带电粒子在交变电场中的运动
专题七、带电粒子在交变电场中的运动

带电粒子在交变电场中的运动带电粒子在交变电场中的运动分析,涉及电场知识、力学知识等内容,随着科技的发展及高考试题应用性、实践性的增强和提高,本训练点知识在整个电磁学中的位置愈加显得重要.通过训练,逐步掌握此类问题的分析方法.第11题为创新题,使我们了解本训练点知识在实践中的应用.常出现的一些变化是:1释放位置;2所加电压波形;3电压、板间距、周期、比荷等间的约束。
往复运动:在两金属板之间加交变电压,粒子平行金属板射入,需要考虑的情况:1.粒子有沿极板方向的初速度。
2.受垂直于极板方向的交变电场力。
3.粒子通过电场时间相对电场周期较大,运动过程中受变化的电场力(粒子运动过程中受力随时间在变。
4.在电压波形上做文章,在入射时刻上,入射位置上。
5.常规的考法:矩形电压,沿中线射入,t=0或t=T/4射入。
6.t=0射入,整周期射出时平行极板射出;t=T/4射入整周期射出时平行且沿中线射出。
(不打到极上)t=0射入,整周期射出时平行极板射出;t=T/4射入整周期射出时平行且沿中线射出1.在两金属板(平行)分别加上如图2—7—1中的电压,使原来静止在金属板中央的电子有可能做振动的电压图象应是(设两板距离足够大)2.有一个电子原来静止于平行板电容器的中间,设两板的距离足够大,今在t=0开始在两板间加一个交变电压,使得该电子在开始一段时间内的运动的v—t图线如图2—7—2(甲)所示,则该交变电压可能是图2—7—2(乙)中的哪些3.一个匀强电场的电场强度随时间变化的图象如图2—7—3所示,在这个匀强电场中有一个带电粒子,在t=0时刻由静止释放,若带电粒子只受电场力的作用,则电场力的作用和带电粒子的运动情况是A.带电粒子将向一个方向运动B.0~3 s内,电场力的冲量等于0,电场力的功亦等于0C.3 s末带电粒子回到原出发点D.2 s~4 s内电场力的冲量不等于0,而电场力的功等于04.一束电子射线以很大恒定速度v0射入平行板电容器两极板间,入射位置与两极板等距离,v0的方向与极板平面平行.今以交变电压U=U m sinωt加在这个平行板电容器上,则射入的电子将在两极板间的某一区域内出现.图2—7—4中的各图以阴影区表示这一区域,其中肯定不对的是5.图2—7—5中A、B是一对中间开有小孔的平行金属板,两小孔的连线与金属板面相垂直,两极板的距离为l,两极板间加上低频交变电流.A板电势为零,B板电势U=U0c osωt,现有一电子在t=0时穿过A板上的小孔射入电场,设初速度和重力的影响均可忽略不计,则电子在两极板间可能A.以AB间的某一点为平衡位置来回振动B.时而向B板运动,时而向A板运动,但最后穿出B板C.如果ω小于某个值ω0,l小于某个值l0,电子一直向B板运动,最后穿出B板D.一直向B板运动,最后穿出B板,而不论ω、l为任何值6.如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律如图乙所示,电子原来静止在左极板小孔处,不计电子的重力,下列说法正确的是( )A.从t=0时刻释放电子,电子必将始终向右运动,直到打到右极板上B.从t=0时刻释放电子,电子可能在两极板间振动C.从t=T/4时刻释放电子,电子必将在两极板间振动D.从t=3T/8时刻释放电子,电子必将从左极板上的小孔中穿出7、如图6所示,是一个匀强电场的电场强度随时间变化的图象,在这个匀强电场中有一个带电粒子,在t=0时刻由静止释放,若带电粒子只受电场力作用,则电场力的作用和带电粒子的运动情况是()A .带电粒子将始终向一个方向运动B .0-3s 内,电场力的总冲量为零,电场力的总功不为零C .4s 末带电粒子回到原出发点D .2-4s 内电场力的总冲量不为零,但电场力的总功为零8.如图甲所示,真空中水平放置两块长度为2d的平行金属板P、Q,两板间距为d,两板间加上如图乙所示最大值为U0的周期性变化的电压.