3 稳恒电流的磁场习题详解

合集下载

高中物理稳恒电流试题经典及解析

高中物理稳恒电流试题经典及解析

高中物理稳恒电流试题经典及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v .(a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】(1)(a )电流Q I t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ=柱体体积V Sl =柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总= 设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆ 由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯ 【解析】 【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++; 电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm=联立解得46.2510/q C kg m-=⨯3.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g .(1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL 【解析】【分析】【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52gr v =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R R εω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-= 从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mg E q= 杆转动的电动势21112BL εω=两板间电场强度11E d ε=联立解得12mgd qBL ω= 如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-= 杆转动的电动势22212BL εω=两板间电场强度22E d ε=联立解得227mgd qBL ω= 综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgd qBL qBL ω≤≤.4.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A;(2)0.096 N,方向沿导轨水平向左【解析】【分析】【详解】(1)由闭合电路欧姆定律可得:I=64.50.5EAR r=++=1.2A(2)安培力的大小为:F=BIL=0.04×1.2×2N=0.096N安培力方向为沿导轨水平向左5.如图所示,已知R3=3Ω,理想电压表读数为3v,理想电流表读数为2A,某时刻由于电路中R3发生断路,电流表的读数2.5A,R1上的电压为5v,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U 2 + I 2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLs qIt R ==得44220220B L s m gR t mgR B L += (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L ∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.如图所示电路中,R 1=6 Ω,R 2=12 Ω,R 3=3 Ω,C =30 μF ,当开关S 断开,电路稳定时,电源总功率为4 W ,当开关S 闭合,电路稳定时,电源总功率为8 W ,求:(1)电源的电动势E 和内电阻r ;(2)在S 断开和闭合时,电容器所带的电荷量各是多少?【答案】(1)8V ,1Ω (2)1.8×10﹣4C ,0 C【解析】【详解】(1)S 断开时有:E=I 1(R 2+R 3)+I 1r…①P 1=EI 1…②S 闭合时有:E=I 2(R 3+1212R R R R +)+I 2r…③ P 2=EI 2…④由①②③④可得:E=8V ;I 1=0.5A ;r=1Ω;I 2=1A(3)S 断开时有:U=I 1R 2得:Q 1=CU=30×10-6×0.5×12C=1.8×10-4CS 闭合,电容器两端的电势差为零,则有:Q 2=08.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:(1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量;(3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J 【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解.【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s感应电动势为:E 1=BL v 1根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则速度为:v 2=at =6 m/s感应电动势为:E 2=BLv 2=12 V根据闭合电路欧姆定律:224MNPQE I A R R ==+ 安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得:F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比, 安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.9.为了检查双线电缆CE 、FD 中的一根导线由于绝缘皮损坏而通地的某处,可以使用如图所示电路。

稳恒电流的磁场习题解答

稳恒电流的磁场习题解答

第十四章 稳恒电流的磁场习题解答(仅作参考)14.1 通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B 。

