11稳恒电流的磁场习题与解答

合集下载

大学物理稳恒磁场习题及答案 (1)

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

11稳恒电流和稳恒磁场习题解答讲解

11稳恒电流和稳恒磁场习题解答讲解

第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. l I μπ420B. lIμπ20 C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lIl IB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里lI l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+=所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )3. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个解:本题选(B )选择题2图Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图选择题1图4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR IJ =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负选择题7图c dba B O• B× × × × × × Ea bc 选择题6图 选择题4图电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。

稳恒电流的磁场(习题答案)

稳恒电流的磁场(习题答案)

稳恒电流的磁场一、判断题3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I0放在空间任意一点都不受力,则该空间不存在磁场。

×4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示。

√5、安培环路定理反映了磁场的有旋性。

×6、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B。

×7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。

×8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。

√9、安培环路定理Il d B C 0μ=∙⎰中的磁感应强度只是由闭合环路内的电流激发的。

×10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。

√二、选择题1、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小(A )一定相等 (B )一定不相等(C )不一定相等 (D )A 、B 、C 都不正确 C2、半径为R 的圆电流在其环绕的圆内产生的磁场分布是: (A )均匀的 (B )中心处比边缘处强 (C )边缘处比中心处强 (D )距中心1/2处最强。

C3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的(A )磁力相等,最大磁力矩相等 (B )磁力不相等,最大磁力矩相等 (C )磁力相等,最大磁力矩不相等 (D )磁力不相等,最大磁力矩不相等 A4、一长方形的通电闭合导线回路,电流强度为I ,其四条边分别为ab 、bc 、cd 、da 如图所示,设4321B B B B 及、、分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是:LI()()121101111234000C C C A B dl I B B dl C B B dl D B BB B dl Iμμ⋅=⋅=+⋅=+++⋅=⎰⎰⎰⎰()()()()A5、两个载流回路,电流分别为121I I I 设电流和单独产生的磁场为1B,电流2I 单独产生的磁场为2B ,下列各式中正确的是:(A )()21012C B dl I I μ⋅=+⎰(B )1202C B dl I μ⋅=⎰(C )()()112012C B B dlI I μ+⋅=+⎰(D )()()212012C B B dlI I μ+⋅=+⎰ D 6、半径为R 的均匀导体球壳,内部沿球的直线方向有一载流直导线,电线I 从A 流向B 后,再沿球面返回A 点,如图所示下述说法中正确的是:(A )在AB 线上的磁感应强度0=B(B )球外的磁感应强度0=B(C )只是在AB 线上球内的部分感应强度0=B(D )只是在球心上的感应强度0=BA7、如图所示,在载流螺线管的外面环绕闭合路径一周积分ld B L ∙⎰等于(A )0 (B )nI 0μ(C )20nIμ (D )I 0μD8、一电量为q 的点电荷在均匀磁场中运动,下列说法正确的是 (A )只要速度大小相同,所受的洛伦兹力就相同。

稳恒电流的磁场习题解答

稳恒电流的磁场习题解答

第十四章 稳恒电流的磁场习题解答(仅作参考)14.1 通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B 。

