数值方法迭代法解线性方程组实验报告

合集下载

数值计算实验报告

数值计算实验报告

本科实验报告课程名称:计算机数值方法实验项目:方程求根、线性方程组的直接解法、线性方程组的迭代解法、代数插值实验地点:专业班级:学生姓名:指导教师:实验一方程求根}五、实验结果与分析二分法实验结果迭代法实验结果结果分析:本题目求根区间为[1,2],精度满足|x*-x n|<0.5×10-5,故二分法用公式|x*-x n|<(b-a)/ 2n,可求得二分次数并输出每次结果。

对迭代法首先要求建立迭代格式。

迭代格式经计算已输入程序之中,故直接给初值便可利用迭代法求出精度下的解。

六、讨论、心得每次的实验都是对已学过的理论知识的一种实战。

通过本次实验,我将二分法与迭代法的思路清晰化并且将其变成计算机设计语言编写出来,运用到了实际解决问题上感觉很好。

我自认为本次跟其他同学比较的优点在于我在二分法实现的时候首先利用换底公式将需要的二分次输输出,如此便很清晰明了的知道接下来每一步的意思。

迭代法给我的感觉便是高度的便捷简化,仅用几行代码便可以同样解决问题。

相比较二分法来说,我更喜欢迭代的思路。

实验二线性方程组的直接解法for(k=n-2;k>=0;k--){sum=0;for(j=k+1;j<n;j++)sum=sum+a[k][j]*x[j];x[k]=(b[k]-sum)/a[k][k];}for(i=0;i<n;i++)printf("x[%d]=%f ",i,x[i]); printf("\n"); //输出解向量x}五、实验结果与分析结果结果分析:如上图所示,输入线性方程组元数n=3,则会要求输入3*3的系数矩阵A与向量b构成的增广矩阵。

根据算法需要将系数矩阵A消元成上三角矩阵。

随后根据矩阵乘法公式变形做对应的回代。

六、讨论、心得本次实验在编写时候感觉还好,感觉将思路变成了程序设计语言,得以实现题目的要求。

但是在运行以及结果分析的时候,感觉到了本实验的一些不足之处:就是我的实验虽然可以实现不同的元数的线性方程组求解,但是缺少了分析初始条件——主元素不能为零。

数值分析计算方法实验报告

数值分析计算方法实验报告
break;
end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1

数值分析迭代法数值分析实验报告jacobi迭代和seidel迭代分析

数值分析迭代法数值分析实验报告jacobi迭代和seidel迭代分析

数值分析迭代法数值分析实验报告 jacobi迭代和seidel迭代分析导读:就爱阅读网友为您分享以下“数值分析实验报告jacobi迭代和seidel迭代分析”资讯,希望对您有所帮助,感谢您对的支持!数值分析实验报告一、实验目的1、了解熟悉jacobi迭代法和seidel迭代法的解法2、将原理与matlab语言结合起来,编程解决问题3、分析实验结果二、实验题目设线性方程组为2 2 31 201 31 x1 1 7 x801240 2 x 103 10 15 x 1 4考察用jacobi迭代法和seidel迭代法求解该线性方程组的收敛情况。