[解答] 电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定律: 002d d 4I r μπ⨯=l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为012d d 4I lB aμπ=, 由于 d l = a d φ, 积分得11d L B B =⎰3/200d 4I aπμϕπ=⎰038Ia μ=. OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为022d sin d 4I l B r μθπ=,由于 l = b cot(π - θ) = -b cot θ,所以 d l = b d θ/sin 2θ;又由于 r = b /sin(π - θ) = b /sin θ,可得 02sin d d 4I B bμθθπ=,积分得3/402/2d sin d 4LI B B bππμθθπ==⎰⎰3/400/2(cos )48IIbbππμθππ=-=同理可得CD 段在O 点产生的磁场B 3 = B 2. O 点总磁感应强度为00123384I IB B B B a bμπ=++=+. 14.6 在半径为R = 1.0cm 的无限长半圆柱形导体面中均匀地通有电流I =5.0A ,如图所示.求圆柱轴线上任一点的磁感应强度B = ?[解答] 取导体面的横截面,电流方向垂直纸面向外. 半圆的周长为 C = πR , 电流线密度为 i = I/C = IπR .在半圆上取一线元d l = R d φ代表无限长直导线的截面,电流元为图14.1d I = i d l = I d φ/π,在轴线上产生的磁感应强度为002d d d 22I I B R Rμμϕππ==,方向与径向垂直.d B 的两个分量为 d B x = d B cos φ,d B y = d B sin φ. 积分得002200cos d sin 022x I IB R R ππμμϕϕϕππ===⎰,02sin d 2y IB R πμϕϕπ=⎰00220(cos )2II RRπμμϕππ=-=. 由对称性也可知B x = 0,所以磁感应强度B = B y = 6.4×10-5(T),方向沿着y 正向.14.8 在半径为R 的木球上紧密地绕有细导线,相邻线圈可视为相互平行,盖住半个球面,如图所示.设导线中电流为I ,总匝数为N ,求球心O 处的磁感应强度B = ?[解答]四分之一圆的弧长为 C = πR /2, 单位弧长上线圈匝数为 n = N/C = 2N/πR .在四分之一圆上取一弧元d l = R d θ,线圈匝数为 d N = n d l = nR d θ,环电流大小为 d I = I d N = nIR d θ.环电流的半径为 y = R sin θ,离O 点的距离为 x = R cos θ, 在O 点产生的磁感应强度为 22003d d sin d 22y I nI B R μμθθ== 20sin d NI Rμθθπ=, 方向沿着x 的反方向,积分得O 点的磁感应强度为/2200sin d NI B R πμθθπ=⎰/2000(1cos 2)d 24NI NIR Rπμμθθπ=-=⎰.图14.814.11 有一电介质圆盘,其表面均匀带有电量Q ,半径为a ,可绕盘心且与盘面垂直的轴转动,设角速度为ω.求圆盘中心o 的磁感应强度B 。

第十一章稳恒电流的磁场(一)作业解答

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b b a aI +πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I+πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

第十一章稳恒电流的磁场[一]作业答案解析

第十一章稳恒电流的磁场[一]作业答案解析

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B 电荷转动形成的电流:πωωπ22q q T q I ===【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为(A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为 (A))(20b a I+πμ. (B)b ba aI+πln20μ.(C) bb a b I +πln 20μ. (D) )2(0b a I +πμ.解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为在O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

物理学第3版习题解答_第6章稳恒磁场

物理学第3版习题解答_第6章稳恒磁场

I 2 dr
FBC 方向垂直 BC 向上,大小
FBc
d
0 I1 0 I1 I 2 d a ln 2r 2 d
d a
I 2 dl
0 I1 2r

dl FBC
d a
dr cos 45

a
0 I 2 I1dr II d a 0 1 2 ln 2r cos 45 d 2
B dl 8
a


0

ba
B dl 8 0
B dl 0
c


(1)在各条闭合曲线上,各点 B 的大小不相等. (2)在闭合曲线 C 上各点 B 不为零.只是 B 的环路积分为零而非每点 B 为零




图 6-25 思考题
6-4 图
1
6-5 安培定律 dF Idl B 有任意角度?
线,试指出哪一条是表示顺磁质?哪一条是表示抗磁质?哪一条是表示铁磁质? 答: 曲线Ⅱ是顺磁质,曲线Ⅲ是抗磁质,曲线Ⅰ是铁磁质.
图 6-27
思考题-6-8
2
习题
6-1 如图 6-28 所示的正方形线圈 ABCD,每边长为 a,通有电流 I.求正方形中心 O 处 的磁感应强度。 I A D 解 正方形每一边到 O 点的距离都是 a/2,在 O 点产生的磁场 大小相等、方向相同.以 AD 边为例,利用直线电流的磁场公式:
I1 电阻R2 . I 2 பைடு நூலகம்阻R1 2
I 1 产生 B1 方向 纸面向外
B1
0 I 1 (2 ) , 2R 2
I 2 产生 B2 方向 纸面向里

《稳恒电流的磁场》选择题解答与分析

《稳恒电流的磁场》选择题解答与分析
答案:(B) 参考解答:
由毕奥-萨伐尔定律 d B 0 I d l r /(4r 3 ) ,知答案(B)正确。
a d
b I dl
c
选择(A)给出下面的分析:
dq ˆ r 4 0 r 2 0 I d l r 电流元磁场公式: d B 4r 3
点电荷电场公式: d E
比较 d B d B x iˆ d B y ˆ j, d B x

