运筹学5(动态规划)
动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
动态规划 运筹学 例题

动态规划运筹学例题动态规划是运筹学中常用的一种优化技术,它利用规划、三角函数和其他数学技术来解决日常生活中的各种问题,比如最优路线问题、最优资源分配问题、最优出行路线问题等。
本文将通过一个例题,来介绍动态规划的基本思想,以及如何利用动态规划来解决问题。
例题一:已知一条路线,由A点到B点,有N个途经的节点,每个节点之间的距离已知。
求从A到B的最短路线。
按照动态规划的思想,首先将该问题分解为若干个子问题,并根据子问题的解来解决原问题,这种分解和解决问题的方式称为动态规划。
对于上面的问题,可以将其分解为N个子问题,分别是从A到第1个节点、从第1个节点到第2个节点、从第2个节点到第3个节点,以此类推,最后一个子问题是从第N-1个节点到B点的最短路程。
将上面的N个子问题中,从第i个节点到B点的最短路程记为d[i],由于从第i个节点到B点可能经过i+1、i+2、……、N-1节点,因此要找到d[i],只需要找到经过i+1、i+2、……、N-1节点的最短路程即可,即求d[i]=Min{d[i+1]+length[i][i+1],d[i+2]+length[i][i+2],…,d[N-1]+length[i][N-1]},其中length[i][j]是第i个节点到第j个节点的距离。
以上就是动态规划的解题步骤,它能将原问题分解成若干个子问题,并找到最优解。
对于本例来说,通过上述步骤,就可以得到从A 到B的最短路程。
这种分解和求解问题的方法是动态规划,可以用来解决许多类似的问题,如:1)最优路线问题;2)旅行推销员问题;3)硬币找零问题。
动态规划的一大特点是,他能很好地将问题分解为多个子问题,并能从子问题的解中求解出最优解。
总之,动态规划是一种很有用的优化技术,它可以有效解决各种运筹学问题。
它不仅可以帮助我们解决许多具体问题,而且还能使我们更好地理解问题及其解法。
运筹学教案动态规划

运筹学教案动态规划一、引言1.1 课程背景本课程旨在帮助学生掌握运筹学中的动态规划方法,培养学生解决实际问题的能力。
1.2 课程目标通过本课程的学习,学生将能够:(1)理解动态规划的基本概念和原理;(2)掌握动态规划解决问题的方法和步骤;(3)能够应用动态规划解决实际问题。
二、动态规划基本概念2.1 定义动态规划(Dynamic Programming,DP)是一种求解最优化问题的方法,它将复杂问题分解为简单子问题,并通过求解子问题的最优解来得到原问题的最优解。
2.2 特点(1)最优子结构:问题的最优解包含其子问题的最优解;(2)重叠子问题:问题中含有重复子问题;(3)无后效性:一旦某个给定子问题的解确定了,就不会再改变;(4)子问题划分:问题可以分解为若干个子问题,且子问题之间是相互独立的。
三、动态规划解决问题步骤3.1 定义状态状态是指某一阶段问题的一个描述,可以用一组变量来表示。
3.2 建立状态转移方程状态转移方程是描述从一个状态到另一个状态的转换关系。
3.3 确定边界条件边界条件是指初始状态和最终状态的取值。
3.4 求解最优解根据状态转移方程和边界条件,求解最优解。
四、动态规划应用实例4.1 0-1背包问题问题描述:给定n个物品,每个物品有一个重量和一个价值,背包的最大容量为W,如何选择装入背包的物品,使得背包内物品的总价值最大。
4.2 最长公共子序列问题描述:给定两个序列,求它们的最长公共子序列。
4.3 最短路径问题问题描述:给定一个加权无向图,求从源点到其他各顶点的最短路径。
5.1 动态规划的基本概念和原理5.2 动态规划解决问题的步骤5.3 动态规划在实际问题中的应用教学方法:本课程采用讲授、案例分析、上机实践相结合的教学方法,帮助学生深入理解和掌握动态规划方法。
教学评估:课程结束后,通过课堂讨论、上机考试等方式对学生的学习情况进行评估。
六、动态规划算法设计6.1 动态规划算法框架介绍动态规划算法的基本框架,包括状态定义、状态转移方程、边界条件、计算顺序等。
《运筹学》第五章汇总

