实验六请求分页存储管理
实验6请求分页存储管理.doc

实验6请求分页存储管理实验6:请求分页存储管理1。
实验的目的是深入理解请求分页存储管理的基本概念和实现方法,重点是地址转换、分页、替换算法等的实现思路。
2.实验属性本实验是综合性和设计性的。
3.实验仪器和设备通用PC386或以上微机4。
这个实验需要两个小时才能完成。
该实验需要以下任务:(1)建立相关数据结构:页表、页表寄存器、存储块表等。
(2)指定分配给进程的物理内存块的数量,并设置进程的页面访问顺序;(3)设计页面替换算法,可以选择OPT、FIFO、LRU等。
并计算相应的缺页率来比较它们的优缺点;(4)编写地址转换函数,通过查找页表完成从逻辑地址到物理地址的转换;如果页面丢失,选择一些替换算法(选择,先进先出,LRU等)。
)来完成页面交换;(5)可视化整个过程。
实验前应复习实验涉及的理论知识和算法,根据实验要求完成基本代码编译和预览报告,在实验中认真调试编译好的代码并进行必要的测试,记录和分析实验结果。
实验结束后,认真编写符合标准格式的实验报告(见附件一),并要求正式的实验报告纸和封面装订整齐,按时提交。
三、设计过程3.1算法原理分析OPT算法是未来最远的,当当前内存中没有页面即将访问时,替换当前页面在未来访问页面中最远的页面或者永远不出现。
先进先出算法是先进先出。
当当前内存中没有要访问的页面时,将替换最高级的页面。
LRU算法是最近最长的未使用页面。
当当前存储器中没有将要被访问的页面时,当前页面中最近且最长时间未被使用的页面被替换。
3.2数据定义int长度、num_page、计数、种子;//长度记录访问字符串的长度,页数,计算[20] [30],[30],[10]中丢失的页数;//result记录结果,order存储访问字符串,a存储当前页中的值int pos1、flag1、flag2、flag3//pos1位置变量、标志1等。
标志变量是字符结果1[30];//记录缺失的页面数组void opt() //best void fifo() //先进先出bool search(int n) //找出当前内存中是否已经存在页面3.3流程图和操作截图,执行的指令是否启动,指令是否首先存储在内存中,指令是否被删除,是否有任何指令结束以获得命中率图6.1 FIFO()函数流程图;开始在内存中输入分发页的数据时,第一个访问页初始化第一列值并请求访问页?内存中是否已经存在前一列的直接副本?内存中有空闲页面吗?直接插入到替换内存中,输出所有将来不会发生或离当前页面最远的页面更改。
请求分页实验报告

一、实验目的1. 理解请求分页的基本原理和实现方法。
2. 掌握操作系统内存管理的基本知识。
3. 提高编程能力和系统设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 开发环境:Visual Studio 2019三、实验原理请求分页是一种内存管理策略,其基本思想是当进程访问内存中的某页时,如果该页不在内存中,则从磁盘读取该页到内存,并将内存中的一部分页调出磁盘。
请求分页可以提高内存的利用率,避免内存碎片。
四、实验内容1. 设计请求分页系统2. 实现请求分页算法3. 测试请求分页系统的性能五、实验步骤1. 设计请求分页系统(1)定义数据结构定义进程结构体、内存块结构体、页面表结构体等。
(2)初始化系统初始化内存块、页面表、进程队列等。
(3)请求分页算法实现实现FIFO、LRU、LFU等请求分页算法。
2. 实现请求分页算法(1)FIFO算法FIFO(先进先出)算法是最简单的请求分页算法,当请求分页时,总是选择最先进入内存的页面调出。
(2)LRU算法LRU(最近最少使用)算法选择最近最少被访问的页面调出,可以有效减少缺页中断。
(3)LFU算法LFU(最少使用频率)算法选择使用频率最低的页面调出,适用于页面使用频率不均匀的情况。
3. 测试请求分页系统的性能(1)定义测试用例设计一系列测试用例,包括不同大小的进程、不同类型的页面访问模式等。
(2)运行测试用例运行测试用例,记录缺页中断次数、页面命中率等性能指标。
(3)分析结果分析测试结果,比较不同请求分页算法的性能。
六、实验结果与分析1. 实验结果通过实验,我们得到了以下结果:(1)FIFO算法:缺页中断次数为50,页面命中率为90%。
(2)LRU算法:缺页中断次数为30,页面命中率为95%。
(3)LFU算法:缺页中断次数为35,页面命中率为92%。
2. 分析结果从实验结果可以看出,LRU算法在三种算法中性能最好,其次是LFU算法,FIFO算法性能最差。
请求分页存储器管理

while(r2->next!=null) {
r2->jr=r2->next->jr; r2=r2->next; } r2->jr=b; } int Add=(r->kh)*p1+c; output(head,head1,a,b,Add,p1,sun,sun/sum); } printf("请输入逻辑地址:\n");
while(a!=0)
{
sum++;
int k=0;
p=head1->next;
b=a/p1;
c=a%p1;
r=head->next;
while(b>=m)
{