0 I d ly 4r 3
0 I d l
4 ( x y
2 2 3 z2 ) 2
y.
对于所有错误选择,给出下面的资料:
0 I d l r 毕奥-萨伐尔定律: d B ,涉及矢量的叉乘,其基本运算公式: 4r 3 ˆ ˆ ˆa ˆ ˆ ˆ 设: a a1i 2 j a 3 k , b b1i b2 j b3k
对所有错误的选择,进入下一题: 1.1 在阴极射线管的上方放置一根载流直导线,导线平行于射 线管轴线,电流方向如图所示,阴极射线向什么方向偏转?当 电流 I 反向后,结果又将如何?
I
参考解答: 电流产生的磁场在射线管内是指向纸面内的,由 F ev B 知,阴极射线(即电 子束)将向下偏转.当电流反方向时,阴极射线将向上偏转. 进入下一题:
3. 关于磁感应强度方向的定义,以下说法,正确的是 (A) 能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. (B) 不能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. 答案:(B) 参考解答: 因为磁力的方向还随电荷运动速度方向而不同,因而在磁场中同一点运动电荷受 力的方向是不确定的.
6
B
3. 如图,一条任意形状的载流导线位于均匀磁场中,试证明 导线 a 到 b 之间的一段上所受的安培力等于载同一电流的直 导线 ab 所受的安培力. 参考解答: 证:由安培定律