如果收敛,给出误差满足x(k) x(k 1)10 4的解。

三、实验原理将A 作如下分解A D L U这里a11D a22 0 a ,L 21 anna n100 a n2 0 0 a12 a1n 0 0 0 a2n ,0 00 0 JacobiU迭代矩阵为BJ D 1(L U)Seidel迭代矩阵为BS (D L) 1U它们的迭代格式都可化为x(k 1) Bx(k) g则迭代格式对任何初值都瘦脸的充要条件是迭代矩阵谱半径 (B) max k 1,其中, k是矩阵B的n个特征值,k 1,2 ,n 1 k nJacobi迭代矩阵的特征方程为det( I B J) 0Seidel迭代矩阵的特征方程为det( I B S) det( (D L) U) 0四、实验内容用matlab编写计算jacobi迭代矩程序,建立m文件如下:function[M]=BJ(A)D=diag(diag(A));L=tril(-A)+D;U=triu(-A)+D;M=inv(D)*(L+U);输入:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];&gt;&gt; [M]=BJ(A)M:M =0 -0.0500 0.1500 0.0500-0.1667 0 0 -0.38890.0250 -0.0500 0 0.0500-0.2000 0 0.2000 00 0.050.150.05 0.166700 0.3889 则jacobi迭代矩阵为:BJ 0.025 0.0500.05 0.2 00.20用matlab求jacobi迭代矩阵的特征根的算法如下:&gt;&gt; A=[0 -0.05 0.15 -0.05;-0.67 0 0 -0.39;0.025 -0.05 0 0.05;-0.2 0 0.2 0];[V,D]=eig(A)V =-0.1892 + 0.0450i -0.1892 - 0.0450i -0.3812 -0.5005-0.9467 -0.9467 0.8867 0.5461 -0.1528 - 0.1181i -0.1528 + 0.1181i -0.2099 -0.0466 -0.1056 + 0.1325i -0.1056 - 0.1325i 0.1561 0.6701D =-0.1774 + 0.0864i 0 0 0 0 -0.1774 - 0.0864i 0 0 0 0 0.2194 0 0 0 0 0.1355 则最大特征根为:0.2194 则(BJ) 0.2194 1,所以jacobi迭代法收敛用matlab编程jacobi迭代法求根的算法:function [n,x]=jacobi(A,b,X,nm,w)%用雅克比迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,nm为最大迭代次数,w 为误差精度%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵UM=inv(D)*(L+U); %计算迭代矩阵g=inv(D)*b; %计算迭代格式中的常数项%下面是迭代过程while n&lt;=nmx=M*X+g; %用迭代格式进行迭代if norm(x-X,2)&lt;wdisp(…迭代次数为‟);ndisp(…方程组的解为‟);xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp(…在最大迭代次数内不收敛!‟);输入数据:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];X=[0;0;0;0];&gt;&gt; nm=100;&gt;&gt; w=1e-4;&gt;&gt; [n,x]=jacobi1(A,b,X,nm,w)迭代次数为n =6方程组的解为x =0.06870.16450.2352-0.1667n =6x =0.06870.16450.2352-0.1667所以,满足精度的根为x = 0.0687 0.1645 0.2352用matlab编程计算seidel迭代矩阵算法为:function[M]=BS(A)D=diag(diag(A));L=tril(-A)+D;U=triu(-A)+D;M=inv(D-L)*U;输入:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5]; &gt;&gt; [M]=BS(A)M =0 -0.0500 0.1500 0.0500 0 0.0083 -0.0250 -0.3972 -0.1667 迭代次数为6次0 -0.0017 0.0050 0.07110 0.0097 -0.0290 0.0042则seidel迭代矩阵为:0.150.05 0 0.05 00.0083 0.025 0.3972BS 0 0.00170.0050.0711 00.0097 0.0290.0042用matlab编程求得seidel矩阵的算法为:&gt;&gt; A=[0 -0.05 0.15 0.05;0 0.0083 -0.025 -0.3972;0 -0.0017 0.005 0.0711;0 0.0097 -0.029 0.0042];[V,D]=eig(A)V =1.0000 -0.1596 + 0.6750i -0.1596 - 0.6750i -0.91040 0.6965 0.6965 0.3924 0 -0.1250 + 0.0028i -0.1250 - 0.0028i 0.1313 0 0.0070 - 0.1348i 0.0070 + 0.1348i 0.0000D =0 0 0 0 0 0.0088 + 0.0768i 0 0 0 0 0.0088 - 0.0768i 0 0 0 0 -0.0001则特征根为 0 0.008+0.0768i 0.0088-0.0768i-0.0001则 (BS) 0.08 1,所以seidel迭代法收敛用seidel迭代法求根的算法为:function [n,x]=gaussseidel(A,b,X,nm,w)%用高斯-赛德尔迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,nm为最大迭代次数,w 为误差精度%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);I=eye(m); %生成m*m阶的单位矩阵D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵U M=inv(D-L)*U; %计算迭代矩阵g=inv(I-inv(D)*L)*(inv(D)*b); %计算迭代格式中的常数项%下面是迭代过程while n&lt;=nmx=M*X+g; %用迭代格式进行迭代if norm(x-X,2)&lt;wdisp(…迭代次数为‟);ndisp(…方程组的解为‟);xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp(…在最大迭代次数内不收敛!‟);disp(…最大迭代次数后的结果为‟);x输入数据:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];X=[0;0;0;0];nm=100;w=1e-4;[n,x]=gaussseidel(A,b,X,nm,w) 迭代次数为n =5方程组的解为x =0.06870.16450.2352-0.1667n =5x =0.06870.16450.2352-0.166满足精度的根为x =0.0687 0.1645 0.2352 -0.1667 迭代次数为5次五、实验分析从实验过程可以看到求出满足精度的根,seidel迭代要比jacobi迭代快,这是因为在jacobi迭代计算中,计算向量x(k 1)时是按分量的角标由小到大依次计算的。