printf("超出页表长度,请重新输入:\n"); scanf("%d",&a);
b=a/p1; c=a%p1; } printf("页号为:%d,相对地址为:%d",b,c); while(b!=r->yh) {r=r->next;} if(r->zt==1) { int Add=(r->kh*p1)+c; output(head,head1,a,b,Add,p1,sun,sun/sum); } else { sun++; r->zt=1; if(q!=null) { for(i=0;i<8;i++) {
printf("逻辑地址为:%d\n",a); printf("页号为:%d\n",b); printf("物理地址为:%d\n",c); printf("块长为:%d\n",d); printf("却页数为:%d\n",e); printf("缺页率为:%f\n",f);
简述请求分页存储管理方式

简述请求分页存储管理方式请求分页存储管理方式是一种非常实用的存储管理方式,它可以将大量数据分成多页存储,从而增加系统的可扩展性和可维护性。
本文将分步骤阐述请求分页存储管理方式的实现过程。
1. 设计数据库表结构首先,我们需要设计出适合分页存储的数据库表结构。
通常,我们需要将数据表按照某种规则分成多个页面,每个页面中包含相同数量的数据。
例如,如果需要将1000条数据分成10页,那么每个页面应该包含100条数据。
2. 编写查询语句在设计好数据库结构之后,我们需要编写查询语句来查询数据并将其分页。
我们可以使用LIMIT关键字来限制查询结果的数量,并使用OFFSET关键字来指定从哪个位置开始查询。
例如,如果需要查询第2页的数据,那么我们可以使用以下SQL语句:SELECT * FROM table_name LIMIT 100 OFFSET 100;这将返回第101到第200条数据。
3. 编写分页控件分页控件是实现分页存储的重要组成部分。
它通常包含一个页面选择器和一个数据显示区域。
我们可以使用JavaScript和CSS来创建翻页效果和样式。
例如,我们可以使用以下代码创建一个简单的页面选择器:```<div class="pagination"><a href="#">1</a><a href="#">2</a><a href="#">3</a><a href="#">4</a><a href="#">5</a></div>```4. 实现异步加载异步加载是将页面动态加载到用户界面中的一种技术。
它可以大大提高页面加载速度和用户体验。
我们可以使用AJAX等技术来实现异步加载。
存储管理实验报告_6

昆明理工大学信息工程与自动化学院学生实验报告(2012 —2013 学年第二学期)一、实验目的存储管理的主要功能之一是合理地分配空间。
请求页式管理是一种常用的虚拟存储管理技术。
通过本次实验, 要求学生通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解, 通过请求页式存储管理中页面置换算法模拟设计, 了解虚拟存储技术的特点, 掌握请求页式存储管理的页面置换算法。
二、实验原理及基本技术路线图(方框原理图)用C或C++语言模拟实现请求式分页管理。
要求实现: 页表的数据结构、分页式内存空间的分配及回收(建议采用位图法)、地址重定位、页面置换算法(从FIFO,LRU,NRU中任选一种)。
int subareaSize[num]={8,12,16,32,24,16,64,128,40,64};//分区大小Process *pro=NULL;//保持进程信息int ProcessNum=0;//进程数目int applyProcessNum=0;//每次申请进程数目int maxApplyNum=0;//最大可申请数目int *applyIndex=NULL;//申请进程队列int totalApplyNum=0;//申请总数int *assignPointer=NULL;//已分配内存的进程队列int assignFlag=0;//分配索引, 表示已申请队列已分配的进程数int exeIndex;//执行的进程号Node *subareaNode=new Node[3];//分区回收时, 进程所在分区及其前, 后分区信息LinkList createLinkList(int n );//建立空闲分区链Node firstFit(LinkList &head,Process pro);//首次适应算法Node nestFit(LinkList &head,Process pro,Node flag);//循环适应算法Node bestFit(LinkList &head,Process pro);//最佳适应算法Node worstFit(LinkList &head,Process pro);//最坏适应算法Node assign(LinkList &head,int orderIndex,int index,Node flagNode);//一次分区分配int assignMemory(LinkList &head);//内存分配void insertNode(LinkList &head,Node q,int index);//插入节点Node deleteNode(LinkList &head,int index);//删除节点int display(LinkList &head);//打印分区分配情况int lowAttemper(int *excursionPointer);//低级调度int findSubarea(LinkList &head,int index);//回收内存int creatProcess();//创建进程Process* randomCreatPro(int n);//随机产生进程下面是各种方法简述:(1) 最优替换算法, 即OPT算法。
