运筹学基础(动态规划1)

合集下载

运 筹 学 课 件

运 筹 学 课 件

12/3 4
z
1 2
x4
x5 42
x3
2 3
x4
1 3
x5
4
新典式
主元化 为1,主 元所在
x2
1 2
x4
6
列的其 余元素
x1
2 3
x4
1 3
x5
4
化为0
观察最后一个典式,所有检验数均为非负, 故其对应的基本可行解为最优解,即
X * 4,6,6,0,0T z* 42
去掉引入变量,得原问题的最优解为:
运筹学课件
目录
运筹学概论 第一章 线性规划基础 第二章 单纯形法 第三章 LP对偶理论 第四章 灵敏度分析 第五章 运输问题 第六章 整数规划 第七章 动态规划 第八章 网络分析
第二章 单纯形法
(SM-Simplex Method)
1947年,美国运筹学家Dantzig提出,原理是 代数迭代。
单纯形法中的单纯形的这个术语,与该方法毫 无关系,它源于求解方法的早期阶段所研究的一 个特殊问题,并延用下来。
CB B1b B1b
z
CB B1N CN X N X B B1NX N
CB B1b B1b
上述方程组的矩阵形式为
10
0 I
CB
B1N B1N
CN
z XB XN
CB B1b B1b
上式的系数增广阵称为对应于基B的单纯形表:
T(B)
CB B1b B1b
0 I
CB
B1N B1N
CN
形式的LP问题,必须解决三个问题: ⑴初始基本可行解的确定; ⑵解的最优性检验; ⑶基本可行解的转移规则。 这里先放一下⑴,研究⑵和⑶,为此,