在两板左侧紧靠P板处有一粒子源A,自t=0时刻开始连续释放初速度大小为v0,方向平行于金属板的相同带电粒子.t=0时刻释放的粒子恰好从Q板右侧边缘离开电场.已知电场变化周期02d T v = ,粒子质量为m ,不计粒子重力及相互间的作用力.则 A. 在t=0时刻进入的粒子离开电场时速度大小仍为v 0B. 粒子的电荷量为2002mv U C. 在18t T = 时刻进入的粒子离开电场时电势能减少了2018mvD. 在14t T = 时刻进入的粒子刚好从P 板右侧边缘离开电场选择题答案:1.BC 2.AB 3.BCD 4.ACD 不同时刻入射的电子在不同瞬时电压下,沿不同抛物线做类平抛运动,其轨迹符合方程2202eU y x mv d =(U 为变化电压),x 轴正向为初速v 0方向,y 轴的正方向垂直于初速v 0向上或向下.电压低时从板间射出,电压高时打在板上,电子在板间出现的区域边界应为开口沿纵坐标方向的抛物线. 5.AC 6.A 7.D 8.AD9.真空中有足够大的两个互相平行的金属板,a 、 b之间的距离为d ,两板之间的电压为ab a b U U U =-,按如图9-10所示的规律变化,其周期为T ,在t =0时刻,一带正电的的粒子仅在电场力作用下,由a板从静止向b 板运动,并于t=nT ( 为自然数)时刻恰好到达 板,求:1.若该粒子在/6t T = 时刻才从a 板开始运动,那么粒子经历同样长的时间,它能运动到离a 板多远的距离?2.若该粒子在/6t T = 时刻才从a 板开始运动,那么粒子经历多长的时间到达b 板解:(1)当带正电粒子从在t=0时刻,一带电的粒子仅在电场力作用下,由a 板从静止向b 板运动过程中,前半个周期加速,后半个周期减速为零,如此反复一直向前运动,它在一个周期内的位移是:22112()224T S a aT =⨯=所以 214d nS naT == (n=1.2.3…)若该粒子在T/6 时刻才从a 板开始运动,则在每个周期内,前三分之二周期向前运动,后三分之一周期返回,一个周期的总位移: '222111()2()2232612T T S a a aT =⨯-⨯=粒子经历同样长的时间,总位移为:''2112d nS naT ==(n=1.2.3…) 因此'13d d =,离a 板距离为13d(2)因为'13d d =,所以从总位移的角度来讲,到达b 板的时间也应该为原来的3倍即:'33t t nT ==,但要注意的是带电粒子在每一个周期当中都存在着来回的往复运动,因此可预见到在最后一个周期的时间内,从b 板所在位置来讲,理论上带电粒子恰好两次经过b 板,其实在第一次经过就已碰上b ,所以根本不存在第二次,因此后面的时间要减去(如图甲)要减去的时间为126x t t T ∆=+⨯ 最后过程可倒过来看:2211()2226x T at a =⨯, 2x t T =所以213t T T ∆=+ 可得:1233t nT T T =-- 10、如图1所示,真空中相距d =5cm 的两块平行金属板A 、B 与电源连接(图中未画出),其中B 板接地(电势为零),A 板电势变化的规律如图2所示。
高中物理每日一点十题之带电粒子在交变电场中的运动

高中物理每日一点十题之带电粒子在交变电场中的运动一知识点1、带电粒子在交变电场中的直线运动电场强度的大小和方向随时间做周期性变化的电场叫作交变电场(常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等).带电粒子从静止开始运动,或平行电场方向射入交变电场,带电粒子在交变电场中做直线运动.此类问题中,带电粒子进入电场时初速度为零,或初速度方向与电场方向平行,带电粒子在交变电场静电力的作用下,做加速、减速交替的直线运动.(1)该类问题通常用动力学知识分析求解.重点分析各段时间内的加速度、运动性质,以及每段时间与交变电场的周期间的关系等.(2)常用v-t图像法来处理此类问题,通过画出粒子的v-t图像,可将粒子复杂的运动过程形象、直观地反映出来,便于求解.2、带电粒子在交变电场中的曲线运动带电粒子以一定的初速度垂直于电场方向进入交变电场,粒子做曲线运动.