[解答] 电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定律: 002d d 4I r μπ⨯=l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为012d d 4I lB aμπ=, 由于 d l = a d φ, 积分得11d L B B =⎰3/200d 4I aπμϕπ=⎰038Ia μ=. OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为022d sin d 4I l B r μθπ=,由于 l = b cot(π - θ) = -b cot θ,所以 d l = b d θ/sin 2θ;又由于 r = b /sin(π - θ) = b /sin θ,可得 02sin d d 4I B bμθθπ=,积分得3/402/2d sin d 4LI B B bππμθθπ==⎰⎰3/400/2(cos )48IIbbππμθππ=-=同理可得CD 段在O 点产生的磁场B 3 = B 2. O 点总磁感应强度为00123384I IB B B B a bμπ=++=+. 14.6 在半径为R = 1.0cm 的无限长半圆柱形导体面中均匀地通有电流I =5.0A ,如图所示.求圆柱轴线上任一点的磁感应强度B = ?[解答] 取导体面的横截面,电流方向垂直纸面向外. 半圆的周长为 C = πR , 电流线密度为 i = I/C = IπR .在半圆上取一线元d l = R d φ代表无限长直导线的截面,电流元为图14.1d I = i d l = I d φ/π,在轴线上产生的磁感应强度为002d d d 22I I B R Rμμϕππ==,方向与径向垂直.d B 的两个分量为 d B x = d B cos φ,d B y = d B sin φ. 积分得002200cos d sin 022x I IB R R ππμμϕϕϕππ===⎰,02sin d 2y IB R πμϕϕπ=⎰00220(cos )2II RRπμμϕππ=-=. 由对称性也可知B x = 0,所以磁感应强度B = B y = 6.4×10-5(T),方向沿着y 正向.14.8 在半径为R 的木球上紧密地绕有细导线,相邻线圈可视为相互平行,盖住半个球面,如图所示.设导线中电流为I ,总匝数为N ,求球心O 处的磁感应强度B = ?[解答]四分之一圆的弧长为 C = πR /2, 单位弧长上线圈匝数为 n = N/C = 2N/πR .在四分之一圆上取一弧元d l = R d θ,线圈匝数为 d N = n d l = nR d θ,环电流大小为 d I = I d N = nIR d θ.环电流的半径为 y = R sin θ,离O 点的距离为 x = R cos θ, 在O 点产生的磁感应强度为 22003d d sin d 22y I nI B R μμθθ== 20sin d NI Rμθθπ=, 方向沿着x 的反方向,积分得O 点的磁感应强度为/2200sin d NI B R πμθθπ=⎰/2000(1cos 2)d 24NI NIR Rπμμθθπ=-=⎰.图14.814.11 有一电介质圆盘,其表面均匀带有电量Q ,半径为a ,可绕盘心且与盘面垂直的轴转动,设角速度为ω.求圆盘中心o 的磁感应强度B 。

第十一章稳恒电流的磁场(一)作业解答

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b b a aI +πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I+πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

《稳恒电流的磁场》选择题解答与分析

《稳恒电流的磁场》选择题解答与分析
答案:(B) 参考解答:
由毕奥-萨伐尔定律 d B 0 I d l r /(4r 3 ) ,知答案(B)正确。
a d
b I dl
c
选择(A)给出下面的分析:
dq ˆ r 4 0 r 2 0 I d l r 电流元磁场公式: d B 4r 3
点电荷电场公式: d E
比较 d B d B x iˆ d B y ˆ j, d B x

0 I d ly 4r 3
0 I d l
4 ( x y
2 2 3 z2 ) 2
y.
对于所有错误选择,给出下面的资料:
0 I d l r 毕奥-萨伐尔定律: d B ,涉及矢量的叉乘,其基本运算公式: 4r 3 ˆ ˆ ˆa ˆ ˆ ˆ 设: a a1i 2 j a 3 k , b b1i b2 j b3k
对所有错误的选择,进入下一题: 1.1 在阴极射线管的上方放置一根载流直导线,导线平行于射 线管轴线,电流方向如图所示,阴极射线向什么方向偏转?当 电流 I 反向后,结果又将如何?
I
参考解答: 电流产生的磁场在射线管内是指向纸面内的,由 F ev B 知,阴极射线(即电 子束)将向下偏转.当电流反方向时,阴极射线将向上偏转. 进入下一题:
3. 关于磁感应强度方向的定义,以下说法,正确的是 (A) 能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. (B) 不能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. 答案:(B) 参考解答: 因为磁力的方向还随电荷运动速度方向而不同,因而在磁场中同一点运动电荷受 力的方向是不确定的.
6
B
3. 如图,一条任意形状的载流导线位于均匀磁场中,试证明 导线 a 到 b 之间的一段上所受的安培力等于载同一电流的直 导线 ab 所受的安培力. 参考解答: 证:由安培定律