第五章刼态规刻(Dynamic programming) 研究多阶段决策问题R.E.Bellman 1951年提出动态规划。
1957年出版Dynamic Programming应用:最优调度、资源分配最优路径、最优控制设备更新、库存问题§ 2•多卧段决策问龜例.某产品从A城运至F城,其间要经过若干个城镇和若干条道路,路线结构如图所示, 图中给出了每段道路的运费(元),试选择一条合理的运输路线,使总运费最小?分析:力案①:A-Bl-Cl-El-F运费:26元方案②:A->B3->C3-E3-F 运费:22元方案③:A->B2->Cl->E2->F 运费:18元锻优方案:方案③§ 3•基本概念1 •阶段和阶段变量壬尸"〜阶段:过程的划分,包括时间、空间的划分,阶段数:n阶段变量:描述阶段的变量用£表示,&1,2,.•…,n2 •状态和状态变量状态:描述过程的必要信息。
状态应具仃无后效性:若给定了某阶段状态,则在这阶段以后过程的发展不受这阶段以前各阶段状态的影响.状态变量:描述状态的变量,用s表示。
»:表示第阶段的状态变量S A :表示第阶段状态变量篠合Sk e Sk如£[ = 4 = S],52 = B\ e S2 = {B[,82,83}53 = {C],C2,C3} , S4 = {Ex£"2,E3}S4+l={F} = F决策:决定(选择),从一个阶段的状态到下一个阶段状态的选择。
'决策变量:描述决策的变量,月U表示. u k=u k(s k)表示第邓介段处于》的决策变量D k = Dg表示第郊介段处于时决策变量的集合心wDg如》2(31)= {w2(^l)=G,W2(^I)=%2(B])= C] W Z)2(B1)4 •策略策略:决策按顺序构成的序列,用卩表示。
运筹学教材课件(第四章动态规划)

最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看
第五章 物流运筹学——动态规划

的单件重量和装载收费如表5-1所示,又规 由于它表示了由 段到 段的状态转移
因此,在物流管理中,如何进行决策,制定一个最优的设备维护更新策略,是非常重要的。
第三节 动态规划模型的建立与求解
定货物2和货物3都至多装两件。问如何装 但假设初始状态虽已给定,终点状态有多个,需比较到达不同终点状态的各个路径及最优指标函数值,以选取总效益最正确的终点状
3
• 【例5-1】〔生产与存储问题〕工厂在3个季度中
• 安排某种产品的生产方案。假设该季度生产此
种产x
x2
• 品 〔吨〕,那么本钱为 元。假设当季
生产的
• 每吨产品未销售a k 掉,那么进库,季末需付存储费,
• 产品每季的存储费为1元。现估计3个季度对该 产
• 品的需求量 分别为100吨,110吨和120吨,
3
j 仪器
1
2
3
10
9
14
9
12
10
6
5
8
7
• 【例5-4】〔机器负荷问题〕设某机器可以在高、
• 低两种不同的负荷下进行生产。假设年初x 有 台
• 机器在高负荷下进行生产,那么产品年a产 8x
量
,
0.3
y
• 机器的年折损率
低
0.1
;假设年b 初5有y 台机器在
• 负荷下进行生产,那么产品年产量
,机器
的
• 年折损率
。假设初始时有性能正常的机器
1000
• 台,要求制定机器负荷的四年分配方案,确定每
年
8
A
管理运筹学 第5章

B1
8 4
6
3
B2
2 4
42 B3 5
C1
1 4
6
D1 3
C2 3
E
4 3 D2 C3 3
v2,4= v2,4(s2 ,x2 ,x3 ,x4) = v2,4(B3 ,C2 ,D2 ,E)=9
v2,4= v2,4(s2 ,x2 ,x3 ,x4) = v2,4(B1 ,C2 ,D2 ,E)=11
v2,4= v2,4(s2 ,x2 ,x3 ,x4) = v2,4(B1 ,C3 ,D2 ,E)=13
Operational Research
(3) k=1,s1={0,1,…,8},[1~3]
f1(s1) = max{ g1(s1,x1)+ f2(s1-x1)}
0≤x1≤s1
分别求出s1为不同值时的f1(s1)及x*1,计算结果如下表:
S1 0 1 2 3 4 5 6 7 8 x*1 0 0,1 0 0,3 4 5 4 4 4 f1(s1) 0 5 26 40 80 90 106 120 140
短路,从最后一个阶段开始,由后向前逐步递推。
(1)当k=4时,S4 ={ D1 D2 } 按f4 的定义有
f4(D1)=3 f4(D2)=4 (2)当k=3时,S3 ={ C1 C2 C3 }
B1
8 4
6
f3(C1) = d3(C1 , D1)+ f4(D1) Min
2 A4
5
3
B2
2 4
d3(C1 , D2)+ f4(D2)
Operational Research
5.1.2.6 指标函数
(1)第k阶段指标函数: rk(sk,xk) 它是状态变量和决策变量
运筹学动态规划