动态规划原理

动态规划原理

动态规划原理
动态规划是一种解决复杂问题的算法思想。

它通过将问题分解成较小的子问题,并通过寻找子问题的最优解来解决整体问题。

动态规划的核心思想是将整体问题拆分成多个重叠子问题,在解决子问题的过程中记录下每个子问题的解。

这样一来,当我们需要求解更大规模的子问题时,可以直接利用已经计算出的子问题解,避免重复计算,提高算法效率。

其中,动态规划的关键步骤包括定义状态、设计状态转移方程和确定边界条件。

首先,我们需要确定问题的状态。

状态可以理解为问题的属性,它描述了问题在不同阶段、不同状态下的特征。

在动态规划中,我们将问题的状态表示成一个或多个变量,用于描述问题的特征。

接着,我们需要设计状态转移方程。

状态转移方程描述了子问题之间的联系和转移规律。

它通过将问题的解与子问题的解联系起来,建立起子问题与整体问题的关系。

通过推导状态转移方程,我们可以由已知的子问题解计算出更大规模的问题解。

最后,我们需要确定边界条件。

边界条件表示问题的终止条件,它是最小规模子问题的解。

边界条件是问题求解的起点,也是递归求解过程的出口。

通过依次求解子问题,并利用已经计算过的子问题解,动态规
划可以高效地解决复杂问题,并得到全局最优解。

因此,它在解决优化问题、序列问题、最短路径问题等方面有着广泛的应用。

运筹学基础

运筹学基础

运筹学基础运筹学基础运筹学是一门研究问题的建模、分析和解决方法的学科,它涵盖了数学、统计学、计算机科学和工程等多个领域。

运筹学的目标是通过科学的方法,优化决策和资源利用,以达到最佳的效果。

运筹学的基础包括线性规划、整数规划、非线性规划、动态规划、排队论、网络流和图论等内容。

这些方法可以在许多领域中应用,包括物流、生产、供应链管理、交通运输、金融和资源分配等。

线性规划是运筹学中的一种基础方法。

它适用于求解具有线性目标函数和线性约束条件的问题。

线性规划常常涉及到资源的分配和决策的优化,例如在生产中如何最大化利润或者在供应链中如何最小化运输成本。

整数规划是在线性规划的基础上引入整数变量的一种问题求解方法。

这种方法可以用于求解一些离散决策问题,例如在物流中如何选择配送点和配送路线,以及如何安排生产任务等。

非线性规划是针对目标函数或约束条件中存在非线性项的问题的求解方法。

这种方法用于求解一些复杂的决策问题,例如在金融投资中如何优化投资组合,以及在环境保护中如何最小化排放量等。

动态规划是一种将多阶段决策问题转化为一系列单阶段决策问题的方法。

它适用于一些需考虑时序和状态转移的问题,例如旅行商问题和生产计划问题等。

排队论是研究顾客到达和服务系统间关系的数学方法。

它可以用于分析和优化服务系统的性能指标,例如等待时间和服务效率等。

排队论可以应用于各种排队系统,包括银行、餐厅和交通等。

网络流是研究网络中物质或信息流动的数学方法。

它可以用于解决一些网络中的最优路径或最小费用问题,例如在物流中如何选择最佳配送路径,以及在通信网络中如何优化数据传输等。

图论是研究图结构和图算法的学科。

它可以用于模型建立和问题求解,例如在地图上如何规划最短路径,以及在社交网络中如何分析人际关系等。

总之,运筹学提供了一系列数学方法和工具,用于解决决策和资源分配问题。

这些方法不仅可以优化决策效果,还可以提高经济效益和资源利用效率。

运筹学的应用范围广泛,对提高社会生产力和改善生活质量具有重要意义。

运筹学课件--动态规划

运筹学课件--动态规划
J 表示留在左岸的仆人人数
初始状态s1是T(3,3)
结束状态sn是 T(0,0)
可达状态有哪些?(3,J) (2,2) (1,1) (0,J) J 3 2 1 0
2013-6-9
A
1
运筹学课件
2
3
I
阶段指标——每阶段选定决策xk后所产生的效益,记
vk= vk(Sk, xk)。
指标函数——各阶段的总效益,记相应于Pkn的指标函数
2013-6-9 运筹学课件
动态规划模型的分类: 以“时间”角度可分成:
离散型和连续型。
从信息确定与否可分成:
确定型和随机型。
从目标函数的个数可分成: 单目标型和多目标型。
2013-6-9 运筹学课件
8.2基本概念与方程
1.基本概念
阶段(Stage)——分步求解的过程,用阶段变量k表示,k=1,,n 状态(State)——每阶段初可能的情形或位置,用状态变 量Sk表示。 按状态的取值是离散或连续,将动态规划问题分为
当 k 3,f Max f v
3 0
3 3
3
4
Max 3x 5s 13.6(0.9s 0.2x )
0
3 3
3
3
3
3
Max 0.28x 17.24s
0
3 3
3
3

x s , f 17.52s ,即第3年初将全部完好机器都 投入高负荷。
指标函数vkn=
v

5
表示第k至5年的总产量;
1
递推公式:f Max f v
6

f 0, k 5, ,1
2013-6-9
运筹学课件

运筹学课件 第六章 动态规划

运筹学课件 第六章 动态规划

求解规划问题可从最终阶段逐步推至最初阶段或从 最初阶段逐步推至最终阶段,我们称前者为逆序解 法,称后者为顺序解法。
动态规划的基本方程(逆序法):
fk (sk) = opt { wk(sk,uk )⊙ f k+1(sk+1) }
fn+1(sn+1) = φ(sn+1) f k ( sk) — 从第k阶段状态sk到终点的最优效益值
fk (sk+1)=max { vk(xk ) + f k-1(sk) }
f0(x1)=0
0
0
0
0
0
17 14
1
0
3
14
4
01
5
15
01
8
12
7
11
4
8
5
0 10 2 0
20
29
4
4
7
13
7
5
11
8
6
16 3 0
4
30
5
3
0 18
40
40
4
连续型动态规划问题的求解
例:某公司有资金10万元,若投资于项目i的投资额 为xi(i = 1 , 2 , 3)时,其收益分别为 g 1(x1)=2 x12, g 2 ( x 2 ) = 9 x2 , g 3 ( x 3 ) = 4 x3, 问应如何分配投资
第六章 动态规划
6.1 引言 6.2 最优化原理及基本概念 6.3 应用举例
例 6.1
多阶段决策过程最优化
多阶段决策过程,是指一类特殊的过程,它们可以按 时间顺序分解成若干个相互联系的阶段,称为“时段”, 在每个时段都要做决策,全部过程的决策是一个决策序列。 多阶段决策问题也称为序贯决策问题。