(物理)物理稳恒电流练习题含答案及解析

(物理)物理稳恒电流练习题含答案及解析

(物理)物理稳恒电流练习题含答案及解析一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件3.如图所示的电路中,电源电动势E=10V,内阻r=0.5Ω,电动机的电阻R0=1.0Ω,电阻R1=1.5Ω.电动机正常工作时,电压表的示数U1=3.0V,求:(1)电源释放的电功率;(2)电动机消耗的电功率.将电能转化为机械能的功率;【答案】(1)20W (2)12W 8W.【解析】【分析】(1)通过电阻两端的电压求出电路中的电流I,电源的总功率为P=EI,即可求得;(2)由U内=Ir可求得电源内阻分得电压,电动机两端的电压为U=E-U1-U内,电动机消耗的功率为P电=UI;电动机将电能转化为机械能的功率为P机=P电-I2R0.【详解】(1)电动机正常工作时,总电流为:I=1URI=3.01.5A=2 A,电源释放的电功率为:P=EI =10×2 W=20 W;(2)电动机两端的电压为: U= E﹣Ir﹣U1则U=(10﹣2×0.5﹣3.0)V=6 V;电动机消耗的电功率为: P电=UI=6×2 W=12 W;电动机消耗的热功率为: P热=I2R0 =22×1.0 W=4 W;电动机将电能转化为机械能的功率,据能量守恒为:P机=P电﹣P热P机=(12﹣4)W=8 W;【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.4.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222 ()2E EP I R RrR rR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示当外电路电阻R =r 时,电源输出的电功率最大,为2max =4E P r(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.5.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g . (1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω=(3) 2mgd qBL ≤ω≤27mgd qBL【解析】 【分析】 【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+解得v =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R Rεω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-=从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mgE q=杆转动的电动势21112BL εω= 两板间电场强度11E dε=联立解得12mgdqBL ω=如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-=杆转动的电动势22212BL εω= 两板间电场强度22E dε=联立解得227mgdqBL ω=综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgdqBL qBL ω≤≤.6.山师附中一研究性学习小组制作了一辆以蓄电池为驱动能源的环保电动汽车,其电池每次充电仅需三至五个小时,蓄电量可让小汽车一次性跑500m ,汽车时速最高可达10m/s ,汽车总质量为9kg .驱动电机直接接在蓄电池的两极,且蓄电池的内阻为r=0.20Ω.当该汽车在水平路面上以v =2m/s 的速度匀速行驶时,驱动电机的输入电流I =1.5A ,电压U =3.0V ,内电阻R M =0.40Ω.在此行驶状态下(取g =10 m/s 2),求: (1)驱动电机输入的电功率P 入; (2)驱动电机的热功率P 热; (3)驱动电机输出的机械功率P 机; (4)蓄电池的电动势E .【答案】(1)4.5W (2)0.9W (3)3.6W (4)3.3V 【解析】试题分析:根据P =UI 求出驱动电机的输入功率;由P =I 2r 可求得热功率;由输入功率与热功率的差值可求出机械功率;由闭合电路欧姆定律可求得电源的电动势. (1)驱动电机输入的电功率:P 入=IU =1.5×3.0W =4.5W (2)驱动电机的热功率:P 热=I 2R =(1.5)2×0.40W =0.9W (3)驱动电机输出的机械功率:P 机=P 入−P 热=3.6W (4)蓄电池的电动势:E =U +IR =(3.0+1.5×0.2)V=3.3V点睛:本题主要考查了功率的公式P =UI ,以及机械功率的公式P =Fv 的应用;要注意体会能量的转化与守恒关系.7.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)(2)电源电动势E 和内电阻r 各是多少? 【答案】(1)1V 1Ω(2)10 V ;2Ω 【解析】试题分析:(1)R 3断开时 电表读数分别变为5v 和2.5A 可知R 1=2欧 R 3断开前R 1上电压U 1=R 1I=4V U 1= U 2 + U 3 所以 U 2=1VU 2:U 3 = R 2:R 3 =1:3 R 2=1Ω(2)R 3断开前 总电流I 1=3A E = U 1 + I 1rR 3断开后 总电流I 2=2.5AE = U 2 + I 2r联解方程E= 10 V r=2Ω 考点:闭合电路的欧姆定律 【名师点睛】8.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L +【解析】 【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBLR r mg=-(2)由 220B L vmg R =得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLsq It R ==得4422220B L s m gR t mgR B L +=(3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t∆∆∆∆=====∆∆∆∆ mg-BIL=ma 得22mga m CB L =+=常数所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的. v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=--解得:2222mgsCB L E m cB L∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.9.电动自行车是目前一种较为时尚的代步工具,某厂生产的一种电动自行车,设计质量(包括人)为m =90kg ,动力电源选用能量存储量为“36V 、15Ah”(即输出电压恒为36V ,工作电流与工作时间的乘积为15Ah )的蓄电池(不计内阻),所用电源的额定输出功率P电=180W ,由于电动机发热造成的损耗(其他损耗不计),自行车的效率为η=80%,如果自行车在平直公路上行驶时所受阻力跟行驶速率和自行车对地面的压力的乘积成正比,即F f =kmgv ,其中g 取10m/s 2,k =5.0×10﹣3s•m ﹣1.求:(1)该自行车保持额定功率行驶的最长时间和自行车电动机的内阻; (2)自行车在平直的公路上能达到的最大速度;(3)有人设想改用太阳能电池给该车供电,其他条件不变,已知太阳辐射的总功率P 0=4×1026W ,太阳到地球的距离r =1.5×1011m ,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.则此设想所需的太阳能电池板的最小面积。