特别注意:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一种算法 (如线性规划是一种算法)。
因而,动态规划没有标准的数学表达式和明 确定义的一组规则,而必须对具体问题进行具体 分析处理.
动态规划
8.1 多阶段决策过程及实例 8.2 动态规划的基本概念和
基本方程 8.3 动态规划的最优性定理 8.4 动态规划与静态规划关系
综述
动态规划是运筹学的一个分支,是解决多 阶段决策过程最优化问题的一种数学方法。
该方法是由美国数学家贝尔曼(R.Bellman)等 人在本世纪50年代初提出的。
他们针对多阶段决策问题的特点,把多阶段 决策问题变换为一系列互相联系单阶段问题,然 后逐个加以解决。
1
2
3
始点
5
B1
6 3
A
4 B2 4 6
2
5
B3 6
C1
1 2
2
C2 2
3
C3
3
4 终点
D1 2
D2 3
E
4
D3
2、状态
5
B1
6 3
A 4 B246
25
B3 6
C1
1 2
2
C2 2
C3 3 3
D1 2
D2 3 E 4
D3
各个阶段开始时所处的自然状况和客观条件称为
状态,描述了研究问题过程的状况(称不可控因素).
一些与时间没有关系的静态规划(如线性 规划,非线性规划)问题,只要人为地引进 “时间”因素,也可把它视为多阶段决策问题, 用动态规划方法去处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
3
4
3)、 决策(Decision )
当各阶段的状态确定以后,就可以做出不同的决定或选择,从而确 定下一阶段的状态,这种决定就是决策,表示决策的变量称为决策变量。 常用 X k ( s k )表示第 K 阶段当状态为 s k 时的决策变量,
在例7.1中第二阶段如决定从B1出发,即S2=B1,可选择走C1或C2,
1
2
3
4
2)、 状态 ( state) 各阶段开始时的出发点称作状态。 描述各阶段状态的变量,称作状态变量,用sk 表示。
在例7.1 中,第一阶段的状态为 A ,第二阶段的状态为城市 B1,B2 所以状态变量 S1 的集合 S1={A},S2 的集合是 S2={B1,B2,B3}, 和 B3。 依次有 S3={C1,C2,C3}, S4={D1,D2} 。
第七章 动态规划
7.1 动态规划问题和基本概念 7.2 动态规划的基本原理 7.3 动态规划的应用
引言
动态规划与多阶段决策:
多阶段决策是指这样一类特殊的活动过程, 它们可以按时间顺序分 解成若干相互联系的阶段, 每个阶段都要作出决策, 全部过程的决策是 一个决策序列, 所以多阶段决策问题又称为序贯决策问题。
状态变量S4可取两种状态D1, D2,它们到E点的距离 分别为4和3,这也就是由D1和D2到终点E 的最短距离, 即 f4(D1)=4, f4(D2)=3.
1
2
3
4
S1
S2
S3
S4
第二步 ,K=3 状态变量 S3 可取 3 个值即 C1,C2 和 C3。
为方便应用,规定用d(sk,sk+1)表示由状态sk出发,到达下一阶段sk+1时的 两点距离。
多阶段决策的目标是要达到整个活动过程的总体效果最优 , 所以多 阶段决策又叫做过程最优化。 所谓动态规划, 就是解决多阶段决策和过程最优化问题的一
种规划方法。
7.1
动态规划问题和基本概念
例7.1 最短路问题 设A地的某一企业要把一批货物由A地运到E城销售, 其间 要经过八个城市,各城市间的交通路线及距离如下图所示, 问应 选择什么路线才能使总的距离最短?
d (C1 , D1 ) + f 4 ( D1 ) 3+ 4 =min =7 f 3 ( C1 )=min d(C1 , D2 ) + f 4 ( D2 ) 5+3
( C1 )= D1
ቤተ መጻሕፍቲ ባይዱ