该类问题的主要特征是:带电粒子的初速度一般很大,粒子通过交变电场时所用时间极短,故可认为粒子在电场中运动时,所受静电力为恒力,则粒子在电场中做类平抛运动,其分析方法及相关结论与示波管的工作原理相同,即带电粒子飞出电场时的偏转位移y与偏转电场的电压U成正比(y ∝U),同时带电粒子打在屏上的位置偏离中心的位移Y,也与偏转电场的电压U成正比(Y∝U).十道练习题(含答案)一、单选题(共5小题)1. 如图甲所示,A板电势为0,A板中间有一小孔,B板的电势变化情况如图乙所示,一质量为m、电荷量为q的带负电粒子在t=时刻以初速度为0从A板上的小孔处进入两极板间,仅在电场力作用下开始运动,恰好到达B板。
则( )甲乙A. A、B两板间的距离为B. 粒子在两板间的最大速度为C. 粒子在两板间做匀加速直线运动D. 若粒子在t=时刻进入两极板间,它将时而向B板运动,时而向A板运动,最终打向B板2. 如图7甲所示,在间距足够大的平行金属板A、B之间有一电子,在A、B之间加上如图乙所示规律变化的电压,在t=0时刻电子静止且A板电势比B板电势高,则( )图7A. 电子在A、B两板间做往复运动B. 在足够长的时间内,电子一定会碰上A板C. 当t=时,电子将回到出发点D. 当t=时,电子的位移最大3. 如图(a)所示,两个平行金属板P、Q竖直放置,两板间加上如图(b)所示的电压.t=0时,Q板比P板电势高5 V,此时在两板的正中央M点放一个电子,速度为零,电子在静电力作用下运动,使得电子的位置和速度随时间变化.假设电子始终未与两板相碰.在0<t<8×10-10 s的时间内,这个电子处于M点的右侧、速度方向向左且大小逐渐减小的时间是( )A. 0<t<2×10-10 sB. 2×10-10 s<t<4×10-10 sC. 4×10-10 s<t<6×10-10 sD. 6×10-10 s<t<8×10-10 s4. 在平行板电容器A、B两板上加上如图所示的交变电压,开始B板的电势比A板高,这时两板中间原来静止的电子在电场力作用下开始运动,设电子在运动中不与极板发生碰撞,则下述说法正确的是(不计电子重力)( )A. 电子一直向A板运动B. 电子一直向B板运动C. 电子先向A板运动,然后向B板运动,再返回A板做周期性来回运动D. 电子先向B板运动,然后向A板运动,再返回B板做周期性来回运动5. 如图甲所示,两平行正对的金属板A、B间加有如图乙所示的交变电压,一重力可以忽略不计的带正电粒子固定在两板的正中间P处.若在t0时刻释放该粒子,粒子会时而向A板运动,时而向B板运动,并最终打在A板上.则t0可能属于的时间段是( )A. 0<t0<B. <t0<C. <t0<TD. T<t0<二、多选题(共3小题)6. 带正电的微粒放在电场中,场强的大小和方向随时间变化的规律如图所示.带电微粒只在电场力的作用下由静止开始运动,则下列说法中正确的是( )A. 微粒在0~1 s内的加速度与1~2 s内的加速度相同B. 微粒将沿着一条直线运动C. 微粒做往复运动D. 微粒在第1 s内的位移与第3 s内的位移相同7. 如图所示,两金属板(平行)分别加上如图中的电压,能使原来静止在金属板中央的电子(不计重力)有可能做往返运动的电压图象应是(设两板距离足够大)( )A. B.C. D.8. 如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律如图乙所示.电子原来静止在左极板小孔处(不计重力作用).下列说法中正确的是( )A. 从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B. 从t=0时刻释放电子,电子可能在两板间振动C. 从t=时刻释放电子,电子可能在两板间振动,也可能打到右极板上D. 从t=时刻释放电子,电子必将打到左极板上三、计算题(共2小题)9. 如图甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线。