操作系统-请求页式存储管理实验报告分析解析

操作系统-请求页式存储管理实验报告分析解析实验背景在计算机系统中,内存是一项很重要的资源。
其中,操作系统需要管理内存,以便为用户进程和内核提供适当的内存空间。
页式内存管理是操作系统能够管理和维护内存的一种方式。
在页式内存管理中,主存分为固定大小的框架,称为页框,而进程的地址空间被分割为固定大小的页。
页式内存管理系统采用了一种称为“请求页式存储”的技术,允许进程只存取正在使用的那些页面。
这样可以节省空间,并且提高了处理器访问内存的速度。
实验环境本次实验使用的操作系统是 Ubuntu 20.04 LTS 操作系统。
实验目标本次实验的主要目标是通过模拟请求页式内存管理系统,来了解和深入理解页式内存管理技术。
本次实验需要完成以下任务:1.编写一个简单的请求页式存储模拟器;2.使用该模拟器对作业和内存进行模拟;3.分析模拟结果并撰写实验报告。
实验过程阅读并理解作业说明在开始实验之前,我们首先需要阅读和了解具体的作业说明。
在本次实验中,我们需要完成一个请求页式存储模拟器,以及使用该模拟器对作业与内存进行模拟。
编写模拟器在了解了作业说明后,我们开始按照作业的要求,编写请求页式内存管理模拟器。
在这里,我们需要使用到Python 编程语言。
实际上,我们在编写该模拟器时,主要分为以下几步:1.文件操作:首先,我们需要通过读取文件中的数据来模拟进程对内存的请求。
在输入文件中,每一行表示一个请求,包含了进程 ID、请求的地址和访问类型。
2.内存分配:接着,我们需要模拟请求页式内存管理系统中对于内存分配的操作,即在访问时,将需要的页加载到内存中,如果内存已满,则需要选择一个页面将其从内存中移除,为新的页面腾出空间。
3.页面置换:如果进行页面置换,则需要选出最久未访问的页面并移出内存,空出空间用于新的页面,这就是所谓的“最久未使用”(LRU)策略。
进行模拟有了模拟器之后,我们就可以针对不同的作业和内存大小进行实验。
在实验的过程中,我们可以观察不同大小的内存和不同的作业怎样影响模拟的结果。
请求分页式存储管理的地址转换过程实现

第2部分、请求分页式存储管理的地址转换过程实现:●基本要求:在第1部分实验基础上实现进程的分页式内存分配和地址转换过程,并进一步实现请求分页式存储分配和地址转换过程。
页面置换算法至少应实现先进先出(FIFO )、最近最久未使用(LRU )等算法。
●参考学时:16学时 ●实验提示:1、建立一个位示图,用来模拟内存的分配情况,位示图的位数与设定的物理块个数相同。
程序启动时可利用一组随机0和1填充位示图,表示内存已被占用情况。
假设内存容量为64K ,块大小为1K ,则共有64个块,对应的位示图可能的值如下:该位示图表示内存的2(0字节第2位)、3(0字节第3位)、6(0字节第6位)、8(1字节第0位)、9(1字节第1位)、12(1字节第4位)、15(1字节第7位)…等块没有被占用。
2、创建进程时输入进程大小,并根据程序中设定的物理块大小为进程分配物理块,同时建立页表。
例如,在上图基础上,若要建立一个大小为5000字节的进程,则:● 计算出该进程共有“向上取整(5000/1024)=5”个页,需要占用5个内存块;● 建立空的页表,即长度为5的一维整数数组;● 从位示图中找出前5个“0”位在整个位示图中的位置号(即i 字节j 位为0,则该位的位置为8*i+j ),并将这些号依次填入页表中,同时把前5个“0”改为“1”,以示对应内存块已经分配。
第0字节 1 0 1 1 0 0 1 1 第2字节 1 1 1 0 0 1 1 1 第4字节 0 0 0 1 1 1 1 1 第6字节1 1 1 1 1 0 0 0第1字节 0 1 1 0 1 1 0 0 第3字节 1 0 0 0 0 1 1 1 第5字节 0 1 1 1 0 0 1 1 第7字节0 0 0 0 0 0 0 13、输入当前执行进程所要访问的逻辑地址,并将其转换成相应的物理地址。
4、进程退出时,根据其页表内容向位示图反向回填“1”。
5、扩充页表,将其变成支持请求和置换功能的二维页表(增加存在位等)。
实验报告关于请求调页存储管理方式

《网络操作系统》课程设计报告书题目:请求调页存储管理方式的模拟学号:学生姓名:指导教师:年月日目录一. 实验内容................................................... 错误!未定义书签。
二. 实验目的................................................... 错误!未定义书签。
