动态规划
动态规划

=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故
动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
第6章动态规划

第6章 动态规划动态规划(Dynamic Programming )是解决多阶段决策过程最优化的一种有用的数学方法。
它是由美国学者Richard .Bellman 在1951年提出的,1957年他的专著《动态规划》一书问世,标志着运筹学的一个重要分支-动态规划的诞生.动态规划也是一种将多变量问题转化为单变量问题的一种方法。
在动态规划中,把困难的多阶段决策问题变换成一系列相互联系的比较容易的单阶段问题一个个地求解。
动态规划是考察解决问题的一种途径 ,而不是一种特殊的算法,不像线性规划那样有统一的数学模型和算法(如单纯形法).事实上,在运用其解决问题的过程中还需要运用其它的优化算法。
因此,动态规划不像其它方法局限于解决某一类问题,它可以解决各类多阶段决策问题。
动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。
在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。
许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。
特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。
动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。
本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。
6.1动态规划的基本理论6.1.1多阶段决策过程的数学描述有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。
任何一个阶段(stage ,即决策点)都是由输入(input )、决策(decision )、状态转移律(transformation function )和输出(output )构成的,如图6-1(a )所示.其中输入和输出也称为状态(state ),输入称为输入状态,输出称为输出状态。
动态规划

(3)决策(Decision)
(4)策略(Policy)各阶段的决策组成的一个决策序列称为
一个策略,记为: p x1, x2 ,, xn
从阶段i开始的过程,称为i子过程,它包含阶段i,阶 段i+1,…,阶段n。i子过程的决策序列称为i子策略,记
为 pi xi , xi1,, xn i 1, 2 ,, n 1
,
3 资源分配问题
设有数量为a的资源,计划分配给n 个项目。设xi (i=1, 2, …, n)为分配给第i 个项目的资源量,gi(xi)为第i个项目得到 数量为xi的资源后可提供的收益,问如 何分配资源a,可使总收益为最高?
►静态规划模型
n
max f gi (xi )
i 1
n xi a
1.3 动态规划的基本方程
(1) 动态规划的基本方程(逆序递推公式)
si1
g(si , xi )
,f
* n 1
(
x
n 1
)
0
fi* (si )
opt
v(si , xi )
f
i
* 1
(si
1
)
xi
i n, n 1,,1
(2) 动态规划的基本方程(正序递推公式)
si1 g(si , xi ) ,f1*(s1) opt{v(s1, x1)}
1
6
7
X
2
(
B2
,
C3
)
f
3
(C3
)
1 6
最短路线B2C3D。
C1
5
5
4
B1 5
3
A
C2
3
D
4
6
第6章-动态规划

求解过程
由最后一个阶段的优化开始,按逆向顺序逐步 向前一阶段扩展,并将后一阶段的优化结果带 到扩展后的阶段中去,以此逐步向前推进,直 至得到全过程的优化结果。
f1
(
A)
min
dd11
( (
A, A,
B1) B2 )
ff22((BB12))
min
4 9
9 11
13
d1( A, B3) f2 (B3)
5 13
其最短路线是A→ B1→C2 →D2 →E ,相应的决 策变量是u1(A)=B1
因此,最优策略序列是:
u1(A) =B1, u2(B1)=C2, u3(C2)=D2, u4(D2)=E
5 8 C2 4 6 4
4 C3 2
C3
D1 4 2 6
D2 9 7
D3 5
D4
E1 1 F
E2 2
E5
F
动态规划的逆序解法与顺序解法
逆序(递推)解法:即由最后一段到第一段逐步 求出各点到终点的最短路线,最后求出A点到E点 的最短路线。运用逆序递推方法的好处是可以始 终盯住目标,不致脱离最终目标。 顺序解法:其寻优方向与过程的行进方向相同, 求解时是从第一段开始计算逐段向后推进,计算 后一阶段时要用到前一段求优的结果,最后一段 的计算结果就是全过程的最优结果。
B1
A
4+9=13
d(u1)+f2
B2
B3
f1(s1) u1*
动态规划-动态规划-美国数学家贝尔曼-动态规划领域

物品
1 2 … j …n
重量(公斤/件) a1 a2 … aj … an
每件使用价值 c1 c2 … cj … cn
类似问题:工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳 生产效益,就要在整个生产过程中逐月或逐季度 地根据库存和需求决定生产计划。
描述状态的变量称为状态变量,它可用一个数、 一组数或一向量(多维情形)来描述,第k阶段 的状态变量常用sk表示,通常一个阶段有若干个 状态。
第k阶段的状态就是该阶段所有始点的集合, 用Sk表示。在第1阶段状态变量s1是确定的,称初 始状态。如引例中:
S1 A,S2 B1, B2, B3,S3 C1,C2,C3,S4 D1, D2
min
4
9
12
决策点为B3
AB3
f2
B3
3 9*
f1(A)=12说明从A到E的最短距离为12,最短路 线的确定可按计算顺序反推而得。即
A→B3→C2→D2→E 上述最短路线问题的计算过程,也可借助于图
形直观的表示出来:
12 2 A4
3
11
B1
7 4
6
93
B2 2
4
96
B3
2 5
6
C1 3
多阶段决策过程特点:
(1)根据过程的特性可以将过程按空 间、时间等标志分为若干个互相联系又互相 区别的阶段。
(2)在每一个阶段都需要做出决策,从 而使整个过程达到最好的效果。
(3)在处理各阶段决策的选取上,不仅只 依赖于当前面临的状态,而且还要注意对以后 的发展。即是从全局考虑解决局部(阶段)的 问题。
第10章 动态规划

