动态规划例题讲解
概率dp例题

概率dp例题?
答:以下是一个概率动态规划的例子:
假设有一个长度为n的楼梯,每次可以跨1级或2级。
求总共有多少种不同的方法可以爬到楼梯顶部。
解法:设f(n)表示爬到第n级楼梯的方法总数。
对于第n级,有两种方式到达:从第n-1级跨一步,或者从第n-2级跨两步。
所以,我们有f(n)=f(n-1)+f(n-2)。
这就是一个典型的动态规划问题,可以通过迭代求解。
初始条件是:f(1)=1, f(2)=2。
用这些初始条件和递推关系,我们可以求解f(n)对于任意n的值。
如果我们要找的是爬到第10级楼梯的方法数,可以按照以下步骤进行计算:
f(1)=1
f(2)=2
f(3)=f(2)+f(1)=2+1=3
f(4)=f(3)+f(2)=3+2=5
f(5)=f(4)+f(3)=5+3=8
f(6)=f(5)+f(4)=8+5=13
f(7)=f(6)+f(5)=13+8=21
f(8)=f(7)+f(6)=21+13=34
f(9)=f(8)+f(7)=34+21=55
f(10)=f(9)+f(8)=55+34=89
所以,总共有89种不同的方法可以爬到第10级楼梯。
动态规划例题讲解精品PPT课件

山东师大附中
Preview
本节课主要通过几道例题,总揽NOIp中较 常见的动态规划模型,不会过多涉及优化 内容。
Preview
最长上升子序列 内存碎片 背包问题 最长公共子序列 石子合并
括号序列 决斗 三取方格数 选课 贪吃的九头龙
最长上升子序列
给出一个数列{a1,a2,...,an},要求你选出尽量 多的元素,使这些元素按其相对位置单调
完全背包问题
共有N种物品,每种物品有一定的重量w[i] 和一定的价值v[i],每种物品有无限个。现 在我们有一个最大载重量limit的包,问放入 哪些物品能使得总价值最高?
w[i]和v[i]均为整数,N<=100,limit<=10000
完全背包问题
fillchar(f,sizeof(f),0); for i:=1 to n do for j:= w[i] to limit do f[j] = max(f[j], f[j-w[i]]+v[i]); writeln(f[limit]);
1400
共有3件物品 重量分别为30/80/10 价值分别为300/1200/200 背包最大载重量为100
0/1背包问题
令f[i,j]表示考虑完前i项物品,并且当前背包 承重不大于j的情况下能获得的最大价值
f[i,j]=max( f[i-1,j], //不选第i项物品 f[i-1,j–w[i]]+v[i]) //选择第i项物品
2
插入a6后 -inf
1
插入a7后 -inf
1
插入a8后 -inf
1
插入a9后 -inf
1
inf
inf
inf
8
动态规划 运筹学 例题

动态规划运筹学例题动态规划是运筹学中常用的一种优化技术,它利用规划、三角函数和其他数学技术来解决日常生活中的各种问题,比如最优路线问题、最优资源分配问题、最优出行路线问题等。
本文将通过一个例题,来介绍动态规划的基本思想,以及如何利用动态规划来解决问题。
例题一:已知一条路线,由A点到B点,有N个途经的节点,每个节点之间的距离已知。
求从A到B的最短路线。
按照动态规划的思想,首先将该问题分解为若干个子问题,并根据子问题的解来解决原问题,这种分解和解决问题的方式称为动态规划。
对于上面的问题,可以将其分解为N个子问题,分别是从A到第1个节点、从第1个节点到第2个节点、从第2个节点到第3个节点,以此类推,最后一个子问题是从第N-1个节点到B点的最短路程。
将上面的N个子问题中,从第i个节点到B点的最短路程记为d[i],由于从第i个节点到B点可能经过i+1、i+2、……、N-1节点,因此要找到d[i],只需要找到经过i+1、i+2、……、N-1节点的最短路程即可,即求d[i]=Min{d[i+1]+length[i][i+1],d[i+2]+length[i][i+2],…,d[N-1]+length[i][N-1]},其中length[i][j]是第i个节点到第j个节点的距离。
以上就是动态规划的解题步骤,它能将原问题分解成若干个子问题,并找到最优解。
对于本例来说,通过上述步骤,就可以得到从A 到B的最短路程。
这种分解和求解问题的方法是动态规划,可以用来解决许多类似的问题,如:1)最优路线问题;2)旅行推销员问题;3)硬币找零问题。
动态规划的一大特点是,他能很好地将问题分解为多个子问题,并能从子问题的解中求解出最优解。
总之,动态规划是一种很有用的优化技术,它可以有效解决各种运筹学问题。
它不仅可以帮助我们解决许多具体问题,而且还能使我们更好地理解问题及其解法。
动态规划-例题众多-详细讲解

步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
12
程序的实现
BuyTicks(T, R)
1 n ← length[T]
2 f[0] ← 0
3 f[1] ← T[1]
4 for i ← 2 to n do
5
f[i] ← f[i-2]+R[i-1]
6
if f[i] > f[i-1]+T[i] then
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
2
递归 vs 动态规划
递归版本:
F(n)
1 if n=0 or n=1 then
2
return 1
3 else
4
return F(n-1) + F(n-2)
太慢!