微专题 电场中的图像问题 带电粒子在交变电场中的运动

栏目索引
例3 (多选)(2018南京、盐城一模)电荷量为Q1和Q2的两点电荷分别固 定在x轴上的O、C两点,规定无穷远处电势为零,x轴上各点的电势随x的 变化关系如图所示。则 ( BD ) A.Q1的电荷量小于Q2的电荷量 B.G点处电场强度的方向沿x轴负方向 G点静止释放,仅在电 场力作用下一定能到达D点 D点移到J点,电场力先做正功后做负功
栏目索引
2.(多选)(2017江苏单科)在x轴上有两个点电荷q1、q2,其静电场的电势φ 在x轴上的分布如图所示。下列说法正确的有 ( AC ) A.q1和q2带有异种电荷 B.x1处的电场强度为零 x1移到x2,电势能减小 x1移到x2,受到的电场力增大
栏目索引
解析 由x1处电势为零可知,两点电荷q1和q2带有异种电荷,A项正 确;在φ-x图像中,图像切线的斜率表示电场强度,则x1处的电场强度不为 零,B项错误;且有x1到x2电场强度逐渐减小,负电荷受到的电场力逐渐减 小,D项错误;由Ep=qφ可知,负电荷在电势高处的电势能低,负电荷从x1移 到x2,电势能减小,C项正确。
栏目索引
方法技巧 把握三点,正确解答该类问题 (1)把电场力和重力合成一个等效力,称为等效重力。 (2)等效重力的反向延长线与圆轨迹的交点为带电体在等效重力场中运 动的最高点。 (3)类比“绳球”“杆球”模型临界值的情况进行分析解答。
栏目索引
随堂巩固
1.(多选)一电荷量为+q的粒子只在电场力作用下沿x轴做直线运动,规定 x轴正方向为电场强度正方向,x轴上各点的电场强度E随x坐标的变化图 线如图所示。A(x1,0)、B(-x1,0)为粒子运动轨迹上的两点。下列说法正 确的是 ( BD ) A.A、B两点的电场强度和电势均相同 A、B两点时的速度大小相同 A、B两点时的加速度相同 A、B两点时电势能相同
高中物理必修三 第二章 专题强化4 带电粒子在交变电场中的运动

同理,若t=
3T 8
时刻释放电子,电子有可
能到达右极板,也有可能回到左极板,
这取决于两板间的距离,所以选项D错误.
123456789
能力综合练
6.如图(a)所示,两平行正对的金属板A、B间加有如图(b)所示的交变电
压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处,若在
t0时刻释放该粒子,粒子会时而向A板运动,时而向B板运动,并最终打
√A.所有粒子都不会打到两极板上 √B.所有粒子最终都垂直电场方向
射出电场
√C.运动过程中所有粒子的最大动能不可能超过2Ek0
D.只有t=nT2 (n=0,1,2,…)时刻射入电场的粒子才能垂直电场方向射出 电场
带电粒子在垂直于电场方向上做匀速直线
运动,在沿电场方向上,做加速度大小不
变、方向周期性变化的变速直线运动. 由t=0时刻进入电场的粒子运动情况可知,粒子在平行金属板间运动
√B.微粒将沿着一条直线运动
C.微粒将做往复运动
√D.微粒在第1 s内的位移与第3 s内的位移相同
123456789
设微粒的速度方向、位移方向向右为正,作出微粒的v-t图像如图所 示.由图可知B、D选项正确.
123456789
3.在空间中有正方向水平向右、大小按如图所示图线变化的电场,位于 电场中A点的电子在t=0时速度为零,在t=1 s时,电子离开A点的距离为l. 那么在t=2 s时,电子将处在 A.A点 B.A点左方l处 C.A点右方2l处
√D.A点左方2l处
123456789
第1 s内电场方向向右,电子受到的静电力方向向 左,电子向左做匀加速直线运动,位移大小为l, 第2 s内电子受到的静电力方向向右,由于电子此 时有向左的速度,因而电子继续向左做匀减速直 线运动,根据运动的对称性,位移大小也是l, t=2 s时电子的总位移大小为2l,方向向左,故选D.
