运筹学动态规划习题

合集下载

动态规划讲解大全含例题及答案

动态规划讲解大全含例题及答案

动态规划讲解大全含例题及答案动态规划讲解大全动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。

20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。

1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。

动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。

例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。

虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。

不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。

动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。

因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。

我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。

基本模型多阶段决策过程的最优化问题。

在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。

运筹学习题及答案

运筹学习题及答案

运筹学一、单选题1. μ是关于可行流f的一条增广链,则在μ上有(D)A.对一切B.对一切C.对一切D.对一切2.不满足匈牙利法的条件是(D)A.问题求最小值B.效率矩阵的元素非负C.人数与工作数相等D.问题求最大值3.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.当基变量x i的系数c i波动时,最优表中引起变化的有(B)A.最优基BB.所有非基变量的检验数C.第i 列的系数D.基变量X B6.当非基变量x j的系数c j波动时,最优表中引起变化的有(C)A.单纯形乘子B.目标值C.非基变量的检验数D. 常数项7.当线性规划的可行解集合非空时一定(D)A.包含点X=(0,0,···,0)B.有界C.无界D.是凸集8.对偶单纯形法的最小比值规划则是为了保证(B)A.使原问题保持可行B.使对偶问题保持可行C.逐步消除原问题不可行性D.逐步消除对偶问题不可行性9.对偶单纯形法迭代中的主元素一定是负元素()AA.正确B.错误C.不一定D.无法判断10.对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正()BA.换出变量B.换入变量C.非基变量D.基变量11.对LP问题的标准型:max,,0Z CX AX b X==≥,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值Z必为()BA.增大B.不减少C.减少D.不增大12. 单纯形法迭代中的主元素一定是正元素( )AA.正确B.错误C.不一定D.无法判断13.单纯形法所求线性规划的最优解()是可行域的顶点。

AA.一定B.一定不C.不一定D.无法判断14.单纯形法所求线性规划的最优解()是基本最优解。

运筹学第五版习题答案

运筹学第五版习题答案

运筹学第五版习题答案运筹学是一门研究如何优化决策的学科,它涉及到数学、统计学和计算机科学等多个领域。

运筹学的应用范围非常广泛,包括生产调度、物流管理、供应链优化等等。

而《运筹学第五版》是一本经典的教材,它提供了大量的习题供学生练习和巩固所学知识。

本文将为大家提供《运筹学第五版》习题的答案,希望对学习者有所帮助。

第一章:引论1. 运筹学的定义是什么?运筹学是一门研究如何优化决策的学科,它利用数学和统计学的方法来解决实际问题。

2. 运筹学的应用领域有哪些?运筹学的应用领域包括生产调度、物流管理、供应链优化、金融风险管理等。

3. 运筹学方法的基本步骤是什么?运筹学方法的基本步骤包括问题建模、模型求解、解的验证和实施。

第二章:线性规划模型1. 什么是线性规划模型?线性规划模型是一种数学模型,它描述了一种目标函数和一组线性约束条件下的最优化问题。

2. 如何确定线性规划模型的最优解?线性规划模型的最优解可以通过线性规划算法来求解,如单纯形法、内点法等。

3. 什么是对偶问题?对偶问题是与原始线性规划模型相对应的另一个线性规划模型,它可以用来计算原始问题的下界。

第三章:网络优化模型1. 什么是网络优化模型?网络优化模型是一种描述网络结构的数学模型,它可以用来解决最短路径、最小生成树、最大流等问题。

2. 最短路径问题如何求解?最短路径问题可以通过迪杰斯特拉算法或弗洛伊德算法来求解。

3. 最大流问题如何求解?最大流问题可以通过Ford-Fulkerson算法或Edmonds-Karp算法来求解。

第四章:整数规划模型1. 什么是整数规划模型?整数规划模型是一种线性规划模型的扩展,它要求决策变量取整数值。

2. 整数规划问题如何求解?整数规划问题可以通过分支定界法或割平面法来求解。

3. 什么是混合整数规划模型?混合整数规划模型是一种整数规划模型的扩展,它要求部分决策变量取整数值,部分决策变量取连续值。

第五章:动态规划模型1. 什么是动态规划模型?动态规划模型是一种描述决策过程的数学模型,它将问题划分为一系列的阶段,并通过递推关系求解最优解。

数学:运筹学试题及答案

数学:运筹学试题及答案

数学:运筹学试题及答案1、判断题求最小值问题的目标函数值是各分支函数值的下界。

正确答案:对2、填空题动态规划大体上可以分为()、()、()、()四大类。

正确答案:离散确定型;离散随机型;连续确定型;连续随机(江南博哥)型3、多选系统模型按照抽象模型形式可以分为()A.数学模型B.图象模型C.模糊性模型D.逻辑模型E.仿真模型正确答案:A, B, D, E4、单选线性规划一般模型中,自由变量可以代换为两个非负变量的()A.和B.差C.积D.商正确答案:B5、填空题运筹学的目的在于针所研究的系统求得一个合理应用人才,物力和财力的最佳方案。