动态规划:
F(n)
1 A[0] = A[1] ← 1
这里是某支股票的价格清单: 日期 1 2 3 4 5 6 7 8 9 10 11 12 价格 68 69 54 64 68 64 70 67 78 62 98 87 最优秀的投资者可以购买最多4次股票,可行方案中的一种是: 日期 2 5 6 10 价格 69 68 64 62 输入 第1行: N (1 <= N <= 5000),股票发行天数 第2行: N个数,是每天的股票价格。 输出 输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231) 当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方 案被认为是相同的。
你的任务是,已知所有N位同学的身高,计算最少需要 几位同学出列,可以使得剩下的同学排成合唱队形。
动态规划例题

例1:机器负荷分配问题某公司新购进1000台机床,每台机床都可在高、低两种不同的负荷下进行生产,设在高负荷下生产的产量函数为g(x )=10x (单位:百件),其中x 为投入生产的机床数量,年完好率为a =0.7;在低负荷下生产的产量函数为h(y)=6y (单位:百件),其中y 为投人生产的机床数量,年完好率为b=0.9。
计划连续使用5年,试问每年如何安排机床在高、低负荷下的生产计划,使在五年内生产的产品总产量达到最高。
例2:某企业通过市场调查,估计今后四个时期市场对某种产品的需要量如下表:时期(k) 12 3 4 需要量(d k )2(单位)324假定不论在任何时期,生产每批产品的固定成本费为3(千元),若不生产,则为零;生产单位产品成本费为1(千元);每个时期生产能力所允许的最大生产批量为不超过6个单位,则任何时期生产x 个单位产品的成本费用为:若 0<x ≤6 , 则生产总成本=3十1·x 若 x =0 , 则生产总成本=0又设每个时期末未销售出去的产品,在一个时期内单位产品的库存费用为0.5(千元),同时还假定第1时期开始之初和在第4个时期之末,均无产品库存。
现在我们的问题是;在满足上述给定的条件下,该厂如何安排各个时期的生产与库存,使所花的总成本费用最低?例3:设某企业在第一年初购买一台新设备,该设备在五年内的年运行收益、年运行费用及更换新设备的净费用如下表:(单位:万元)年份(k) 役龄(t) 运行收益()k g t 运行费用()k r t 更新费用()k c t 第一年 0 22 6 18 第二年0 123 216 819 22第三年0122321185710192328第四年01232422191657101520243038第五年01234252320171446914202024303848试为该企业制定一个五年中的设备更新策略,使得企业在五年内总收益达到最大?例4:设有一辆栽重为10吨的卡车,用以装载三种货物,每种货物的单位重量及单件价值如表所示,问各种货物应装多少件,才能既不超过总重量又使总价值最大?货物 1 2 3单位重量 3 4 5单件价值 4 5 6。
动态规划练习题及解答1

动态规划练习题[题1] 多米诺骨牌(DOMINO)问题描述:有一种多米诺骨牌是平面的,其正面被分成上下两部分,每一部分的表面或者为空,或者被标上1至6个点。
现有一行排列在桌面上:顶行骨牌的点数之和为6+1+1+1=9;底行骨牌点数之和为1+5+3+2=11。
顶行和底行的差值是2。
这个差值是两行点数之和的差的绝对值。
每个多米诺骨牌都可以上下倒置转换,即上部变为下部,下部变为上部。
现在的任务是,以最少的翻转次数,使得顶行和底行之间的差值最小。
对于上面这个例子,我们只需翻转最后一个骨牌,就可以使得顶行和底行的差值为0,所以例子的答案为1。
输入格式:文件的第一行是一个整数n(1〈=n〈=1000〉,表示有n个多米诺骨牌在桌面上排成一行。
接下来共有n行,每行包含两个整数a、b(0〈=a、b〈=6,中间用空格分开〉。
第I+1行的a、b分别表示第I个多米诺骨牌的上部与下部的点数(0表示空)。