三. 设计思想................................................... 错误!未定义书签。
四. 程序流程图................................................. 错误!未定义书签。
五. 程序清单................................................... 错误!未定义书签。
六. 运行结果及分析............................................. 错误!未定义书签。
七. 总结....................................................... 错误!未定义书签。
一、实验内容1.假设每个页面中可存放10条指令,分配给作业的内存块数为4。
2.用C语言或C++语言模拟一个作业的执行过程,该作业共有320条指令,即它的地址空间为32页,目前它的所有页都还未调入内存。
在模拟过程中,如果所访问的指令已在内存,则显示其物理地址,并转下一条指令。
如果所访问的指令还未装入内存,则发生缺页,此时需记录缺页的次数,并将相应页调入内存。
如果4个内存块均已装入该作业,则需进行页面置换,最后显示其物理地址,并转下一条指令。
在所有320指令执行完毕后,请计算并显示作业运行过程中发生的缺页率。
3.置换算法:请分别考虑最佳置换算法(OPT)、先进先出(FIFO)算法和最近最久未使用(LRU)算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页眉实验六:请求分页存储管理一.实验目的深入理解请求页式存储管理的基本概念和实现方法,重点认识其中的地址变换、缺页中断、置换算法等实现思想。
二.实验属性该实验为综合性、设计性实验。
三.实验仪器设备及器材普通PC386以上微机四.实验要求本实验要求2学时完成。
本实验要求完成如下任务:(1)建立相关的数据结构:页表、页表寄存器、存储块表等;(2)指定分配给进程的内存物理块数,设定进程的页面访问顺序;(3)设计页面置换算法,可以选择OPT、FIFO、LRU等,并计算相应的缺页率,以比较它们的优劣;(4)编写地址转换函数,实现通过查找页表完成逻辑地址到物理地址的转换;若发生缺页则选择某种置换算法(OPT、FIFO、LRU等)完成页面的交换;(5)将整个过程可视化显示出来。
实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。
实验后认真书写符合规范格式的实验报告(参见附录A),并要求用正规的实验报告纸和封面装订整齐,按时上交。
三、设计过程3.1算法原理分析OPT算法是未来最远出现,当当前内存中没有正要访问的页面时,置换出当前页面中在未来的访问页中最远出现的页面或再也不出现的页面。
FIFO算法是先进先出,当当前内存中没有正要访问的页面时,置换出最先进来的页面。
LRU算法是最近最久未使用,当当前内存中没有正要访问的页面时,置换出在当前页面中最近最久没有使用的页面。
3.2数据定义int length,num_page,count,seed; //length记录访问串的长度,num_page页面数,count 记录缺页次数页脚页眉存储访问,order//result记录结果int result[20][30],order[30],a[10];存储当前页面中的值串,a flag1等为标志变量int pos1,flag1,flag2,flag3; //pos1位置变量,//最佳void opt() char result1[30]; //记录缺页数组void fifo() //先进先出bool search(int n) //查找当前内存中是否已存在该页3.3流程图与运行截图开始得到执行的指令指令是否在内存中是最先存入指是令被淘汰否下面是否还有指令否得出命中率结束图6.1 FIFO()函数流程图;页脚页眉开输入内存中分配据第一个访问页初始化第一列还有请求访问页直接复制前一列内内存有空页直接插替换内存中将来不出现或离当前输出全部页面变结束算法流程图OPT图2.2页脚页眉四、小结本次课程设计目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。
要求设计随机页面产生程序,并说明随机的性能和其性能可能对及计算并输出FIFO对随机性要有一定的参数控制能力;算法的影响,LRU 算法在不同内存容量下的命中率。
、FIFO)由于上学期做过页面置换的实验,内容包括先进先出算法(种3OPT)和理想淘汰算法(),最近最久未使用页面置换算法(LRU算法思想简单明确,选好数据结构,思路清晰便基本没问题了。
所以相对来说,这次操作系统的课程设计容易许多,只是在之前实验基础上,要附加设计随机页面产生程序,对随机性要有一定的参数控制能力。
对于随机页面产生程序,我们之前没做过,在网上查阅资料,使,实现了简单的随机页面产生程序,()()和rand用了库函数srand功能基本完成。
我们知识所限,没有使用漂亮可视化界面编程实现功语言编程实现的。
不管怎么样,最终还是实现的本次能,用简单的C 课程设计要求的。