稳恒磁场解答

稳恒磁场解答

稳恒磁场<一>一. 选择题:1. 两根平行的、载有相同电流的无限长直导线在空间的磁感应强度21B B B +=112l I B πμ==,1l 表示距导线1的距离. 方向: 在 x < 1 的区域内垂 直纸面向外,在 x > 1 的区域内垂直纸面向内; 222l I B πμ==,2l 表示距导线2的距离. 方向: 在 x <3 的区域内垂 直纸面向外,在 x >3 的区域内垂直纸面向内;故可推断 B =0的地方是在1l =2l =1 或 x =2 的直线上. 故选<A>.2. 正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为正方形以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强 度大小为显见122B B =或221B B =故选<C>. 3. 把无限长通电流的扁平铜片看作由许许多多电流为dI 的无限长载流细长条组成.选扁平铜片右边沿为X 轴零点,方向向左.如图所示dI 在P 点产生的磁感应强度)(20b x dI dB +=πμ,方向垂直纸面向内. 整个通电流的铜片在P 点的磁感应强度的大小为⎰⎰+==a a b x a Idx dB B 000)(2πμba a I =ln 20πμ <B> 4. 若空间两根无限长载流直导线是平行的,如图所示. 则在空间产生的磁场分布具有对称性,可以用安培定理直接求出.也可以用磁感应强度的叠加原理求出.对一般任意情况,安培环路定理是成立的,但环路上的B 值是变化的,不能提到积分号外,故不能给出磁感应强度的具体值.用磁感应强度叠加原理与其与安培环路定理结合的方法,是可以求出磁感应强度值的.故选<D>.5. 由于O 点在长直电流的延长线上,故载流直导线在O 点产生的磁感应强度为0,在圆环上,电流I 1在O 点产生的B 1为:I 1 I 2方向垂直于环面向外.在圆环上,电流I 2在O 点产生的B 2为:方向垂直于环面向里.由于两段弧形导线是并联的,I 1R 1= I 2R 2所以B1=B2 方向相反. O 点的合磁感应强度为0.6. 选择〔B 〕7. 选择〔D 〕二. 填空题:1. A I A 1=,A I 在P 点产生的磁感应强度A B 为 =⨯⨯=1210πμA B πμ20,方向如图. A I B 2=,B I 在P 点产生的磁感应强度B B 为=⨯⨯=2220πμB B πμ20,方向如图. 所以,1:1:=B A B B方向: θθθθαtg B B B tg B B A -=-=cos 1cos sin 333132=-=. 所以α=30°2.解:因为O 点在AC 和EF 的延长线上,故AC 和EF 段对O 点的磁场没有贡献.CD 段 RI R I B CD 82400μππμ=⋅= ED 段 RI R I a I B o o DE πμπμπμ22/242)145cos 45(cos 4000==-= O 点总磁感应强度为3. [解法1]:如图<a>所示.将宽度为d 的载流导体薄片看作由许许多多电流元为dI 的无限长载流导线组成的.dI 在P 点产生的磁感强度大小为式中22a x r +=, 方向如图<b>所示.dB y =dBsin θ, dB x =dBcos θ022==⎰-dd y y dB B ,<对称性> 在导片中线附近处,令a →0[解法2]:因所求磁感应强度点P 在导片中线附近.据对称性分析,可知该点的磁感应强度方向平行于导片.选取图示矩形安培环路,<见图c>5.电流密度的大小: ()22r R I -=πδ本题意可等效为以O 点为中心半径为R 的金属导体上通以电流密度为δ,方向垂直纸面向内.和以O'为中心,半径为r 的金属导体部分通以电流密度为δ,方向为垂直纸面向外.空心部分曲线上O'点的磁感应强度为式中R B 表示半径为R 的圆柱电流对O'的磁感强度, r B 表示半径为r 的圆柱电流对O'的磁感强度. 根据安培环路定理得以O 为圆心,作半径为a 的环流,则有即=R B ()2202r R Ia-πμ所以==R B B '0()2202r R Ia-πμ6.已知C q 19100.8-⨯=, 15100.3-⋅⨯=υs m ,m R 81000.6-⨯=则该电荷沿半径为R 的圆周作匀速运动时,形成的圆形电流该电荷在轨道中心所产生的磁感应强度该带电质点轨道运动的磁矩三. 计算题:1. 根据磁感应强度的叠加原理,O 点的磁感应强度=⨯=1110122R l R I B πμ211022R l I ⨯πμ, 方向垂直纸面向内. =⨯=2220222R l R I B πμ222022R l I ⨯πμ, 方向垂直纸面向外. 所以,O 处的磁感应强度B 的大小为B =B 1-B 2+B 3+B 4方向垂直纸面向内.2. 