输出格式:只有一个整数在文件的第一行。
这个整数表示翻动骨牌的最少次数,从而使得顶行和底行的差值最小。
[题2] Perform巡回演出题目描述:Flute市的Phlharmoniker乐团2000年准备到Harp市做一次大型演出,本着普及古典音乐的目的,乐团指挥L.Y.M准备在到达Harp市之前先在周围一些小城市作一段时间的巡回演出,此后的几天里,音乐家们将每天搭乘一个航班从一个城市飞到另一个城市,最后才到达目的地Harp市(乐团可多次在同一城市演出).由于航线的费用和班次每天都在变,城市和城市之间都有一份循环的航班表,每一时间,每一方向,航班表循环的周期都可能不同.现要求寻找一张花费费用最小的演出表.输入: 输入文件包括若干个场景.每个场景的描述由一对整数n(2<=n<=10)和k(1<=k<=1000)开始,音乐家们要在这n个城市作巡回演出,城市用1..n标号,其中1是起点Flute市,n是终点Harp市,接下来有n*(n-1)份航班表,一份航班表一行,描述每对城市之间的航线和价格,第一组n-1份航班表对应从城市1到其他城市(2,3,...n)的航班,接下的n-1行是从城市2到其他城市(1,3,4...n)的航班,如此下去.每份航班又一个整数d(1<=d<=30)开始,表示航班表循环的周期,接下来的d个非负整数表示1,2...d天对应的两个城市的航班的价格,价格为零表示那天两个城市之间没有航班.例如"3 75 0 80"表示第一天机票价格是75KOI,第二天没有航班,第三天的机票是80KOI,然后循环:第四天又是75KOI,第五天没有航班,如此循环.输入文件由n=k=0的场景结束.输出:对每个场景如果乐团可能从城市1出发,每天都要飞往另一个城市,最后(经过k天)抵达城市n,则输出这k个航班价格之和的最小值.如果不可能存在这样的巡回演出路线,输出0.样例输入: 样例输出:3 6 4602 130 150 03 75 0 807 120 110 0 100 110 120 04 60 70 60 503 0 135 1402 70 802 32 0 701 800 0[题3] 复制书稿(BOOKS)问题描述:假设有M本书(编号为1,2,…M),想将每本复制一份,M本书的页数可能不同(分别是P1,P2,…PM)。
floyd算法例题 a1 a2 a3 a4

Floyd算法是一种用来寻找图中所有节点对之间最短路径的算法,它的核心思想是动态规划。
Floyd算法的基本原理是:假设图中有n个节点,将所有节点对之间的最短路径长度初始化为它们之间的直接连线长度,然后逐步更新这些距离,直到得到所有节点对之间的最短路径。
在本文中,我们将通过四个例题a1、a2、a3、a4来讲解Floyd算法的具体应用,以帮助读者更好地理解和掌握这一算法。
1. 例题a1【题目】有一个带权有向图,节点数为n,边数为m,求图中任意两点之间的最短路径长度。
【输入】第一行为两个整数n和m,分别表示节点数和边数。
接下来m行,每行包含三个整数a、b、c,表示图中存在一条从节点a到节点b的有向边,边的权值为c。
【输出】输出一个n×n的矩阵,其中第i行第j列的元素表示节点i到节点j的最短路径长度。
如果两点之间不存在路径,则输出一个特定的值(例如9999)。
【样例】输入:5 71 2 21 3 32 3 22 4 53 4 13 5 64 5 3输出:0 2 3 7 99999 0 2 5 89999 9999 0 3 69999 9999 9999 0 39999 9999 9999 9999 0【分析】根据给定的图和节点数,首先初始化一个n×n的矩阵,然后将直接连线的路径长度填入矩阵中。
接下来,利用Floyd算法逐步更新矩阵中的最短路径长度,直到得到所有节点对之间的最短路径长度。
2. 例题a2【题目】有一个带权有向图,节点数为n,边数为m,求图中是否存在负权环。
【输入】第一行为两个整数n和m,分别表示节点数和边数。
接下来m行,每行包含三个整数a、b、c,表示图中存在一条从节点a到节点b的有向边,边的权值为c。