运筹学知识点总结

运筹学知识点总结

运筹学知识点总结运筹学是一门研究如何有效决策和优化资源分配的学科,它涵盖了数学、统计学和计算机科学等多个学科的知识。

在现代社会,运筹学在各个领域都有广泛的应用,比如物流管理、生产调度、供应链优化等。

本文将介绍一些运筹学的基本概念和应用。

1. 线性规划线性规划是运筹学中最基础也是最常用的数学模型之一。

它的目标是在一组线性约束条件下,最大化或最小化线性目标函数。

线性规划可以用来解决资源分配、生产计划、投资组合等问题。

常见的线性规划算法有单纯形法和内点法。

2. 整数规划整数规划是线性规划的一种扩展形式,其中决策变量被限制为整数。

整数规划在许多实际问题中都有应用,比如货车路径优化、工人调度等。

求解整数规划问题的方法包括分支定界法和割平面法。

3. 图论图论是运筹学中的一个重要分支,它研究图的性质和图算法。

图是由节点和边组成的数学结构,可以用来表示网络、路径、流量等问题。

常见的图论算法有最短路径算法、最小生成树算法和最大流算法。

4. 排队论排队论研究的是随机到达和随机服务的系统中的排队行为。

它在交通规划、电话网络、客户服务等领域有广泛的应用。

常见的排队论模型有M/M/1队列、M/M/c队列和M/G/1队列。

排队论可以用来优化服务水平、减少等待时间等。

5. 动态规划动态规划是一种解决多阶段决策问题的方法,它将问题分解为一系列子问题,并通过递归的方式求解。

动态规划常用于求解最优化问题,比如背包问题、旅行商问题等。

它的核心思想是将问题转化为子问题的最优解,并利用子问题的最优解求解原问题。

6. 模拟优化模拟优化是一种通过模拟实验寻找最优解的方法。

它基于概率统计和随机模拟的原理,通过多次模拟实验来搜索解空间。

模拟优化常用于在实际问题的局部搜索中找到较好的解。

常见的模拟优化算法有遗传算法、蚁群算法和粒子群算法。

7. 供应链管理供应链管理是一种综合运筹学和物流管理的概念,它研究如何优化整个供应链中的流程和资源分配。

供应链管理的目标是降低成本、增加效率并提供更好的顾客服务。

运筹学知识点总结

运筹学知识点总结

运筹学知识点总结一、线性规划线性规划是运筹学中最基础、最重要的一个分支。

它的基本形式可以表示为:Max cxs.t. Ax ≤ bx ≥ 0其中,c是一个n维的列向量,x是一个n维的列向量,A是一个m×n的矩阵,b是一个m维的列向量。