解:由于带电线段AB 的不同位置绕O 点转动的线速度不同,在AB 上任取一线元dr, 它距O 点的距离为r,如图所示,其上带电量为dq=λdr,当AB 以角速度ω旋转时,dq 形成环形电流,其电流大小为根据圆电流在圆心O 的磁感应强度为则有带电圆电流在圆心O 的磁感应强度为当带电λ为正电荷时,磁感应强度方向垂直于纸面向里.旋转带电线元dr 的磁矩为转动带电线段AB 产生的总磁矩当带电λ为正电荷时,磁矩方向也垂直于纸面向里.3. 根据磁感应强度叠加原理,圆环中心O 的磁感应强度式中1B 表示L 1段导线在O 点所产生的磁感强度. 2B 表示L 2段导线在O 点所产生的磁感强度. 3B 表示圆环在O 点所产生的磁感强度.L 1的沿线穿过O 点,据毕奥─萨伐尔定律,得01=BL 2是无限长直导线,故RI B πμ402=,方向垂直纸面向外. 圆环在a 点被分成两段1I ,2I ,两段在O 点所产生的磁感强度03=B .所以RI B B πμ4020==,方向垂直纸面向外.四. 改错题:S ≠0, B =0 这个推理是错误的.因为磁感应线是无头无尾的闭合曲线,在磁场中任意闭合曲面,进去多少磁感应线必然出来多少磁感应线,所以在磁场中穿过任意闭合曲面的磁通量都为零.但闭合面上的磁感应强度不一定为零.例如,在一磁感强度为B 的均匀磁场中穿过任一圆球面的磁通量都为零,但球面上的磁感强度不为零.五. 问答题:毕奥─萨伐尔定律只适用于电流元Idl,电流元的长度dl 比它到考察点的距离r 小得多,即 r >> dl.因此,无限长直线电流的任一段dl 到考察点的距离都要遵守这一条件.即a 不能趋于零.当a →0时,毕奥─萨伐尔定律已不成立.稳恒磁场<二>一.选择题:1. 在所给线圈状态下,线圈平面法线与外磁场方向的夹角为零.由 知:0=M2. 由图可知,大线圈所产生的磁场方向垂直于纸面向内,根据小线圈中的电流流向可以判断小线圈的磁矩方向也是垂直于纸面向内.磁矩方向与磁场方向的夹角为零.根据磁力矩的定义 知:0=M3. 质点在x =0、y =0处进入磁场时,受到向上的洛仑兹力.质点在x >0、y >0 区域内运动,且作以y 轴为直径的圆周运动.如图所示. 因为Rm Bqv 2υ=,所以轨道半径为Bq m R υ=. 当它以υ-从磁场中出来时,这点坐标是0=x ,4. 质点受洛仑兹力的作用,因为R m Bq 2υ=υ,即mRqB =υ 则,质点动能为5. 由力学动能定理可知,离子经加速后得到初动能离子在磁场中运动,洛伦兹力充当其向心力,可得 m qU 2=υqB m R υ= 而 2x R = 联立 mqU qB m qB m x 22==υ 二.填空题:1. 因为B p M m ⨯=θsin B p m =θsin ISB =所以,最大磁力矩时2πθ=,磁通量0cos ==⋅=ΦθBS S B最小磁力矩时0=θ磁通量BS BS S B ==⋅=Φθcos2. 由角动量公式得电子作圆周运动的速率电子转动的圆电流此圆电流在圆心质子处产生的磁感应强度为3电子产生的电流: e rI ⋅πυ=2,υ是电子速度.因为圆电流平面法线与与磁场垂直,由B p M m ⨯=知,这个圆电流所受磁力矩为:B BIS M ==B er r e r υ=π⋅πυ⋅2122,由库仑定律知,r m re 22024υ=πε,电子的速度为mr e 0224πε=υ 所以m rBe M 0216πε=.4. 电子受到的洛仑兹力: Rm Bq 2υ=υ, 得: 21059.7-⨯=υ=qBm R m.5. 频率为mqB f π2= 三.计算题解: 无限长半圆柱面导体可看作许多平行的无限长直线电流所组成的.对于宽度为 θRd dl =的窄条无限长直导线的电流为由安培环路定理可知dI 在O 点产生的磁场为dB 方向如图所示对所有窄条电流积分得所以轴线上O 点磁感应强度为RI B B x 20πμ-== 轴线上导线单位长度所受的力 l RI Il B F x 220πμ-== 〔取l 为单位1〕 受力的大小为四.证明题:证明: 选b a →为X 轴正方向,则坐标如图所示. 因为B l Id F d ⨯= Yj dy i dx l d +=⊗B 所以⎰⎰==(I F d F B j dy i dx ⨯+) 0 a b X即: 一条任意形状的载流导线所受的安培力等于载流直导线ab 所受的安培力. 五.问答题:1. 答:带电粒子在洛仑兹力的作用下作圆周运动,因为: R m Bq 2υ=υ 所以,圆周运动的轨道半径为由于铝板上方半径大,对应的粒子速度大,考虑到粒子通过铝板有能量损失,所以,带电粒子是由铝板上方穿透铝板向下方运动.由于向心力是洛仑兹力所以q 必为正号,即粒子带正电.2. 答:两个电子绕行一周所需要的时间无有差别.。

