区排在前20名,由表中数据可知该居民是_社区的居民(填“甲”或“乙”),理由是_ ;()3假设乙社区800名居民都参加此次测试,估计成绩优秀的居民人数.23.如图,AB 是O e 的直径,点,D E 在O e 上,2A BDE ∠=∠,点C 在AB 的延长线上,C ABD ∠=∠.()1求证:CE 是O e 的切线;()2若O e 的半径长为5,2BF =,求EF 的长. 24.在平面直角坐标系xOy 中,已知直线122y x =+与直线y x m =-+交于点2,3A m ⎛⎫⎪⎝⎭, ()1求,m n 的值;()2若点B 是直线122y x =+上一动点,过点B 分别作x 轴,y 轴的垂线,垂足分别为点C 和点D ,反比例函数ky x=的图象经过点B . ①点B 与点A 重合时,求BC BD +的长; ②当3BC BD +<时, 直接写出k 的取值范围.25.如图,在ABC V 中,点D 是线段BC 上的动点,将线段AD 绕点D 逆时针旋转90o 得到线段,DE 连接BE .若已知8,BC cm =设,B D 两点间的距离为,,xcm A D 两点间的距离为1,,y cm B E 两点间的距离为2y cm .(若同学们打印的BC 的长度如不是8,cm 请同学们重新画图、测量)小明根据学习函数的经验,分别对12,y y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:()1按照下表中自变量x 的值进行取点、画图、测量,分别得到了12,y y 与x 的几组对应值,如下表:写出,a b 的值.(保留1位小数)()2在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点()()12,,,x y x y ,并画出函数12y y ,的图象;()3结合函数图象,解决问题:①当E 在线段BC 上时,BD 的长度约为____ cm ; ②当BDE V 为等腰三角形时,BD 的长度x 约为____ ___ cm26.在平面直角坐标系xOy 中,抛物线2:21(0)G y mx mx m m =++-≠与y 轴交于点C ,抛物线G 的顶点为D ,直线(:0)1l y mx m m =+-≠.()1当1m =时,画出直线l 和抛物线G ,并直接写出直线l 被抛物线G 截得的线段长. ()2随着m 取值的变化,判断点C D ,是否都在直线l 上并说明理由.()3若直线l 被抛物线G 截得的线段长不小于3,结合函数的图象,直接写出m 的取值范围.27.如图,已知45,MON A ∠=︒为射线OM 上一定点,点A 关于射线ON 的对称点为点,B C 为射线ON 上一动点,连接,CB 满足BCO ∠为钝角,以点C 为中心,将线段CB 逆时针旋转a o 至线段,CD 满足点D 在射线OM 的反向延长线上.()1依题意补全图形:()2当点C 在运动过程中,旋转角a 是否发生变化?若不变化,请求出a 的值,若变化,请说明理由; ()3从点D 向射线ON 作垂线,与射线ON 的反向延长线交于点,E 探究线段CE 和OA 的数量关系并证明.28.对于平面内C e 和C e 外一点P ,若过点P 的直线l 与C e 有两个不同的公共点,M N ,点Q 为直线l 上的另一点,且满足PM QMPN QN=(如图1所示),则称点Q 是点P 关于C e 的密切点.已知在平面直角坐标系xOy 中,O e 的半径为2,点()4,0P .()1在点()()12,11,0,3,,2E F D -⎛⎫⎪⎝⎭中,是点P 关于O e 的密切点的为_ . ()2设直线l 方程为y kx b =+,如图2所示,13k =-①时,求出点P 关于O e 的密切点Q 的坐标;T e ②的圆心为()t,0T ,半径为2,若T e 上存在点P 关于O e 的密切点,直接写出t 的取值范围.C17级初三下延时开学自主学习检测数学试卷答案8. 解: A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确; B.乙的数学成绩在班级平均分附近波动,且比丙好,正确; C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确; D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D 错误. 故选:D . 9.2x =10. 看答题纸上的数据(待定) 11. ()()()134、、 12.90o13.014.()140o()2115.=16.①②④解:Q ①在ABC V 中,90ACB ∠=︒,,AP BP =AP BP CP ∴==,1180',2()BPC APB ∠=︒-∠ 由折叠的性质可得:'CP B P =,(1'180'),2CPB BPC APB ∠=∠=︒-∠ ',AP B P ∴=()1''180',2AB P B AP APB ∴∠=∠=︒-∠ '',AB P CPB ∠=∠∴ '//AB CP ∴;故①正确;,AP BP =Q ②',PA PB PC PB ∴===∴点',A B C B ,,在以P 为圆心,PA 长为半径的圆上,Q 由折叠的性质可得:',BC B C =,BC B C '∴='2'B PC B AC ∴∠=∠;故②正确;③当CP AB ⊥时,,APC ACB ∠=∠,PAC CAB ∠=∠Q,ACP ABC ∴V :VAP AC AC AB∴=Q 在Rt ABC V 中,由勾股定理可知:4AC ===2165AC AP AB ∴== 故③错误;④由轴对称的性质可知: '3,BC CB =='CB Q 长度固定不变,''AB AC CB ∴≥-'AB ∴的长度有最小值.'AB 有最小值'431AC B C =-=-=.故④正确.17.218.43x -<<-19.1,m =此方程的根为1222x x ==20.75o21.