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳恒电流的磁场
1、边长为 a 的正方形线圈载有电流 I ,试求在正方形中心点的磁感应强度B ?
分析:正方形四边产生的磁感应强度大小相等,方向相同,与电流方向符合右手螺旋定则。

每一边产生的磁感应强度为
)cos (cos 2
4210θθπμ-a I
其中4

θ=
,πθ4
3
2=。

解:由分析得
a I a I
B πμππ
πμ428)43
cos 4(cos 2
4400=-=
2、如图所示的无限长载流导线,通以电流 I ,求图中圆心O
分析:根据磁感应强度的叠加原理,本题可以看作无限长直导线在O 点的磁感应强度B 1减去弦直导线在O 点的磁感应强度B 2再加上弧形导线在O 点的磁感应强度B 3。

解:由分析得 B = B 1 - B 2 + B 3
=
r
I
r I
r I
231)65cos 6(cos
2
42
2000μππ
πμπμ+
--
r
I
021
.0μ=
3、如图所示,两条无限长载流直导线垂直而不相交,其间最近距离为d=2.0cm ,电流分别为I 1=4.0A ,I 2 =6.0A ,一点P 到两导线距离都是 d ,求点P 的磁感应强度的大小?
分析:电流I 1在P 点产生的磁感应强度B 1大小为d
I πμ21
0,方向垂直纸面向里,电流I 2在P 点产生的磁感应强度B 2大小为
d
I πμ22
0,方向向右。

两矢量求和即可。

解:T d I B 57101100.402.020
.41042--⨯=⨯⨯⨯==πππμ T d I B 57202100.602
.020
.61042--⨯=⨯⨯⨯==
πππμ T B B B 52
2211021.7-⨯=+=
4、一边长为 b=0.15m 的立方体如图放置,有一均匀磁场 B =(6i +3j +1.5k )T 通过立方体所在区域,试计算:(1)通过立方体上阴影面积的磁通量?(2)通过立方体六面的总磁通量?
分析:磁感应线是闭合曲线,故通过任一闭合曲面的磁通量为零。

对于闭合曲面,通常规定外表面的法线方向为正,所以阴影面的正法线方向沿x 轴正向。

解:(1)Wb i k j i
S B 135.0ˆ)15.0()ˆ5.1ˆ3ˆ6(2=⋅++=⋅=
φ (2)0=⋅=⎰⎰S B s
φ
5、一密绕的圆形线圈,直径为0.4m ,线圈中通有电流2.5A 时,在线圈中心处的B=1.26×10 -4T ,问线圈有多少匝?
o
题2图
分析:N 匝密绕圆形线圈在圆心处的磁感应强度为单匝密绕圆形线圈在圆心处的磁感应强度的N 倍。

解:由R
I N B 20μ=
得1620==I RB
N μ匝。

6、有一根很长的同轴电缆,由一圆柱形导体和一同轴圆筒状导体组成,圆柱的半径为 R 1,圆筒的内外半径分别为 R 2 和 R 3 ,在这两导体中,载有大小相等而方向相反的电流I ,电流均匀分布在扣导体的截面上。

求:(1)圆柱导体内的各点(r< R 1)的磁感应强度B 的大小;(2)两导体之间( R 1<r<R 2 )的B 的大小;(3)外圆筒导体内(R 2 <r< R 3)的B 的大小;(4)电缆外(r> R 3)各点的B 的大小?
分析:无限长圆柱和圆筒导体的磁感应强度分布均具有轴对称性,各部分B 可分别由安培环路定理求得。

解:以轴线上一点为圆心,过场点做圆形环路L 。

(1)r< R 1时,101I l d B L μ=⋅⎰ 即 22102r R I r B ππμπ=⋅ 得 21
02R Ir
B πμ=
(2)R 1<r< R 2时, I r B l d B L 022μπ=⋅=⋅⎰ 得 r
I
B πμ20=
(3)R 2<r< R 3时,])()[222232220303
R R R r I I I r B l d B L ---==⋅=⋅⎰ππμμπ( 得 )1(222
232
2
20R R R r r I B ---=πμ 以上各区域B 方向均与芯线内电流方向成右旋关系。

(4)r> R 3 时, 004
=-=⋅⎰)
(I I l d B L μ
得 B = 0 7、一载有电流 I 的无限长空心直圆筒,半径为R (筒壁厚度忽略),电流沿筒的直线方向流动,并且均匀分布,试求筒内外的磁场分布?
分析:无限长圆筒导体磁感应强度分布具有轴对称性,可由安培环路定理求得。