数值分析与算法 简单迭代法求解线性方程组

数值分析与算法 简单迭代法求解线性方程组

简单迭代法求解线性方程组1.原理:将原线性方程组Ax=b中系数矩阵的主对角线移到一边并将其系数化为一,然后在给定迭代初值的情况下通过迭代的方法求解线性方程组的值。

2.C语言实现方式:(1)计算迭代矩阵:将系数矩阵的所有值分别处以各自所在行的主对角线值,然后将主对角线赋值为0。

(2)输入迭代初值,进行迭代将迭代初值存入y[n]矩阵,然后利用迭代式nn=nn+x[i][j]*y[j];y[i]=nn+b[i];经过有限次迭代得到误差要求以内的值3.源程序如下:#include<iostream>#include<math.h>#include<iomanip>using namespace std;#define kk 50 //定义最大方程元数int n,i,c,j,hh,gg,mm;double A[kk][kk],x[kk][kk],b[kk],y[kk],a[kk],z[kk],m,nn,d,e=1,w,fff ;void main(){cout<<"输入的方程元数"<<endl; //数据的输入cin>>n;cout<<"请输入方程系数矩阵:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j];cout<<"请输入右边向量:"<<endl;for(i=0;i<n;i++)cin>>b[i];cout<<"输入你想要的迭代精度(建议1e-5以上)!"<<endl; cin>>fff;cout<<"输入最大迭代次数(建议300次以上)!"<<endl; cin>>mm;//计算出迭代矩阵for(i=0;i<n;i++){b[i]=b[i]/A[i][i];for(j=0;j<n;j++){if(i==j){x[i][i]=0;}else{x[i][j]=-A[i][j]/A[i][i];}}}//输出迭代矩阵cout<<"计算出迭代矩阵为:"<<endl;for(i=0;i<n;i++){for(j=0;j<n;j++)cout<<x[i][j]<<" ";cout<<b[i]<<" ";cout<<endl;}//赋迭代初值cout<<"输入迭代初值"<<endl;for(i=0;i<n;i++)cin>>y[i];int f=1;//简单迭代法cout<<" ";for(i=1;i<n+1;i++)cout<<'\t'<<"X["<<i<<"]"<<" "<<'\t';cout<<"精度";cout<<endl;cout<<"迭代初值为: ";cout<<setiosflags(ios::fixed);for(i=0;i<n;i++)cout<<y[i]<<" ";cout<<endl;while(e>fff){for(i=0;i<n;i++){z[i]=y[i];nn=0;for(j=0;j<n;j++){nn=nn+x[i][j]*y[j];y[i]=nn+b[i];}e=fabs(z[0]-y[0]);if(fabs(z[i]-y[i])>e)e=fabs(z[i]-y[i]);if(i==0){cout<<setiosflags(ios::fixed);cout<<"第"<<setw(3)<<setprecision(3)<<f++<<"次迭代"<<" "; }cout<<setiosflags(ios::fixed);cout<<setw(8)<<setprecision(8)<<y[i]<<" ";}cout<<e;cout<<endl;if(f>mm){cout<<"迭代次数大于"<<mm<<"次"<<endl;cout<<"认为方程发散,迭代不收敛"<<endl;exit(1);}}cout<<endl;cout<<endl;cout<<"方程迭代了"<<f-1<<"次,达到你所要求的精度"<<fff<<endl;cout<<"最后结果为:"<<endl;cout<<endl;for(i=0;i<n;i++){cout<<"X"<<"["<<i+1<<"]"<<"="<<y[i];cout<<endl;}exit(1);}4.实验数据和结果:按照提示依次输入方程元数,系数矩阵,右边向量和迭代初值。