() 112,BD =()2证明:,E O Q 分别是,BA BD 中点,1//,2OE AD =∴ 同理可得:1 //,2AF AD = ∴四边形AEOF 是平行四边形,又,AB AD =Q,AE AF ∴=∴平行四边形AEOF是菱形.22.()172.5()2甲,这位居民成绩74分大于甲社区的中位数72.5分()316800320⨯= (人)40答:估计乙社区成绩优秀的居民有320人.OE23.()1连,Q直径ABADB∴∠=o90∴∠+∠=︒A ABD90Q弧BE∴∠=∠2BOE BDEQ∠=∠2A BDE∴∠=∠BOE A∠=∠QC ABD∴∠+∠=oBOE C90∴∠=o90OEC⊥∴半径OE EC()2连BEQ 弧BDBED A BOE ∴∠=∠=∠BEF BOE ∴V :VBE BF EF BO BE OE∴== 5OB OE ==QBE EF ∴=210EF OE BF ∴=⋅=EF ∴=24. ()113,23m n == ()1122,33BC BD ==Q ① 3BC BD ∴+=3BC BD +=②时,B 在A 或()2,1E -,k 分别为14,29- 3BC BD +<B 应在AE 之间1429k ∴-<<且0k ≠ 25.[解答]解:()1当0x =时,7.037.0 3.0;a AD b ==≈=,()2描绘后表格如下图:()3①当E 在线段BC 上时,即:12,x y y =+从图象可以看出,当6x =时,126,y y +=故答案为6;②当BE DE =时,即12,y y = 此时7.5x =或0,故7.5x =;当BE BD =时,即:2y x =,在图上画出直线,y x =此时3x ≈;当DE BE =时,即: 1,y x =从上图可以看出 4.1x ≈;故答案为:3或4.1或7.5.[点评]本题考查的是动点函数图象,此类题目通常在补全表格后,画出函数图象,依据图象求解相关问题,通常从图上,上查阅的数值为近视值.26.解:()1当时1m =,抛物线G 的函数表达式为22,y x x =+直线l 的函数表达式为y x =.画出的两个函数的图象如图6()2Q 抛物线2:2 1 0()G y mx mx m m =++-≠与y 轴交于点,C∴点C 的坐标为()0,1C m -.()222111y mx mx m m x =++-=+-Q ,∴抛物线G 的顶点D 的坐标为()1,1.--对于直线():1#0l y mx m m =+-,当0x =时,1y m =-;当1x =-时,()111y m m =⨯-+-=-. ∴无论m 取何值,点,C D 都在直线l 上.()3m 的取值范围是m ≤-m ≥. 27.()1补全图形如右图所示:()2旋转角a 不发生变化,90a =o解:如图,连接,,AC AB 线段AB 交ON 于点HQ 点A 、点B 关于射线ON 对称,AB ON AC BC ∴⊥=又45,MON ∠=︒Q45OAB ∴∠=︒又Q 线段CB 绕点C 逆时针旋转至线段CDCD CB ∴=CD CB AC ∴==∴点A B D 、、在以点C 为圆心,线段AC 为半径的圆上 290BCD DAB ∴∠=∠=︒即旋转角a 不发生变化,90a =o()3OA =证明:如图,连接,,AC AB 线段AB 交ON 于点H,45DE CE DOE MON ⊥∠=∠=︒Q90,E DE OE ∴∠=︒=由()2可得: 90BHC BCD ∠=∠=︒90DCE BCH B ∴∠=︒-∠=∠又CB CD =Q()DCE CBH AAS ∴V V ≌CH DE OE ∴==CE OH ∴=在Rt OHA V 中,OA =OA ∴=证法2:如图,连接CA ,作CF OA ⊥于点FDE CE ⊥Q ,45DOE MON ∠=∠=o90,,E CFO OD OC ∴∠=∠===o .又,CD CA =QFA FD ∴=2OA OF FA OF DF OF OD ∴=+=+=+== 证法3:如图,连接CA ,作CG OC ⊥交OA 于点GDE CE ⊥Q ,45DOE MON ∠=∠=o045,COG CG CO CG ∴∠=∠==o ,OD OG ==,0C D CGA ∴∠=∠又CD CA =Q ,CDA CAD ∴∠=∠()DCO ACG AAS ∴V V ≌DO GA ∴=OA OG GA OG OD ∴=+=+=+=28.解:()1E .(如果除了E 点,还出现其它的点扣1分)()2①依题意直线l 方程为1433y x =-+ 如图,MA x ⊥轴于点A NB x ⊥,轴于点B .设14,33M x x ⎛⎫-+ ⎪⎝⎭. 由 2OM =得2214433x x ⎛⎫+-+= ⎪⎝⎭ 254100x x ∴--=,M N 点得横坐标,M N x x 是方程254100x x --=的两根M N x x ==AB PA PB ∴=== QM PM HA PA QN PN HB PB=⇒= HA PA AB PA PB∴=+6HA =3,5HA ∴=23155OH OA HA ∴=-=-= ()1,1Q ∴e的密切点的轨迹为线段为切点弦ST(不含端点) .②点P关于Ct<≤-≤<或2310t(出现2个以上端点且符号正确的,给1分)。
2020-2021学年度清华附中初三统练3