带电粒子在交变电场中的运动轨迹专题

带电粒子在交变电场中的运动轨迹专题
一、交变电场的基本概念
交变电场是指在时域上呈周期性变化的电场。
在交变电场中,
带电粒子的运动方程比直流电场中复杂得多。
二、带电粒子在交变电场中的运动情况
带电粒子在交变电场中会发生两种运动:漂移运动和回旋运动。
1.漂移运动
漂移运动是带电粒子在交变电场的作用下沿着电场方向偏移。
漂移速度与电场强度和频率有关。
2.回旋运动
带电粒子在交变电场的作用下还会发生径向周期运动,这种运
动叫做回旋运动。
三、带电粒子轨迹的计算方法
在交变电场中,带电粒子的运动轨迹比直流电场中复杂得多,
常用的计算方法有以下几种:
1.迭代法
迭代法是用于求解微分方程的常用数值计算方法。
通过将微分方程进行离散化,计算出每个时间点上带电粒子的位置和速度。
2.数值积分法
数值积分法将微分方程转化为积分方程,再通过数值方法计算出每个时间点上带电粒子的位置和速度。
3.分析法
分析法通过对微分方程进行分析,求出带电粒子在交变电场中的运动函数,进而计算出其轨迹。
四、结论
带电粒子在交变电场中的运动轨迹是十分复杂的,需要利用数学计算方法来求解。
研究带电粒子在交变电场中的运动轨迹对于理解带电粒子在电场中的行为规律十分重要,也为电磁波理论的研究提供了基础。
带电粒子在交变电场中的运动

1.匀强电场的电场强度E随时间t变化的图象如图所示。当t=0 时,在此匀强电场中由静止释放一个带电粒子(带正电),设带 电粒子只受电场力的作用,则下列说法中正确的是(D ) A.带电粒子将始终向同一个方向运动 B.2 s末带电粒子回到原出发点 C.3 s末带电粒子的速度不为零 D.0~3 s内,电场力做的总功为零
D.T<t0<98T
5.如图所示,在两平行金属板中央有一个静止的电子(不计重 力),当两板间的电压分别如图中甲、乙、丙、丁所示,电子 在板间运动(假设不与板相碰),下列说法正确的是( D ) A.电压是甲图时,在 0~T 时间内,电子的电势能一直减少
B.电压是乙图时,在 0~T2时间内,电子的电势能先增加后 ห้องสมุดไป่ตู้少
解答带电粒子在交变电场中运动的思维方法 (1)分析时从两条思路出发:一是力和运动的关系,根据牛 顿第二定律及运动学规律分析;二是功能关系。 (2)因电场随时间变化,交变电场中带电粒子所受到电场力 出现周期性变化,导致运动过程出现多个阶段,分段分析是 常见的解题思路。借助速度图象能更全面直观地把握运动过 程,处理起来比较方便。
带电粒子在交变电场中的运动
1.常见的交变电场 常见的产生交变电场的电压波形有方形 波、锯齿波、正弦波等。
2.常见的类型 (1)粒子做单向直线运动(一般用牛顿运 动定律求解). (2)粒子做往返运动(一般分段研究). (3)粒子做偏转运动(一般根据交变电场 特点分段研究).
3.常用的分析方法 (1)带电粒子在交变电场中的运动,通常只讨论电压的大小不变、 方向做周期性变化(如方波)且不计粒子重力的情形。在两个相互 平行的金属板间加交变电压时,在两板中间便可获得交变电场。 此类电场从空间看是匀强电场,即同一时刻,电场中各个位置电 场强度的大小、方向都相同;从时间看是变化的,即电场强度的 大小、方向都随时间而变化。
带电粒子在交变电场中的运动

直 到 打 到 右 极板 上
B 从 o时刻释 放 电子 , . = 电子 可 能在 两板 间振 动
c 从 拄 时刻释放 电子 , . 电子可能在两板 间振
动 , 可能 打 到 右极 板 上 也
1J B (A
I
l
I
I
I
D. £ 从 =
板 上
时刻 释 放 电子 ,电 子 必 将 打 到 左 极
l U
(
)
会在第一次 向左运动过程 中打在左极板上 .
镲寨 A C
I I l
f
法J _ }一 一’ 一 ~ 一 8
f
. — — — . — — .