这说明 , 由 c1 到 E 的最短距离为 7, 其路径为以 C1 → D1 →E,相应的决策 为x
* 3
1 S1 S2
2 S3
3
S4
4
d (C 2 , D1 ) + f 4 ( D1 ) 6+4 =min =5 f 3 ( C2 )=min d (C 2 , D2 ) + f 4 ( D2 ) 2+3 即从 C2 到 E 的最短距离为 5, 其路径为 C2 → D2 →E,相应的决策为
* x3 ( C 2 ) = D2
为了求出例7.1的最短路线,一个简单的方法是,可以求出 所有从A到E的可能走法的路长并加以比较。不难知道,从A到 E共有18条不同的路线,每条路线有四个阶段,要做3次加法,要 求出最短路线需做54次加法运算和17次比较运算,这叫做穷举 法。 当问题的段数很多,各段的状态也很多时,这种方法的计算 量会大大增加,甚至使得寻优成为不可能。
1
2
3
4
下面应用动态规划方法求解例7.1。运用逆序递 推方法求解,即由最后一段到第一段逐步求出各点到 终点的最短路线,最后求出A点到E点的最短路线。 运用逆序递推方法的好处是可以始终盯住目标,不 致脱离最终目标。 例7.1是一个四阶段决策问题,一般可分为四步:
●逆序法求解最短路问题
第一步,从K=4开始
例中,路线图(共18条路线,3×3×2×1=18)
枚举法:
例中,路线图(共18条路线,3×3×2×1=18)
为解决这个最短路径问题,首先给出几个定义。
1)、阶段 (stage) 将所给问题的过程,按时间或空间特征分解成若干相互联系的段落, 以便按次序求解就形成了阶段 , 阶段变量常用字母 K 来表示。如例 7.1 有四个阶段, K 就等于 。第一阶段共有 3 条路线即 (A,B1), (A,B2) 和(A,B3), 第二阶段有 9 条路线,第 3 阶段有 6 条路线 , 第 4 阶段有 2 条 路线。
1
2
3
4
S1
S2
S3
S4
d (C3 , D1 ) + f 4 ( D1 ) 1+ 4 =min =5 f 3 ( C 3 )=min d (C3 , D2 ) + f 4 ( D2 ) 3+3
在例7.1中,目标函数就是距离。如在第2阶段,状 态为B2时,f2 (B2)则表示从B2到E的最短距离。本问题 的总目标是求f 1(A), 即从A到E的最短距离。
1
2
3
4
6)、 状态转移方程 在动态规划中,本阶段的状态往往是上阶段决策的结果。所以如果给 定了第 K 阶段的状态 s k 和该阶段的决策 x k ( s k ) ,则第 K+1 段的状态 s k +1 由于 K 阶段决策的完成也就完全确定了 , 它们之间的关系可用如下公式表示: s k +1 = Tk ( s k , x k )
其中, Tk 表示从状态 s k 出发经过 xk 向下一阶段的转移 (Transfer) ,换 言之,即 s k +1 是从状态 s k 出发经过决策 xk 转移的结果。 由于上式表示了由 K 段到第 K+1 段的状态转移规律,所以就称为状态 转移方程。在例 7.1中, 状态转移方程即 s k +1 = x k 。
C3 ,如果我们选择,从C2走,则此时的决策变量可表示x2(B1)=C2。
1
2
3
4
4)、策略( Policy)
在各阶段决策确定以后,整个问题的决策序列就构成了一个策略, 用P1n(s1)表示。 如对于例7.1总共可有18个策略,但最优策略只有一个。
1
2
3
4
5)、目标函数
用于衡量所选定策略优劣的数量指标称作目标函数。 一个n阶段的决策过程,从1到n 叫作问题的原过程。 目标函数的最优值称为最优目标函数,最优目标函 数记为fk(sk),它表示从第K阶段的状态Sk出发采用的最优 , 策略。 当K=1时, f1(s1 )就是从初始状态S1到全过程结束的整体 最优目标函数。