数值分析实验报告--解线性方程组的迭代法及其并行算法

数值分析实验报告--解线性方程组的迭代法及其并行算法

disp('请注意:高斯-塞德尔迭代的结果没有达 到给定的精度,并且迭代次数已经超过最大迭 代次数max1,方程组的精确解jX和迭代向量X 如下: ') X=X';jX=jX' end end X=X';D,U,L,jX=jX'
高斯-塞德尔的输入为:
A=[10 2 3;2 10 1;3 1 10]; b=[1;1;2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100) A=[10 2 3;2 10 1;3 1 10]; 请注意:因为对角矩阵 D 非奇异,所以此方程组有解.
0.0301 0.0758 0.1834
8.心得体会:
这已经是第三次实验了, 或多或少我已经对 MATLAB 有了更多的了 解与深入的学习。通过这次实验我了解了雅可比迭代法和高斯- 塞德尔迭代法的基本思想,虽然我们不能熟练编出程序,但还是 能看明白的。运行起来也比较容易,让我跟好的了解迭代法的多 样性,使平常手算的题能得到很好的验证。通过这次实验让我对 MATLAB 又有了更深一层的认识,使我对这门课兴趣也更加浓厚。
运行雅可比迭代程序输入: A=[10
b=[1;1;2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)
2 3;2 10 1;3 1 10];
结果为:
k= 1 X=
0.1000 k= 2 X= 0.0200 k= 3 X= 0.0400 k= 4 X= 0.0276 k= 5 X= 0.0314 k= 6 X= 0.0294 k= 7 X= 0.0301 k= 8 X= 0.0297
6、 设计思想:先化简,把对角线的项提到左边,其它项

数值分析_线性方程组迭代解法Hilbert矩阵

数值分析_线性方程组迭代解法Hilbert矩阵

0.999427 1.000368 1.000068 0.999538 1.003545 0.999834 1.000724 1.002775 0.99582 x 9 0.99888 0.9983 0.99933 0.995748 0.999679
0.996358 0.999739
1.002141 1.001106 1.001204 1.001784 1.005742 1.00315 1.00155 1.00181 1.002206 1.00062
1.000066 0.999977 1.000001 1.000041 0.998534 1.000054 0.999712 0.999029 1.005874 1.000672 1.00175 1.004447
0.996128 0.998886 0.998141 0.994858 10 x 0.993805 0.998912 0.998328 0.998514 0.999227 1.000283 1.000399 1.001125 1.005241 1.001468 1.001894 1.002573 1.006835 1.001551 1.001869 1.002117
数值分析课程上机报告
数值分析第二次上机实习报告
——线性方程组迭代解法
一、问题描述
设 Hn = [hij ] ∈ Rn×n 是 Hilbert 矩阵, 即 hij = 对 n = 2,3,4,…15, 1 i + j −1
1 x ∈ R n×n ,及 bn = H n x ,用 SOR 迭代法和共轭梯度法来求解,并与直 取= 1
四、计算结果及其分析
1. 超松弛迭代法分析 令初始向量 x0=u(1,1,……)T,给定不同的初始向量与松弛因子,计算不同情 况下解的情况。计算结果如下。