I 1 l
I t
I I I
f I ● 一
f
例 2 如 图 3所 示 , 曰是 一 对 平 行 放 置 的 金 A、
他
系
粒 子 在 交变 电场 中酌
电 舔
口 张 占新
带 电粒子在匀强 电场 中的运动 ,是大家都 非常 度减 小到零 后 , 又开 始 向右匀加 速 , 接着 匀减 速
… …
熟悉 的运动 , 其运动规律是 比较容易研究 的 , 但研究 带 电粒子在 “ 交变 电场 ” 中的运动规律 时 , 对物 理过 程 的分析能力 、 想象能力 均有较高 的要求 , 它既是高 考 的一个热 点 , 也是 复习的难点. 电粒子在交 变电 带 场 中的运动相 当于质点在一个周期性的外力作用下
极板接地 , 中间有小孔 , 右极板 电势 随时间变化的规 电子将 在第一次 向右运动过 程 中就 打在右极 板上 ; 律 如 图 2所 示 . 电子 开始 时静 止在 左 极 板 小孔 处 , 下 如果第一次 向右运动没有打在右极板 上 ,那 就一定
高二上物理带电粒子在交变电场中的运动(教案+练习+答案)

一、带电粒子在交变电场中的运动1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等。
2.常见的试题类型此类题型一般有三种情况:(1)粒子做单向直线运动(一般用牛顿运动定律求解);(2)粒子做往返运动(一般分段研究);(3)粒子做偏转运动(一般根据交变电场特点分段研究)。
3.常用的分析方法(1)带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)且不计粒子重力的情形。
在两个相互平行的金属板间加交变电压时,在两板中间便可获得交变电场。
此类电场从空间看是匀强的,即同一时刻,电场中各个位置处电场强度的大小、方向都相同;从时间看是变化的,即电场强度的大小、方向都随时间而变化。
①当粒子平行于电场方向射入时,粒子做直线运动,其初速度和受力情况决定了粒子的运动情况,粒子可以做周期性的运动。
②当粒子垂直于电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动具有周期性。
(2)研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况。
根据电场的变化情况,分段求解带电粒子运动的末速度、位移等。
(3)对于锯齿波和正弦波等电压产生的交变电场,一般来说题中会直接或间接提到“粒子在其中运动时电场为恒定电场”,故带电粒子穿过电场时可认为是在匀强电场中运动。
例1.(多选)带正电的微粒放在电场中,场强的大小和方向随时间变化的规律如图所示,微粒只在电场力的作用下由静止开始运动,则下列说法中正确的是()A.微粒在0~1 s内的加速度与1~2 s内的加速度相同B.微粒将沿着一条直线运动C.微粒做往复运动D.微粒在第1 s内的位移与第3 s内的位移大小相等解析:选BD 解析:AD 由图看出,E1和E2大小相等、方向相反,所以微粒奇数秒内和偶数秒内的加速度大小相等、方向相反,即微粒在0~1 s内的加速度与1~2 s内的加速度不相同,作出微粒的速度图象如图:根据运动的对称性可知在2 s末的速度恰好是0,即微粒第1 s做加速运动,第2 s 做减速运动,然后再加速,再减速,一直持续下去,微粒将沿着一条直线运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(时间60分钟,赋分100分)训练指要带电粒子在交变电场中的运动分析,涉及电场知识、力学知识等内容,随着科技的发展及高考试题应用性、实践性的增强和提高,本训练点知识在整个电磁学中的位置愈加显得重要.通过训练,逐步掌握此类问题的分析方法.第11题为创新题,使我们了解本训练点知识在实践中的应用.一、选择题(每小题5分,共25分)1.在两金属板(平行)分别加上如图2—7—1中的电压,使原来静止在金属板中央的电子有可能做振动的电压图象应是(设两板距离足够大)图2—7—12.有一个电子原来静止于平行板电容器的中间,设两板的距离足够大,今在t=0开始在两板间加一个交变电压,使得该电子在开始一段时间内的运动的v—t图线如图2—7—2(甲)所示,则该交变电压可能是图2—7—2(乙)中的哪些图2—7—2(甲)图2—7—2(乙)3.