C18级初三上学期数学统练试卷032020.10一.选择题(共8小题)1.下列英文大写正体字母中,既是中心对称图形又是轴对称图形的是()2.下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D半径相等的两个半圆是等弧3.下列方程中,没有实数根的是()A.x2 - 2x - 3 = 0B.(x - 5)(x + 2) = 0C.x2 - x + 1 = 0D.x2 - 1=04.已知AB是直径为10的圆的一条弦,则AB的长度不可能是()A.2B.5C.9D115.若x2 + mx + 19 = (x-5)2 - n,则m + n的值是()A. - 16B.16C. - 4D.46.已知(- 3,y1),(- 2,y2),(1,y3)是抛物线上y=- 5x2的点,则()A.y1< y2 < y3B.y3 < y 1 < y2C.y3 < y2 < y1D.y1 <y3 < y27.如图,菱形ABCD中,E是对角线AC上一点,将线段D绕点E顺时针旋转角度2α,点D恰好落在BC边上点F处,则∠DAB的度数为()A.αB.90° - αC.180° - 2αD.2α8.已知直线l经过点(0,6)且平行于x轴,抛物线y=ax2+c (a≠0)与直线/相交于点A,B,与y轴交于点C(0, - 2),且∠ACB为直角,则当y < 0时,自变量x的取值范围是()A. - 4 < x < 4Bx > 4Cx <- 4D. - 2 < x < 4二.填空题(共8小题)9若点A(a- 1,3)与点B(2,- 2b- 1)关于原点对称,则2a+ b= _________ 10.如图,MN为⊙O的弦,∠M = 50°,则∠MON等于 _________ .11抛物线y = (k - 1)x2 - x + 1与x轴有交点,则k的取值范围是 _________ .12.如图,在每个小正方形的边长为1的网格中,画出了一个过格点A,B的圆,则这圆的周长是 _________ .13如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有 _________ 个.14.等腰(非等边)三角形的边长都是方程x2 - 6x + 8 = 0的根,则此三角形的面积为_________15.已知00的直径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB= Scm,CD- 6 cm,则AB与CD之间的距离为 _________ cm.16如图,某大桥有一段批物出出的排梁,抛物线的解析式为yax+ bx小强骑自行车从排梁-- 端0匀速穿过批梁部分的桥面OC,当小强随自行车行驶6分钟和14分钟时所处位置的批梁高度相同,则小强随自行车通过批梁部分的桥面0C共需 _________ 分钟.三.解答题(共11小题)17.解方程:x2 + 3 = 4x18.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD = 10°,∠D = 25°,∠EAB = 120°,求∠DFB的度数.19.已知点(2,0)在抛物线y =- 3x2 + (k + 3)x - k上,求此抛物线的对称轴.20.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB = 2DE,∠AEC = 20°.求∠AOC的度数.21.关于x的一元二次方程x2 - x + m = 0有两个不相等的实数根(1)求m的取值范围;(2)若m为符合条件的最大整数,求此时方程的解22.如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D (0,4)(1)根据图形直接写出点C的坐标: _________ ;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用无刻度的直尺准确地画出直线m保留作图痕迹,并求该直线m的解析式.23.已知一个二次函数的图与y轴交点纵坐标为4,且当自变量x = 2时,二次函数的值最小,最小值为 - 4.(1)求这个二次函数的表达式:(2)求这个函数的图象与x轴交点的坐标.24.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD - BD - 2,求AB的长.25.如图,在△ABC中,AB= 4 cm,BC= 5 cm.P是弧AB上的动点,设A,P两点间的距离为xcm,B,P两点间的距高为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究:下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:(2)在同一平面直角坐标系x0y中,描出补全后的表中各组数值所对应的点(x,M),点(x,y),并画出函数y1,y2的图象(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为 _________ cm.②记弧AB所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为_________ cm.26.在平面直角坐标系中,已知抛物线y=ax2 + 2ax + c与x轴交于点A,B,且AB=4.抛物线与y轴交于点C,将点C向上移动1个单位得到点D(1)求抛物线对称轴(2)求点D纵坐标(用含有a的代数式表示)(3)已知点P(- 4,4),若抛物线与线段PD只有一个公共点,求a的取值范围.(1)求抛物线对称轴(2)求点D纵坐标(用含有a的代数式表示)(3)已知点P( - 4,4),若抛物线与线段PD只有一个公共点.求a的取值范围.27.在正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P顺时针旋90°,得到线段PE,连接CE(1)如图1,若点P在线段CB的延长线上过点E作EF⊥BC于H,与对角线AC 交于点F.①请根据题意补全图形;②求证:EH = FH(2)若点P在射线BC上,直接写出CE,CP,CD三条线段的数量关系28.在平面直角坐标系x0y中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”(1)已知点A的坐标为( - 3,1)①在点E(0,3)、F(3,- 3)、G(2,- 5)中,点A的“等距点”是_________ ;②若点B在直线y- x+ 6上,且A、B两点为“等距点”,则点B的坐标为_________ ;(2)直线l:y = kx - 3(k > 0)与x轴交于点C,与y轴交于点D.为“等距点”,求k的值;②当k + 1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出:的取值范围.。