【输出】若存在负权环,则输出"存在负权环",否则输出"不存在负权环"。
【样例】输入:3 31 2 -12 3 -23 1 -3输出:存在负权环【分析】我们可以利用Floyd算法求出图中任意两点之间的最短路径长度,然后再验证是否存在负权环。
floyd算法的例题讲解

floyd算法的例题讲解Floyd算法,也称为Floyd-Warshall算法,是一种用于解决所有点对最短路径问题的动态规划算法。
它能够找出图中任意两个节点之间的最短路径,并计算出最短路径的长度。
下面以一个具体的例题来讲解Floyd算法的应用。
假设我们有一个带权有向图,表示城市之间的道路网络,图中的节点表示城市,边上的权重表示两个城市之间的距离。
我们的目标是找出任意两个城市之间的最短路径。
给定以下带权有向图的邻接矩阵表示:A B C DA 0 3 ∞7B ∞0 2 ∞C 5 ∞0 1D ∞∞12 0其中,∞表示两个城市之间没有直接的道路连接。
我们可以使用Floyd算法来解决这个问题。
首先,我们初始化一个与邻接矩阵相同的矩阵,称为距离矩阵。
初始时,距离矩阵的值等于邻接矩阵的值。
接下来,我们使用三重循环来逐步更新距离矩阵的值。
循环变量k表示中转节点,i和j 表示起点和终点。
具体的算法步骤如下:对于每对节点i和j,如果存在中转节点k,尝试更新距离矩阵的值:dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])。
重复执行步骤1,直到遍历完所有的节点对(i, j)和中转节点k。
按照上述算法步骤,我们来计算最短路径的距离矩阵。
初始时,距离矩阵与邻接矩阵相同。
对于k = A:更新dist[A][B] = min(dist[A][B], dist[A][A] + dist[A][B]) = min(∞, 0 + 3) = 3。
更新dist[A][C] = min(dist[A][C], dist[A][A] + dist[A][C]) = min(∞, 0 + ∞) = ∞。
更新dist[A][D] = min(dist[A][D], dist[A][A] + dist[A][D]) = min(∞, 0 + 7) = 7。
对于k = B:更新dist[B][A] = min(dist[B][A], dist[B][B] + dist[B][A]) = min(∞, 0 + ∞) = ∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选人
将所有人按照智商排序,以情商为关键字, 求最长上升子序列的长度即可。
内存碎片
N个内存申请请求,申请长度为L[i]的内存 块c[i]次。 当程序申请长度为L的内存时,也可以给它 分配一块长度为L’(L’>L)的更大的内 存块。 内存长度种类不超过K。 求最少需要的内存。
内存碎片
我们注意到,f[i,j]仅与f[i-1,j]和 f[i-1,j-w[i]]有关,因此没必要保存二维数 组 令f[i]表示背包承重不大于i的情况下最大价 值
0/1背包问题
fillchar(f,sizeof(f),0); for i:=1 to n do for j:=limit downto w[i] do f[ j] = max(f[ j], f[ j-w[i]]+v[i]); writeln(f[limit]);
Sample Input 5 8 9 2 3 1 7 4 6
最长上升子序列
Βιβλιοθήκη f[]是单调递增的,因为如果有i<j且 f[i]>=f[ j],那么f[i]必定可以被f[ j]的方案所 更新。 每处理到一个ai,我们要找到一个k满足 f[k–1]<ai且f[k]>=ai,并用ai更新f[k],最 终max(k|f[k]!=inf)就是答案。 可以通过二分查找将时间复杂度降至 O(NlogN)
时间复杂度O(N^2*K)
0/1背包问题
共有N件物品,每件物品有一定的重量w[i] 和一定的价值v[i],现在我们有一个最大载 重量limit的包,问放入哪些物品能使得总 价值最高?