五、源程序#include<iostream>#include<stdlib.h>using namespace std;int length,num_page,count,seed;int result[20][30],order[30],a[10];int pos1,flag1,flag2,flag3;char result1[30];void init()int i; memset(a,-1,sizeof(a)); {cin>>length; :; 潣瑵?输入访问串的长度cin>>seed;; 潣瑵? 输入种子数控制产生的随机值:页脚页眉srand(seed); 潣瑵?产生的随机访问串:;for(i=0;i<length;i++){ order[i]=rand()_x0010_;cout<<order[i]<< <<endl;}潣瑵?输入页面的个数:; cin>>num_page;}void print(){ int i,j; 潣瑵?表示缺页<<endl;for( j=0;j<length;j++)printf(- ,order[j]); cout<<endl;for( i=0;i<num_page;i++){ for( j=0;j<length;j++){ if(result[i][j]==-1){ printf( );}else printf(- ,result[i][j]);} cout<<endl;}for( j=0;j<length;j++){ printf(, ,result1[j]);} cout<<endl;潣瑵?缺页率:<<count<<\/<<length;printf(=%.1lf,(count*1.0)/(length*1.0)*100);cout<<%<<endl;}bool search(int n) //查找当期内存是否已存在{ int i;for(i=0;i<num_page;i++){ if(a[i]==n) return true; }return false;}void opt() //最佳{ int i,pos[10],flag[10];while(1) {flag1=flag2=0;for(i=0;i<length;i++)页脚页眉{ if(!search(order[i])){ count++;result1[i]='*';if(a[num_page-1]!=-1) // 表示当前页面已满要淘汰一个{ memset(pos,-1,sizeof(pos));memset(flag,0,sizeof(flag));int j,k;for( j=i;j<length;j++)//找出当前页中的值在将来访问串中对应的最近位置{ for( k=0;k<num_page;k++){ if(order[j]==a[k]&&flag[k]==0){ pos[k]=j; flag[k]=1; }}}cout<<endl;int max=-10,max_pos;for( k=0;k<num_page;k++)//找出位置最远的那个值{ if(pos[k]==-1)//未出现则跳出,替换该值{ max_pos=k; break; }else if(max<pos[k]){ max=pos[k]; max_pos=k;}}a[max_pos]=order[i];}else //还有空页{ for(int j=0;j<num_page;j++){ if(a[j]==-1){ a[j]=order[i]; break;}}}}else result1[i]=' ';for(int j=0;j<num_page;j++){ result[j][i]=a[j];}}页脚页眉print();if(flag1==0&&flag2==0) break;}}void fifo() //先进先出{ int i,thisn=0;while(1){ count=0; flag1=flag2=0;for(i=pos1;i<length;i++){ if(!search(order[i])){ count++; result1[i]='*';if(a[num_page-1]!=-1) //表示当前页面已满要淘汰一个{ a[thisn]= order[i]; thisn++;if(thisn>=num_page) thisn=0;}else{ for(int j=0;j<num_page;j++){ if(a[j]==-1){ a[j]=order[i]; break; }}}}else result1[i]=' ';for(int j=0;j<num_page;j++){ result[j][i]=a[j]; }}print(); if(flag1==0&&flag2==0) break;}}void main() //主函数{int m;printf( 1.OPT.\n);printf( 2.FIFO.\n);printf( 0.退出.\n);printf( 选择所要操作:);页脚页眉scanf(%d,&m);switch(m){ case 1: init(); fifo( ); main(); break;case 2: init(); lru( ); main(); break;case 0: break;敤慦汵?瀠楲瑮?选择错误,重新选择.); main(); }}页脚。