一个匀强电场的电场强度随时间变化的图象如图2—7—3所示,在这个匀强电场中有一个带电粒子,在t=0时刻由静止释放,若带电粒子只受电场力的作用,则电场力的作用和带电粒子的运动情况是图2—7—3A.带电粒子将向一个方向运动~3 s内,电场力的冲量等于0,电场力的功亦等于0s末带电粒子回到原出发点s~4 s内电场力的冲量不等于0,而电场力的功等于04.一束电子射线以很大恒定速度v0射入平行板电容器两极板间,入射位置与两极板等距离,v0的方向与极板平面平行.今以交变电压U=U m sinωt加在这个平行板电容器上,则射入的电子将在两极板间的某一区域内出现.图2—7—4中的各图以阴影区表示这一区域,其中肯定不对的是图2—7—45.图2—7—5中A、B是一对中间开有小孔的平行金属板,两小孔的连线与金属板面相垂直,两极板的距离为l,两极板间加上低频交变电流.A板电势为零,B板电势U=U0c osωt,现有一电子在t=0时穿过A板上的小孔射入电场,设初速度和重力的影响均可忽略不计,则电子在两极板间可能图2—7—5A.以AB间的某一点为平衡位置来回振动B.时而向B板运动,时而向A板运动,但最后穿出B板C.如果ω小于某个值ω0,l小于某个值l0,电子一直向B板运动,最后穿出B板D.一直向B板运动,最后穿出B板,而不论ω、l为任何值二、填空题(每小题6分,共12分)6.如图2—7—6(甲)所示,在两块相距d=50 cm的平行金属板A、B间接上U=100 V 的矩形交变电压,(乙)在t=0时刻,A板电压刚好为正,此时正好有质量m=10-17kg,电量q=10-16 C的带正电微粒从A板由静止开始向B板运动,不计微粒重力,在t= s时,微粒离A板的水平距离是______s.图2—7—67.如图2—7—7所示,水平放置的平行金属板下板小孔处有一静止的带电微粒,质量m,电量-q,两板间距6 mm,所加变化电场如图所示,若微粒所受电场力大小是其重力的2倍,要使它能到达上极板,则交变电场周期T至少为_______.图2—7—7三、计算题(共63分)8.(15分)N个长度逐个增大的金属圆筒和一个靶,沿轴线排成一串,如图2—7—8所示(图中只画出了6个圆筒做为示意).各筒和靶相间的接到频率为f,最大电压为U的正弦交流电源的两端.整个装置放在真空容器中,圆筒的两底面中心开有小孔,有一质量为m,带电量为q的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速(圆筒内都没有电场),缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差φ1-φ2=-φ,为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子动能.图2—7—89.(15分)如图2—7—9(甲)为平行板电容器,板长l=0.1 m,板距d=0.02 m.板间电压如图(乙)示,电子以v=1×107 m/s的速度,从两板中央与两板平行的方向射入两板间的匀强电场,为使电子从板边缘平行于板的方向射出,电子应从什么时刻打入板间?并求此交变电压的频率.(电子质量m=×10-31 kg,电量e=×10-19 C)图2—7—910.(15分)如图2—7—10甲所示,A、B为两块距离很近的平行金属板,板中央均有小孔.一电子以初动能E kO=120 eV,从A板上的小孔O不断地垂直于板射入A、B之间,在B板的右侧,偏转板M、N组成一匀强电场,板长L=2×10-2m,板间距离d=4×10-3m;偏转板加电压为U2=20 V,现在A、B间加一个如图乙所示的变化电压U1,在t=2 s时间内,A板电势高于B板,则在U1随时间变化的第一周期内.图2—7—10(1)在哪段时间内,电子可从B板上小孔O′射出?(2)在哪段时间内,电子能从偏转电场右侧飞出?(由于A、B两板距离很近,可以认为电子穿过A、B所用时间很短,忽略不计)11.(18分)示波器是一种多功能电学仪器,可以在荧光屏上显示出被检测的电压波形.它的工作原理等效成下列情况:(如图2—7—11所示)真空室中电极K发出电子(初速不计),经过电压为U1的加速电场后,由小孔S沿水平金属板,A、B间的中心线射入板中.板长L,相距为d ,在两板间加上如图乙所示的正弦交变电压,前半个周期内B 板的电势高于A 板的电势,电场全部集中在两板之间,且分布均匀.