2024届北京市清华附中中考联考数学试卷含解析

2024届北京市清华附中中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各式中,正确的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1=12C.﹣x xy y-=-D.3882÷=2.最小的正整数是()A.0 B.1 C.﹣1 D.不存在3.一个多边形的内角和比它的外角和的3倍少180°,那么这个多边形的边数是()A.7 B.8 C.9 D.104.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或125.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A.63B.3C.6 D.46.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm宽为bcm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A .4acmB .4()a b cm -C .2()a b cm +D .4bcm7.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且−2≤x ≤1时,y 的最大值为9,则a 的值为A .1或−2B .−或C .D .1 8.观察下列图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4n ﹣4D .4n9.如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB ,点P 从点A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,设运动时间为x (单位:s ),弦BP 的长为y ,那么下列图象中可能表示y 与x 函数关系的是( )A .①B .③C .②或④D .①或③10.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π11.如图,在ABC ∆中,10 , 8 , 6AB AC BC === ,以边AB 的中点O 为圆心,作半圆与AC 相切,点, P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .6B .2131+C .9D .32312.关于x 的一元二次方程x 2+2x+k+1=0的两个实根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围在数轴上表示为( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.观察下列一组数:13579,,,,,49162536⋯,它们是按一定规律排列的,那么这一组数的第n 个数是_____. 14.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD 高度是4m ,从侧面C 点测得警示牌顶端点A 和底端B 点的仰角(∠ACD 和∠BCD )分别是60°,45°.那么路况警示牌AB 的高度为_____.15.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km 1,该数据用科学记数法表示为__________km 1.16.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 17.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.18.如图,在梯形ABCD 中,AB ∥CD ,∠C=90°,BC=CD=4,AD=25 ,若,AD a DC b ==,用a 、b 表示DB =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,己知AB 是的直径,C 为圆上一点,D 是的中点,于H ,垂足为H ,连交弦于E ,交于F ,联结.(1)求证:.(2)若,求的长.20.(6分)先化简,后求值:22321113x x xx x-++⋅---,其中21x=+.21.(6分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tan A=,求的值.22.(8分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.23.(8分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次共抽查了八年级学生多少人;(2)请直接将条形统计图补充完整;(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?24.(10分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A 市投资“改水工程”的年平均增长率;从2008年到2010年,A 市三年共投资“改水工程”多少万元?25.(10分)如图,在矩形纸片ABCD 中,AB=6,BC=1.把△BCD 沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于点G ;E 、F 分别是C′D 和BD 上的点,线段EF 交AD 于点H ,把△FDE 沿EF 折叠,使点D 落在D′处,点D′恰好与点A 重合.(1)求证:△ABG ≌△C′DG ;(2)求tan ∠ABG 的值;(3)求EF 的长.26.(12分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。