w[i]和v[i]均为整数,N<=100, limit<=10000
0/1背包问题
SampleInput SampleOutput 3 100 1400 30 300 80 1200 10 200 共有3件物品 重量分别为30/80/10 价值分别为300/1200/200 背包最大载重量为100
Sample Input 32 10 1 11 1 20 1
3个内存申请 最多2种长度
Sample Output 42
方案: 两个11,一个20
内存碎片
算法:动态规划 先将所有L[i]排序。 112344678 222446688 113366688 233377778
这一行是内存申请的长度
完全背包问题
共有N种物品,每种物品有一定的重量w[i] 和一定的价值v[i],每种物品有无限个。现 在我们有一个最大载重量limit的包,问放 入哪些物品能使得总价值最高?
w[i]和v[i]均为整数,N<=100, limit<=10000
完全背包问题
fillchar(f,sizeof(f),0); for i:=1 to n do for j:= w[i] to limit do f[ j] = max(f[ j], f[ j-w[i]]+v[i]); writeln(f[limit]);
0/1背包问题
令f[i,j]表示考虑完前i项物品,并且当前背 包承重不大于j的情况下能获得的最大价值 f[i,j]=max( f[i-1,j], //不选第i项物品 f[i-1,j–w[i]]+v[i]) //选择第i项物品 边界条件f[0,i]=0 目标f[n,limit]
0/1背包问题
这三行是内存分配的可能长度
内存碎片
一种内存长度覆盖的区间必定是连续的, 并且该内存长度等于覆盖区间最后一个内 存申请操作的长度。 令f[i,j]表示考虑完前i个内存申请操作,并 且已经使用完j种内存长度的最少需要的内 存。
内存碎片
f[i,j]=min{ f[k,j-1]+ (c[k+1]+c[k+2]+...+c[i])*L[i],0<=k<i} 预处理sc[i]=c[1]+c[2]+...+c[i] f[i,j]=min{ f[k,j-1]+(sc[i]-sc[k])*L[i],0<=k<i)}
给出一个数列{a1,a2,...,an},要求你选出尽 量多的元素,使这些元素按其相对位置单 调递增。
Sample Input 9 589231746
Sample Output 4
最长上升子序列
算法:动态规划 令f[i]表示以ai为结尾的最长上升子序列的 长度 转移方程: f[i]=max(f[ j],1<=j<i,a[ j]<a[i])+1
多重背包问题
共有N种物品,每种物品有一定的重量w[i] 和一定的价值v[i],每种物品有c[i]个。现在 我们有一个最大载重量limit的包,问放入 哪些物品能使得总价值最高?
w[i]和v[i]均为整数,N<=100, limit<=10000
多重背包问题
Sample Input Sample Output 3 100 1700 30 300 2 方案: 80 1200 1 1件物品1 10 200 8 7件物品3 共有3件物品 重量分别为30/80/10 价值分别为300/1200/200 数量分别为2/1/8 背包最大载重量为100
时间复杂度:O(N^2)
最长上升子序列
换一种状态表示方法 令f[i]表示长度为i的上升子序列的结尾数字 最小是多少
初始f[0]=-inf,f[i]=inf(inf为无穷大,可取 值为大于任意ai绝对值的一个数字)
最长上升子序列
F[0] 初始 插入a1后
插入a2后 插入a3后 插入a4后 插入a5后 插入a6后 插入a7后 插入a8后 插入a9后
动态规划例题讲解
山东师大附中 魏铭
Preview
本节课主要通过几道例题,总揽NOIp中较 常见的动态规划模型,不会过多涉及优化 内容。
Preview
最长上升子序列 内存碎片 背包问题 最长公共子序列 石子合并
括号序列 决斗 三取方格数 选课 贪吃的九头龙
最长上升子序列
F[1] inf 5
5 5 2 2 1 1 1 1
F[2] inf inf
8 8 8 3 3 3 3 3
F[3] inf inf
inf 9 9 9 9 7 4 4
F[4] inf inf
inf inf inf inf inf inf inf 6
-inf -inf
-inf -inf -inf -inf -inf -inf -inf -inf