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流 acb 边在 O 点的磁感应强度为
B3 = 2 ⋅
方向垂直平面向外。
2
第 3页共 5页
3 稳恒电流的磁场习题详解
习题册-下-3
所以,三角形线框在中心 O 点的合磁感应强度为 0。 则,总电流在 O 点的磁感应强度为
B =
3 µ0 I ,方向垂直平面向里。 4π
O
3.在一根通有电流 I 的长直导线旁,与之共面地放着一个长、宽各为 a 和 b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为 b,如图 3-5 所 示。在此情形中,线框内的磁通量 Φ = ______________。 答案:
3
第 4页共 5页
3 稳恒电流的磁场习题详解
习题册-下-3
1.如图 3-7 所示,载流圆线圈通有电流为 I,求载流圆线圈轴线上某点
Y
P 的磁感应强度。
µ R 2I 答案: B = ,方向沿轴线。 2 2 ( R + x 2 )3 2
� π π � 解:电流元 Idl 与对应处 r 的夹角均为 , sin = 1 ,则 2 2
Φ = Φ1 + Φ 2 =
µ0I µ0I + ln 2 4π 2π
4.如图 3-10 所示,一半径 R 的非导体球面均匀带电,面密度为 σ,若该球以通过球心的直径为轴用角速 度ω旋转,求球心处的磁感应强度的大小和方向。 答案: B = 2 µ0σω R ;方向沿轴向上。 3
解:利用圆形电流在轴线上产生的磁场公式 dB = 如图所示
B1 =
I1 I2 ,又由题意知 B1 = B2 ; , B2 = 2π d 2π 2d
I2
2d
再由图中几何关系容易得出,B 与 x 轴的夹角为 30º。 2.如图 3-2 所示,一半径为 R 的载流圆柱体,电流 I 均匀流过截面。设柱体内 (r < R)的磁感应强度为 B 1,柱体外(r > R )的磁感应强度为 B 2 ,则 [ (A )B1 、B2 都与 r 成正比; (B )B1 、B 2 都与 r 成反比; (C)B1 与 r 成反比,B2 与 r 成正比; (D)B1 与 r 成正比,B 2 与 r 成反比。 答案:D 解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集 中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。 3.关于稳恒电流磁场的磁场强度 H ,下列几种说法中正确的是 [ � (A ) H 仅与传导电流有关。
σ
r R
dq = σ 2π rdr
电流为 dI = fdq = f σ 2π rdr
q ) π R2
(其中 f =
ω ) 2π
图 3-8
在盘心所产生的磁感应强度的大小为
dB =
µ 0 dI = µ 0 nπσdr 2r
µ0ω q 2π R
每一载流圆环在盘心处的 dB 方向相同,故盘心处的合磁感应强度的大小为