线性规划的目标是找到满足约束条件的x,使得目标函数cx取得最大值。

而当目标是最小化cx时,则是最小化问题。

线性规划问题有着很好的性质,它的最优解一定存在且一定在可行域边界上。

而且,很多非线性规划问题也可以通过线性化转化成线性规划问题,因此线性规划具有广泛的适用范围。

二、整数规划整数规划是线性规划的一个扩展,它在线性规划的基础上增加了对决策变量的整数取值限制。

这样的问题往往更加接近实际情况。

整数规划问题的一般形式可以表示为:Max cxs.t. Ax ≤ bx ∈ Zn整数规划问题的求解难度要比线性规划问题高很多。

因为整数规划问题是NP-hard问题,也就是说它没有多项式时间的算法可以解决。

但是对于特定结构的整数规划问题,可以设计专门的算法来求解。

比如分枝定界法、动态规划等。

整数规划问题在许多领域都有着广泛的应用,比如生产调度、设备配置、网络设计等。

三、动态规划动态规划是一种用来求解具有重叠子问题结构的最优化问题的方法。

它的核心思想是将原问题分解成一系列相互重叠的子问题,然后利用子问题的最优解来构造原问题的最优解。

动态规划问题的一般形式可以表示为:F(n) = max{F(n-1), F(n-2)+cn}其中,F(n)是问题的最优解,cn是问题的参数,n是问题的规模。

动态规划问题的求解是一个自底向上的过程,它依赖于子问题的最优解,然后通过递推关系来求解原问题的最优解。

动态规划在资源分配、路径优化、排程问题等方面有着广泛的应用。

四、决策分析决策分析是一种用来帮助人们做出最佳决策的方法。

它可以应用在各种风险决策、投资决策、生产决策等方面。

决策分析的一般形式可以表示为:Max E(u(x))其中,E(u(x))是对决策结果的期望效用,u(x)是决策结果的效用函数,x是决策变量。

运筹学课件第七章_动态规划

运筹学课件第七章_动态规划
略称为最优策略。
全过程策略:U1(S1), U2(S2),…, Un(Sn) P1n={Ui(Si)}, i=1,…,n
子过程策略:Uk(Sk), Uk+1(Sk+1),…, Un(Sn) Pkn={Ui(Si)}, i=k,…,n
6、阶段指标:Vk(Sk, Uk),k阶段,Sk状态下,作出Uk决 策带来的效果。在不同的问题中,指标的含义是不同的,它
运筹学
练习: 求从A到E的最短路径
2
12
B1
10
14
C1 3
9
D1 5
A
5
B2 6 10
1
4
13
6
C2
5
8
E
2
D2
B3
12 11
C3 10
路线为A→B2→C1 →D1 →E ,最短路径为19
2019/10/11
运筹学
二、资源分配问题 1、一维资源分配运筹学源自 二、动态规划的基本思想和基本方程
1、Bellman最优性定理
一个过程的最优策略具有这样的性质:即无论初始状 态及初始决策如何,对于先前决策所形成的状态而言, 其以后所有的决策应构成最优策略。
换句话说,最优策略只能由最优子策略构成。
2、思想方法:在求解过程中,各阶段的状态和决策, 对其后面的阶段来说,只影响其初始状态,而不影响 后面的最优策略。——无后效性
根据k 阶段状态变量和决策变量,写出k+1阶段状 态变量,状态转移方程应当具有递推关系。
5、确定阶段指标函数和最优指标函数,建立动态规 划基本方程
阶段指标函数是指第k 阶段的收益,最优指标函 数是指从第k 阶段状态出发到第n 阶段末所获得收益的
最优值,最后写出动态规划基本方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运输网络问题
基本概念
阶段:用动态规划求解问题时,首先将问题的全过程适当 地分成若干个互相联系的阶段,以便能按一定的次序去求 解。一般是根据时间和空间的自然特征区划分阶段。 状态:状态是指每一阶段开始时,所处的自然状态或客观 条件。例如上例中,某个状态就是某个阶段的始点。它既 是这个阶段的始点,也是前一个阶段的终点。 决策:决策是某一阶段的抉择,第n阶段的决策与第n个阶 段的状态有关,通常用xn(sn)表示第n阶段处于sn状态时的 决策变量。这个决策决定了第n+1阶段的状态。例如, x2(B1)= C2表示第2阶段处于B1为始点的状态下选择了由B1 到C2 的决策。
例题