在每个电子通过极板的极短时间内,电场视作恒定的.在两极板右侧且与极板右端相距D 处有一个与两板中心线垂直的荧光屏,中心线正好与屏上坐标原点相交.当第一个电子到达坐标原点O 时,使屏以速度v 沿-x 方向运动,每经过一定的时间后,在一个极短时间内它又跳回到初始位置,然后重新做同样的匀速运动.(已知电子的质量为m ,带电量为e ,不计电子重力)求:图2—7—11(1)电子进入AB 板时的初速度;(2)要使所有的电子都能打在荧光屏上,图乙中电压的最大值U 0需满足什么条件?(3)要使荧光屏上始终显示一个完整的波形,荧光屏必须每隔多长时间回到初始位置?计算这个波形的最大峰值和长度.在如图2—7—11丙所示的x -y 坐标系中画出这个波形.参考答案一、不同时刻入射的电子在不同瞬时电压下,沿不同抛物线做类平抛运动,其轨迹符合方程y =dmv eU 202 x 2(U 为变化电压),x 轴正向为初速v 0方向,y 轴的正方向垂直于初速v 0向上或向下.电压低时从板间射出,电压高时打在板上,电子在板间出现的区域边界应为开口沿纵坐标方向的抛物线.二、6.0.4 m 7. ×10-2 s三、8.由于金属筒对电场的屏蔽作用,使离子进入筒后做匀速直线运动,只有当离子到达两筒的缝隙处才能被加速.这样离子在筒内运动时间为t=f T 212= (T 、f 分别为交变电压周期、频率)①,设离子到第1个筒左端速度为v 1,到第n 个筒左端速度v n ,第n 个筒长为L n ,则L n =v n ·t ②从速度v 1加速v n 经过了(n -1)次加速,由功能关系有:21mv n 2=21mv 12+(n -1)·qU ③ 联立得L n =mn qU v f )1(22121-+ E k n =221n mv =21mv 12+(n -1)qU 令n =N,则得打到靶上离子的最大动能21mv N 2=21mv 12+(N -1)qU9.电子水平方向匀速直线运动,竖直方向做变加速运动.要使电子从板边平行于板方向飞出,则要求电子在离开板时竖直方向分速度为0,并且电子在竖直方向应做单向直线运动向极板靠近.此时电子水平方向(x 方向)、竖直方向(y )方向的速度图线分别如图所示 .电子须从t =n 2T (n =0,1,2,…)时刻射入板间,且穿越电场时间t =kT (k =1,2…)①,而电子水平位移l =vt ②竖直位移21d =2120)2(T md eU ·2k ③三式联立得,T =leU mvd 022=×10-9 s,k =4,故f =1/T =4×108 Hz,且k =4.10.(1)0~2 s 电子能从O ′射出,动能必须足够大,由功能关系得U 1e <E k0得U 1<120 V 所以当t <或t >时,粒子可由B 板小孔O ′射出.(2)电子进入偏转极板时的水平速度为v ,通过偏转电极时,侧向偏移是y , y =d mv eL U 2222 能从偏转电场右侧飞出的条件是y <2d 得21mv 2>2222d l eU 代入数字的21mv 2>250 eV,即AB 间必须有130 V 的加速电压,所以当 s <t < s 时,电子能从偏转电场右侧飞出,如图所示.11.(1)电子在加速电场中运动,据动能定理,有eU 1=21mv 12,v 1=m eU 12 (2)因为每个电子在板A 、B 间运动时,电场均匀、恒定,故电子在板A 、B 间做类平抛运动,在两板之外做匀速直线运动打在屏上.在板A 、B 间沿水平方向运动时,有 L =v 1t ,竖直方向,有 y ′=21at 2,且a =mdeU , 联立解得 y ′=2122mdv eUL .只要偏转电压最大时的电子能飞出极板打在屏上,则所有电子都能打在屏上,所以 y m ′=21202mdv L eU <2d ,U 0<2122L U d . (3)要保持一个完整波形,需每隔周期T 回到初始位置,设某个电子运动轨迹如图所示,有tan θ=L y mdv eUL v v ''==⊥211,又知 y ′=2122mdv eUL ,联立得L ′=2L . 由相似三角形的性质,得y yL DL '=+2/2,则 y =14)2(dU LUD L -,峰值为 y m =14)2(dU LUD L +.波形长度为 x 1=vT . 波形如图所示.。