管理运筹学
7
缺点
①没有统一的处理方法,求解时要根据问题的 性质,结合多种数学技巧。因此实践经验及 创造性思维将起重要的引导作用;
②“维数障碍”,当变量个数太多时,由于计 算机内存和速度的限制导致问题无法解决。 有些问题由于涉及的函数没有理想的性质使 问题只能用动态规划描述,而不能用动态规 划方法求解。
盈利 工厂 设备台数
0 1 2
3 4 5
甲厂
0 3 7 9 12 13
乙厂
0 5 10 11 11 11
管理运筹学
29
第一阶段:只有1个始点A,终点有B1,B2,B3,B4 。对始点和终 点进行分析和讨论分别求A到B1,B2,B3,B4的最短路径问题:
表10-4
本阶段始 点(状态)
A
阶段1 本阶段各终点(决策)
B1
B2
B3
B4
4+12=16 3+13=16 3+14=17 2+12=14
到E的最 本阶段最优终 短距离 点(最优决策)
第四阶段:两个始点D1和D2,终点只有一个;
表10-1
阶段4
本阶段始点 本阶段各终点(决策) 到E的最短距离
(状态)
E
D1
10
10
D2
6
6
分析得知:从D1和D2到E的最短路径唯一。
本阶段最优终点 (最优决策)
E E
管理运筹学
27
第三阶段:有三个始点C1,C2,C3,终点有D1,D2,对始点
和终点进行分析和讨论分别求C1,C2,C3到D1,D2 的最短路
第8章 动态规划《管理运筹学》PPT课件

8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限制条件: 1<=n<=100,0<=S<=10000,1<=Vi<=S
状态转移方程: f(i)=min(INF,f(i-Vj)+1|Vj<=i)
g(i)=max(-INF,g(i-Vj)+1|Vj<=i)
其中f(i)和g(i)分别代表面值之和恰好为i时,硬币数量的最大值和最小 值, f(0)与g(0)初始值设为0。
最长公共子序列问题
题目大意:
给定两个字符串s1s2…sn和t1t2…tn。求出这两个字符串最长的公共子序列 的长度。
限制条件: 1<=n,m<=1000
状态转移方程: 如果si==ti , dp[i][j]=max(dp[i-1][j-1]+1,dp[i][j-1],dp[i-1][j])
题目大意:
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌 套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例 如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽 可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个 矩形内。
状态转移方程: 当j<w[i]时dp[i][j]=dp[i-1][j] 当j>=w[i]时 dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])
初始化dp[0][j]=0,其中dp[i][j]表示取到第i个物品使用重量为j 的最大价值为多少。
嵌套矩形(nyoj16)
最终答案
满足dp[n][j]<=W的最大j
谢谢
状态转移方程: dp[i][j]初始值为dp[i-1][j],即k=0状况 dp[i][j]=max(dp[i-1][j-k*w[i]]+k*v[i]|0<=k, dp[i][j])
for(i=1; i<=n; i++) { for(j=0; j<=c; j++) { for(int k=0; k*w[i]<=j; k++) dp[i][j]=max(dp[i][j],dp[i-1][j-k*w[i]]+k*v[i]);//表示前i-1种物品中选取若干件物品放入剩余空 } }
01背包问题之2
题目大意:
有n个重量和价值为wi,vi的物品。从这些物品中挑选出总重量不超过W的物品, 求所有挑选方案中价值总和的最大值。
限制条件: 1<=n<=100 1<=wi<=10^7
1<=vi<=100
1<=W<=10^9
状态转移方程:
dp[i][j]=min(dp[i-1][j],dp[i][j-v[i]]+w[i]);
如果si!=ti , dp[i][j]=max(dp[i][j-1],dp[i-1][j])
完全背包
题目大意:
有n种重量和价值分别为wi,vi的物品。从这些物品中挑选总重量不超过W的 物品,求出挑选物品价值总和的最大值。在这里,每种物品可以挑选任意多件。 限制条件: 1<=n<=100 1<=wi,vi<=100 1<=W<=10000
动态下面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的 数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个 最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字 为 0 - 99
动规解题的一般思路
将原问题分解为子问题 确定状态 确定一些初始状态(边界状态)的值 确定状态转移方程
限制条件:
n<=1000,0<=a,b<=100 网址:/JudgeOnline/problem.php?pid=16
按照矩形的短边进行排序 状态转移方程:
d(i)=max{0,d(j),矩形j可以嵌套在矩形中}
硬币问题
题目大意:
有n种硬币,面值分别为V1,V2,V3,….,Vn,每 种硬币有无限多。给定非负整数S,可以选用多少个硬币,使 得面值之和恰好为S?输出硬币数量的最小值和最大值。
状态转移方程: d(i,j)=a(i,j)+max{d(i+1,j),d(i+1,j+1)}
01背包问题
题目大意:
有n个重量和价值为wi,vi的物品。从这些物品中挑选出总重量不超过W的 物品,求所有挑选方案中价值总和的最大值。
限制条件: 1<=n<=100 1<=wi,vi<=100 1<=W<=10000