I

a
b a
P
µ0 I
2π a
ln
a +b 。 b
图 3-3
解:如图所示,建立水平的坐标 x 轴,平片电流分割成无限个宽度为 dx,电流强度为 dx 的无限长直线电 流,在 P 点处的磁感应强度为
I a
dB =
µ0 I dx 2π a ( a + b − x)
所以,平片电流在 P 点的磁感应强度为
B = ∫ dB = ∫ µ0 f πσ dr = µ0 f πσ R =
0
R
方向沿轴线与电流成右手螺旋关系。 3.如图 3-9 所示,真空中一无限长圆柱形铜导体,磁导率为 µ 0 ,半径为 R, I 均匀分布,求通过 S(阴影 区)的磁通量。 答案: Φ =
µ0 I µ0 I + ln 2 。 4π 2π
2b
µ0I µ Ia ⋅ adx = 0 ln 2 2π x 2π
4 .电子 在磁感应 强度为 B 的均 匀磁场中 沿半径为 R 的圆 周运动, 电子运动 所形成 的等效圆 电流

I = ______________;等效圆电流的磁矩 Pm = ______________。(已知电子电量的大小为 e,电子的质量为
Z
� Idl
I
o
R
90 �
r x
θ
dB⊥
� dB
P dB//
图 3-7
x
dB =
� 由对称性分析,各 dB 的垂直轴线的分量全部抵消,只剩下平行于轴线的分量:
µ Idl 4π r 2
dB // = dB sin θ = dB
所以
R r
B = ∫ dB// = ∫
2π R
0
µ IdlR µ R 2 I µ R 2I = = ,方向沿轴线。 3 3 2 4π r 2 r 2 (R + x 2 )3 / 2
则,圆筒转动形成圆电流在内部的磁感应强度为(类似于无限长直螺线管) B = µ 0 I = µ 0σ Rα t
1
第 2页共 5页
3 稳恒电流的磁场习题详解
习题册-下-3
5.能否用安培环路定律,直接求出下列各种截面的长直载流导线各自所产生的磁感应强度 B 。 (1)圆形 截面; (2)半圆形截面; (3)正方形截面 [ (A )第(1)种可以,第(2) (3)种不行; (B )第(1) (2)种可以,第(3)种不行; (C)第(1) (3)种可以,第(2)种不行; (D)第(1) (2) (3)种都可以。 答案:A 解:利用安培环路定理时,必须要求所选环路上磁感应强度具有对称性,B 可作为常数提出积分号外,否 则就无法利用该定律来计算 B 。 二、填空题 1.如图 3-3 所示,一无限长扁平铜片,宽度为 a,厚度不计,电流 I 在铜片上均匀 分布。求铜片外与铜片共面、离铜片右边缘为 b 处的 P 点的磁感应强度 B 的大 小 答案: 。 ]
第 1页共 5页
3 稳恒电流的磁场习题详解
习题册-下-3
习题三 一、选择题 1.如图 3-1 所示,两根长直载流导线垂直纸面放置,电流 I1 =1A ,方向垂直纸面向外;电流 I2 =2A,方向 � � y 垂直纸面向内,则 P 点的磁感应强度 B 的方向与 x 轴的夹角为[ ] B1 � (A )30˚; (B )60˚; (C )120˚; (D)210˚。 B d 答案:A I1 � P B2 解:如图,电流 I1,I2 在 P 点产生的磁场大小分别为
v e2 B = 2π R 2π m
Pm = IS =
e2 B e2 BR 2 ⋅ π R2 = 2π m 2m
5.如图 3-6 所示,无限长直导线在 P 处弯成半径为 R 的圆,当通以电流 I 时,则在圆 心 O 点的磁感强度大小等于 答案: ;方向 。
I P
R O I
� � 解:圆心 O 处的磁场是圆电流在圆心处产生的磁场 B1 与场无限长直线电流的磁场 B 2 度大小为
I a b a P a
B =∫
a
0
µ0 I µ I a +b dx = 0 ln 2π a ( a + b − x) 2π a b
图 3-3
2.在真空中,电流 I 由长直导线 1 沿垂直 bc 边方向经 a 点流入一电阻均匀分布 的正三角形线框,再由 b 点沿平行 ac 边方向流出,经长直导线 2 返回电 源,如图 3-4 所示。三角形框每边长为 l ,则在该正三角框中心 O 点处磁 感应强度的大小 B = ______________。 答案: B =
m)。
答案: I =
� 解:电子在磁感应强度为 B 的均匀磁场中沿半径为 R 的圆周运动,电子所受的磁场力为电子做圆周运动 的向心力,即
e 2B e2 BR2 ; Pm = 。 2π m 2m
mv 2 eBR = evB ,所以 v = m R
电子运动所形成的等效圆电流为 等效圆电流的磁矩为
I = e ⋅ f = e⋅
µ0 r 2 dI (见计算题 1) 2 R3 dI = σ dSf ,而 dS = 2π rdl = 2π R sin θ ⋅ Rd θ ω ,所以 2π dI = σ dSf = σ 2π R 2 sin θd θ ω 2π
图 3-10
又 r = R sin θ , f =
B = ∫ dB =
0
� � R µ I µ I 0 Φ1 = ∫ B1 ⋅ ds =∫ B1 ds = ∫ rdr = 0 0 2π R2 4π
在导体外阴影部分的磁通量为
� � 2R µ I µ I 0 Φ 2 = ∫ B2 ⋅ ds =∫ B2 ds = ∫ dr = 0 ln 2 R 2π r 2π 所以,通过 S(阴影区)的总磁通量为



��Biblioteka ]R (A )0; (B) µ0σ Rα t ; (C ) µ0 σ αt ; r
答案:B 解:圆筒转动时形成电流,单位长度圆筒的电流强度为 在 t 时刻圆筒转动的角速度为
r (D) µ0 σ αt 。 R
I = σ ⋅ 2πR ⋅
ω = σR ω 2π
ω = αt I = σ Rαt
所以,t 时刻单位长度圆筒的电流强度为
b
I
2
3µ 0 I 。 4π
1 方向垂直平
O I
a e
图 3-4
c
解:长直线电流 1a 在 O 点的磁感应强度为 0; 长直线电流 b2 在 O 点的磁感应强度为 B1 = 面向里; 电流 ab 边和 acb 边的电流强度分别为 I 和 I ; 3 3 电流 ab 边在 O 点的磁感应强度为( β1 = −60°, β2 = 60 ° ) 2 1
2.一个塑料圆盘,半径为 R ,电荷 q 均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为ω。 求圆盘中心处的磁感应强度。
相关文档
最新文档