解:以轴线上一点为圆心,过场点做圆形环路L 。

当r< R 时,00
1
==⋅∑⎰
I l d B L μ
得 B = 0
当r> R 时,I r B l d B L 022μπ=⋅=⋅⎰ 得 r
I B πμ20=
8、矩形截面的螺线管,其尺寸大小如图所示,已知线圈匝数为N 。

(1)求环内磁场分布。

(2)证明通过螺绕环的磁通量为:2
1
0ln 2D D NIh πμφ=
分析:(1)取螺线管内与其同心的圆形环路L ,符合环路定理的条件,可求。

(2)在半径为r 处的螺线管截面上取长为h ,宽为dr 的长方形面元,其磁通量为φd ,则⎰
=φφd
解:(1)NI r B l d B L
02μπ=⋅=⋅⎰
得 r
NI
B πμ20= (
2

⎰⎰⎰⎰====22
001
2
22D D r
dr NIh hdr r NI Bds d πμπμφφ21
0ln 2D D NIh πμ=
题8图
得证。

9、一电子以1.0×10 6 m/s 的速度进入一均匀磁场,其速度方向与磁场垂直,已知电子在磁场中作半径为0.1m 的圆周运动,求磁感应强度大小和电子的旋转角速度?
分析:本题可直接由电子受洛伦兹力在磁场中运动的公式求得。

解:(1)电子的运动速度方向与磁场垂直时,所受洛仑兹力最大并且电子作圆周运动。


f = R mv evB 2
=,得磁感应强度的大小为
T eR
mv
B 51069.5-⨯==
(2)由eB
m
v R T ππ22=
=,可得电子作圆周运动的角速度为 17100.12-⋅⨯===s rad m
eB
T πω
10、如图所示,载流导线段AO=0.75m ,OB=1.5m ,其中通有电流 I=0.5A ,已知导线段所在区域的均匀磁场为B =0.4 i T ,求载流导线段所受的安培力?
分析:AO 和OB 两段导线处在沿x 轴正方向的均匀磁场中, 整段导线所受安培力为各段受力之矢量和。

解:AO 段受力:N B AO I F AO 106.045sin =⋅⋅⋅=
方向垂直于纸面向外。

OB 段受力:N B OB I F OB 15.030sin =⋅⋅⋅= 方向垂直于纸面向里。

载流导线所受合力的大小为 N F F F OA OB 044.0=-= 方向垂直于纸面向里。

11、如图所示的导线,载有电流 I ,各段几何形状尺寸和电流方向如图示,设均匀磁场磁感应强度B 的方向垂直纸面向外,试求导线所受的安培力?
分析:导线所受的安培力为三段受安培力之和,从左至右分别设为F 1、F 2和F 3 。

其中F 1和F 3 大小均为BIL ,方向均向下。

而对半圆段导线,在线上取一小电流元Idl ,其安培力df 方向指向圆心O ,因为该段导线是y 轴对称的,所以在水平方向上合力为零,我们只需计算竖直方向上的合力即可。

解:由分析得,F = F 1+F 2+F 3 。

其中 F 1 = F 3 = BIb
B I R B I R d B I d l df F 2cos cos
cos 2
2
2===
=⎰⎰⎰
-ππ
θθθθ 所以 F = F 1+F 2+F 3 =2BIb+2BIR 方向向下。

12、彼此相距10cm 的三根平行的长直导线中各通有10A 同方向的电流,试求各导线上每1cm 上作用和的大小和方向?
x
题10 图
题11图
分析:据题意,三根相同直导线成等边三角形分布。

各电流都处在其它两电流的合磁场中,合磁感应强度大小相同,方向不同。

因此,每根电流所受合力也大小相同,方向不同。

若分别求出每对电流间的相互作用力,然后由叠加原理求出合力,结果相同。

解:设三根电流彼此相距为a ,已知I 1 = I 2 = I 3 = I 。

考虑I 1受力:取电流元I 1dl 1 ,另两电流在此处的合磁感应强度大小为
a
I a I B πμπ
πμ236c o s 22
00=
= 方向垂直于I 1 ,平行于I 2、I 3 的连线向左。

电流元I 1dl 1 所受的安培力的大小为
12
011123dl a
I B dl I dF πμ==
代入数据,并令dl 1=1cm ,可得I 1上每1cm 所受合力的大小为 N dF 6
110
46.3-⨯=
方向指向等边三角形的中心。

同理可得其它两根导线所受作用力,大小与电流I 1相同,方向均指向三角形中心。

相关文档
最新文档