高斯-赛德尔法--数值分析线性方程组的迭代解法

高斯-赛德尔法--数值分析线性方程组的迭代解法
高斯赛德尔法数值分析线性方程组的迭代解法线性方程组的迭代解法迭代法求解线性方程组高斯赛德尔迭代法高斯赛德尔迭代法原理高斯赛德尔迭代赛德尔迭代法线性方程组的解法pkpm线性方程组解法非线性方程数值解法
实验六、高斯-塞德尔法
一、实验目的
通过本实验学习线性方程组的迭代解法。掌握高斯-赛德尔迭代法编程。
二、计算公式
}
if(k==T)printf("\nNo");
else
printf("\n",k);
for(i=0;i<M;i++)
printf("x(%d)=%15.7f\n",i+1,x[i]);
}
四、例题
书P189页例6:用高斯-塞德尔迭代解线性方程组:
取 使得
#include<math.h>
#define M 3
#define N 4
main()
{
double a[M][N]={{8,-3,2,20},
{4,11,-1,33},
{6,3,12,36},
};
double x[M]={0,0,0};//初值
double r,t,q,eps=0.0000202;//需要精度
if(j!=i)q=q+a[i][j]*x[j];
x[i]=(a[i][N-1]-q)/a[i][i];
if(fabs(x[i]-t)>r)r=fabs(x[i]-t);
}
if(r<eps)break;
printf("\nk=%d,",k);
for(i=0;i<M;i++)
printf("\nx[%d]=%lf",i,x[i]);

迭代法解线性方程组-数值分析实验报告

迭代法解线性方程组-数值分析实验报告

数学与计算科学学院《数值分析》课程设计题目:迭代法解线性方程组专业:信息与计算科学学号:*******-24*名:**指导教师:**成绩:二零一六年六月二十日一 、前言:(目的和意义)1.实验目的①掌握用迭代法求解线性方程组的基本思想和步骤。

②了解雅可比迭代法,高斯-赛德尔法和松弛法在求解方程组过程中的优缺点。

2.实验意义迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,它是解高阶稀疏方程组的重要方法。

迭代法的基本思想是用逐次逼近的方法求解线性方程组。

比较雅可比迭代法,高斯-赛德尔迭代方法和松弛法,举例子说明每种方法的试用范围和优缺点并进行比较。

二、数学原理:设有方程组b Ax = …① 将其转化为等价的,便于迭代的形式f Bx x += …② (这种转化总能实现,如令b f A I B =-=,), 并由此构造迭代公式f Bx x k k +=+)()1( …③ 式中B 称为迭代矩阵,f 称为迭代向量。

对任意的初始向量)0(x ,由式③可求得向量序列∞0)(}{k x ,若*)(lim x xk k =∞→,则*x 就是方程①或方程②的解。

此时迭代公式②是收敛的,否则称为发散的。

构造的迭代公式③是否收敛,取决于迭代矩阵B 的性1.雅可比迭代法基本原理设有方程组),,3,2,1(1n i b x aj j nj ij==∑= …①矩阵形式为b Ax =,设系数矩阵A 为非奇异矩阵,且),,3,2,1(,0n i a ii =≠ 从式①中第i 个方程中解出x ,得其等价形式)(111j nj j ij ii i x a b a x ∑≠=-= …②取初始向量),,,()0()0(2)0(1)0(n x x x x=,对式②应用迭代法,可建立相应的迭代公式:)(111)()1(∑≠=++-=nj j i k j ij ii k ib x a a x…③ 也可记为矩阵形式: J x J k F B xk +==)()1( …④若将系数矩阵A 分解为A=D-L-U ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=--=--00000000000000111211212211212222111211n n n nn n nn nn n n n n a a a a a a a a a a a a a a a a a a U L D A式中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn a a a D2211,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-0000121323121nn n n a a a a a a L ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000122311312n n n n a a a a a a U 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 138053
x2
1.267604
k二5
x0=-3. 108742
xl=
1. 089012
x2
1. 266255
k=6
x0=-3. 088856
xl=
1.094659
x2
1. 265101
k=7
x0=-3. 090884
xl=
L094729
x2
1. 265541
k=8
x0=-3. 091000
xl=
迭代格式:
Ax二bu (D -L -U)x =b
(若D-L可逆)二x=(D _L)」Ux (D _L)」b
x(k=Gx(k)C, K =0,1,2……
G =(D -L)dU ,C =(D -L)」b,x(0)为初始向量(矩阵形式)
1i-1n
x/k)=—(-送ajX(f-送ajX(k)+bj, (i=1,2,,n)(分量形式)
>p\Debu
g\OOO.exe'
xO=O, 000000 xl-o. 00000(
J边=(
1 00000(
)
k=2
x0=-2. 400000
xl=
1.900000
x2
1. 530000
k=3
x0=-3. 466000
xl=
0. 868500
x2
1. 227450
k=4
x0=-2, 992890
xl=
double A[3][3]={{5,2,1},{-1,4,2},{2,-5,10}};
double b[3]={-12,10,1},X[3]={0,0,0}; //以上为输入部分
while(k<=N)〃迭代步数从1开始,在最大迭代步数之内
{
e=0.0000;
printf("\nk=%d ",k);〃输出第k次迭代
这次实验使我对Guass-Seidel迭代法的理解更加深刻,掌握了迭代法解线性方程 组的方法,掌握了判别迭代法收敛的基本方法及其运用。
三、指导教师评语及成绩
评语
评语等级