建模要点

解法示例

资源分配问题
某公司拟将某种设备5台,分配给所属的甲、乙、丙 三个工厂,各工厂获得设备后,预测可创造的利润如 表所示。问这5台设备应该如何分配给这3个工厂,使 得所创造的总利润为最大。
甲厂 乙厂 丙厂
0 1 2 3 4 5
0 3 7 9 12 13
0 5 10 11ຫໍສະໝຸດ 11 11动态规划 (Dynamic programming)
例题
某工程招标,整个项目分为五部 分:地基铺设(F)、构架建设(S)、 管道与供热设备建设(P)、电器安 装€和室内装修(I)。招标规定,可 对项目一个部分或几个部分组合 一起投标,还允许多重投标。四 家经资质审查的建筑商甲、乙、 丙、丁参与了投标,情况如表所 示。甲、乙在投标书上指出:坚 决不与对方合作。丁声明“若自 己能中标3个项目及以上,将给予 投标金额的10%作为回扣”。试 对此建立数学模型,使整个项目 签约的总支出金额最少。
基本概念

基本方程

最优化原理
作为整个过程的最优策略具有如下的性质: 不管在此最优策略上的某个状态以前的状态和决策如 何,对该状态来说,以后的所有决策必定构成最优子 策略。 简言之,最优策略的任一子策略都是最优的。
动态规划模型的建立
识别问题的多阶段特征,将问题分解为可用递推关系 式联系起来的若干子问题 正确选择状态变量,保证各阶段的状态变量具有递推 的状态转移关系
建筑商 标书编号 投标部分 投标金额




1 2 3 1 2 3 1 2 3 1 2 3 4
F F+s F+P P+E P+I F+S+P P I P+E S P E I
C11 C12 C13 C21 C22 C23 C31 C32 C33 C41 C42 C43 C44
动态规划
多阶段决策过程
多阶段决策过程:是这样一类特殊的活动过程,它们 可以按照时间顺序分解成若干相互联系的阶段,称为 “时段”,在每一个时段都要做出决策,全部过程的 决策是一个决策序列。 多阶段决策过程最优化的目的是要达到整个活动过程 的总体效果最优。由于各段决策间有机地联系着,本 段决策的执行将影响到下一段的决策,以至于影响总 体效果,所以决策者在每段决策时,不应仅考虑本阶 段最优,还应考虑对最终目标的影响,从而做出对全 局来讲是最优的决策。 动态规划就是符合这种要求的一种决策方法。
多阶段决策问题
连续生产过程的控制问题
在一些生产过程中,常包含一系列完成生产过程的设备, 前一工序设备的输出则是后一工序设备的输入,因此,应 该如何根据各工序的运行状况,控制生产过程中各设备的 输入和输出,使得总产量最大。
资源分配问题
属于静态问题,如某公司拟对其稀有资源进行分配,为此 需要制定出效益最大的资源分配方案。这种问题原本要求 一次确定出对各企业的资源分配量,它与时间因素无关, 不属于动态决策,但是,我们可以人为地规定一个资源分 配的阶段和顺序,从而使其变成一个多阶段决策问题。
多阶段决策问题
工厂生产过程
由于市场需求是随着时间变化的,因此,为了取得某一时 期(例如全年)的最佳经济效益,就要在全年的生产过程 中,逐月或者逐季度地决定生产计划(如根据库存、市场 需求等)。
设备更新问题
一般企业用于生产活动的设备,刚买来时故障少,经济效 益高,即便进行转让,处理价值也高,随着使用年限的增 加,就会逐渐变为故障多,维修费用增加,可正常使用的 工时减少,加工质量下降,经济效益差,并且,使用的年 限越长,转手的价格也越低。当然,卖掉旧的买入新的, 也需要不小的开销。因此,需要综合权衡,决定设备的使 用年限,使得总的经济效益最好。
0 4 6 11 12 12
LOGO
相关文档
最新文档