发挥和提高系统的(),最终达到系统的()。

正确答案:效能及效益;最优目标6、填空题采用人工变量法时,若基变量中出现了()的人工变量,表示在原问题有解。

正确答案:非零7、填空题满足()的基本解称为基本可行解。

正确答案:非负条件8、填空题在箭线式网络图中从始点出发,由各个关键活动连续相接,直到终点的费时最长的线路称为()。

正确答案:关键线路9、单选在求解运输问题的过程中可运用到下列哪些方法()。

A.西北角法B.位势法C.闭回路法D.以上都是正确答案:D10、问答题请简要回答一般系统模型的三个特征。

正确答案:①它是现实世界一部分的抽象和模仿;②它由那些与分析的问题有关的要素所构成;③它表明了系统有关要素间的逻辑关系或定量关系。

11、名词解释初始基本可行解正确答案:多个基本可行解中一个,一般情况下在求最大时取最小的基本可行解,求最小时取最大的基本可行解。

12、名词解释不确定条件下的决策正确答案:指在需要决策的问题中,只估测到可能出现的状态,但状态发生的概率,由于缺乏资源和经验而全部未知。

它属于不确定情况下的决策.13、名词解释时间优化正确答案:时间优化是在人力材料设备资金等资源基本上有保证的条件下寻求最短的工程周期14、填空题企业在采购时,供应方根据批发量的大小定出不同的优惠价格,这种价格上的优惠称为()正确答案:数量折扣15、填空题常用的两种时差是工作总时差和工作()正确答案:自由时差16、多选根据对偶理论,在求解线性规划的原问题时,可以得到以下结论()A.对偶问题的解B.市场上的稀缺情况C.影子价格D.资源的购销决策E.资源的市场价格正确答案:A, C, D17、问答题运用单纯形法求解线性规划问题的步骤是什么?正确答案:(1)确定初始基可行解(2)检验初始基可行解是否最优(3)无解检验(4)进行基变换(5)进行旋转运算,之后回到步骤2,循环直到完成整个问题的求解18、单选设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。

动态规划习题详解

动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。

该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。

他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。

他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。

动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。

动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。

由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。

第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。

例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。

(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。

如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。

(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。

描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。

如例l中,第一阶段的状态为A(即出发位置)。

第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。

运筹学第3版熊伟编著习题答案

运筹学第3版熊伟编著习题答案

运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划 P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章 多属性决策品P343 第13章博弈论P371 全书420页第1章 线性规划1.1工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23产品 资源 A B C 资源限量 材料(kg) 1.5 1.2 4 2500 设备(台时) 3 1.6 1.2 1400 利润(元/件)101412根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:表1-24 窗架所需材料规格及数量型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1:2.5 2 A 2:1.53 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解】 第一步:求下料方案,见下表。

方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2.5 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A21.5120 2 3 900 余料(m) 0 0.5 0.5 1 1 1 010.5第二步:建立线性规划数学模型设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。

运筹学课后习题答案第四版

运筹学课后习题答案第四版

运筹学课后习题答案第四版
《运筹学课后习题答案第四版》
运筹学是一门研究如何最优化决策的学科,它涉及到数学、统计学和计算机科
学等多个领域。

《运筹学课后习题答案第四版》是一本备受学生和专业人士欢迎的参考书,它为读者提供了丰富的习题和答案,帮助他们更好地理解和掌握运
筹学的知识。

这本书包含了大量的习题和案例分析,涵盖了线性规划、整数规划、网络流、
动态规划等多个方面的内容。

通过练习这些习题,读者可以加深对运筹学理论
的理解,提高解决实际问题的能力。

除了习题和答案,这本书还提供了大量的案例分析,帮助读者将理论知识与实
际问题相结合。

通过分析这些案例,读者可以了解到运筹学在各个领域的应用,从而更好地理解运筹学的重要性和实用性。

《运筹学课后习题答案第四版》的出版对于推动运筹学的教学和研究具有重要
意义。

它为学生提供了一个系统的学习工具,帮助他们更好地掌握运筹学的知
识和方法。

同时,它也为专业人士提供了一个实用的参考书,帮助他们解决实
际工作中的问题。

总的来说,《运筹学课后习题答案第四版》是一本非常有价值的参考书,它不仅可以帮助读者提高运筹学的理论水平,还可以帮助他们更好地应用运筹学的方
法解决实际问题。

希望更多的人能够通过这本书,深入了解和研究运筹学,为
推动运筹学的发展做出贡献。

(完整版)《运筹学》习题集

(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档