பைடு நூலகம்及 格
不及格
1.实验报告按时完成,字迹清楚,文字叙述流畅,逻辑性强
2.实验方案设计合理
3.实验过程(实验步骤详细,记录完整,数据合理,分析透彻)
for(i=0;i<=n ;i++)
{
t=X[i];
s=0.0000;
printf("x%d=%f\t",i,X[i]);〃输出k-1次迭代后的值作为第k次
的初值
for(j=0;j<=n ;j++)
{
if(j!=i)
s=s+A[i][j]*X[j];
}
X[i]=(b[i]-s)/A[i][i]; //迭代过程,得到x[i]的解
4实验结论正确.
成绩:
指导教师签名:
批阅日期:
附录
#i nclude<stdio.h>
#in clude<math.h>
#defi ne eps 1e-4
#defi ne n 2
#defi ne N 10 //以上为定义部分
void mai n()
{
int i,j,k=1;
double t,e,s;
一、实验概述:
1实验目的
1)了解Guass-Seidel迭代法的迭代思想;
2)熟练掌握Guass-Seidel迭代法的基本原理和基本方法;
3)学会用逐次Guass-Seidel迭代法解简单方程组;
4)体会数值计算方法的收敛性及收敛速度;
5)掌握判别迭代法收敛的基本方法及其运用;
2实验原理
Guass-Seidel迭代法:
}
if(k==N)
{
prin tf("fail!");
}
k++;//步数增加
}
}
附录
1•实验项目名称: 要求与实验教学大纲一致。
b)不成立,则判断k<N是否成立
i成立,则k=k+1,回到步骤1)ii否则,输出失败信息,结束程序。
2实验步骤
(1)上机前思考解决问题的思路与方法并写好算法;
(2)根据算法编写解决冋题的程序;
(3)上机时调试程序发现错误并改正;
(4)运行无误后得到结果;
3实验结论(数据及分析结果)
EI
1C:\Users\87058\Desktc
aiij二jw卅
3实验环境
VC++6.0
WIN10操作系统
二、实验内容:
a)i—Xi
1n
b)为_——(bajXj)
aiij J
c)判断声_i | e是否成立,成立则e:-|Xt-t|;(比较本次与上次迭代中的对应 人的 值,寻找最大误差)
3)判断e:::;是否成立
a)成立,找到近似解,则输出迭代步数和近似解k,结束程序。
if(fabs(X[i]-t)>e)
e=fabs(X[i]-t);〃求出最大误差}
if(e<=eps)
{
prin tf("\nthe root:\nk=%d\t",k+1);
for(i=0;i<=n ;i++)
prin tf("x%d=%f\t",i,X[i]);
break;
}//如果两次相邻迭代步数求出的解的误差在最大误差限内,则找到解
1. 094479
x2
1. 265440
x0=-3. 090880
the
roo t:
k=lC
1x0=-3.090915
xl=L 094560
x2=L 265456
k=lC
i x0=-3. 090915
the
roo t:
k=l]
⑷二」3.090915
xl=L 094560
x2=L 265456
4实验小结(收获体会)
相关文档
最新文档