稳恒磁场一章习题解答
大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
稳恒磁场练习题答案

1.求圆心处磁感应强度的大小及方向。
04B R=方向垂直纸面向里2.求圆心处磁场08IB Rμ=方向垂直纸面向里3.求圆心处磁场024I IB R Rμμπ=+方向垂直纸面向里4.求圆心处磁场0082IIB RRμμπ=+方向垂直纸面向里5.求圆心处磁场(1226I B R μππ=−+,方向垂直纸面向里 6.一无限长载流直螺线管通有电流I ,单位长度上螺线管匝数为n ,则该螺线管内部磁场磁感应强度的大小为B = 0nI μ。
7.如图所示,三个互相正交的载流圆环,带有电流强度I ,半径均为R ,则它们公共中心处O 点的磁感应强度大小为B =02IR。
8.一通电的圆环,通过的电流为I,半径为R,则圆心处的磁感应强度大小为02IRμ,线圈的磁矩大小为 2I R π 。
9.一无限长载流直导线,弯成如图所示的四分之一圆,圆心为O ,半径为R ,则在O 点的磁感应强度的大小为 0082IIB RRμμπ=+。
10.一个正方形回路和一个圆形回路,正方形的边长等于圆的直径,两者通过相等的电流,则正方形和圆形回路中心产生的磁感应强度大小之比为11.如图所示流经闭合导线中的电流强度为I ,圆弧半径分别为1R 和2R ,圆心为O ,则圆心001244IIR R μμ−。
12.一载有电流强度为I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等。
设2R r =,则两螺线管内部的磁感应强度的大小比值为:RrB B =1:1 。
13. 在同一平面上有三根等距离放置的长通电导线,如图所示,导线1、2、3分别载有1A 、2A 、3A 的电流,它们所受的安培力分别为1F 、2F 、3F ,则12F F = 7/8 ;13F F = 7/15 ;23F F = 8/15 。
(0174F d μπ=,0284F d μπ=,03154F dμπ=;故1278F F =,13715F F =,23815F F =) 14. 如图所示,长直导线中通有稳恒电流1I ,在其旁边有一导线段ab ,长为L ,距长直导线距离为d ,当它通有稳恒电流2I 时,该导线ab 所受磁力大小为012ln 2I I d Ld μπ+ 。
长安大学大物作业5稳恒磁场一参考答案

长安大学大物作业5稳恒磁场一参考答案稳恒磁场一参考答案一、 1 d2。
d3。
b4。
d5。
D解:1.我们知道,如图,一段载流导线i在p点产生的磁感应强度大小B2i1i?0i4?a(cos?1?cos?2)21i如右图,各段导线的电流强度可计算出,实际上,只要通过简单地计算,就可看出选项为d分段计算结果如下:(设正三角形边长为l)?①导线1在o的磁感应强度方向b1,大小为A.1.p23i?o13i3ib1??0i4?a(cos?1?cos?2)??0i4?33l(cos0?COS2)?3.0i4?l、方向是垂直的,纸张朝内?②导线2在o的磁感应强度方向b2,大小为b2??0i4?a(cos?1?cos?2)??0i4?36l(cos56×cos?)?(2?3)3? 0i4?l、垂直纸面向内?③导线3在o的磁感应强度方向b3,分为三段之和0左:B左?4.236i3(cosl16?cos56?)方向是垂直的,纸张表面是向外的0右:b右?4?136136i3(cosl16??cos56?),方向垂直纸面向内0:B?4.i3(cosl16??cos56?)方向是垂直的,纸张朝内相加可得b3?00irr?R2.r22。
正如我们在例子中提到的,我们可以得到B??0ir?r2?r3.循环电流会在任何一点产生磁感应强度,那么回路B的任何一点?0,但它遵循L的循环积分为0,因为根据安培环路定理,穿过l的电流强度为0.4.选项a错误,B在磁感应线密集的地方较大;B选项是错误的。
安培环路定理只能找到无限长直电流周围磁场,因为只有那样才可以找到一个环路l,使得l和磁感应线重合,解决怎么搞的?Bdl??0I中的点乘符号。
当满足电流的有限长度时?Bdl??0I,但它的磁场ll分布并不很规则,处理不掉点乘符号,无法计算出b=?的这种结果;选项c前半部分正确,后半部分错误,根据毕-萨定律,电流元在其延长线上一点的磁感应强度为0.5.磁通量可看作通过一个面磁感应线条数的多少,那么画图就可看出通过半球面的磁通量它应该等于通过圆盘开口处的磁通量2、1.3.14?10? 3t2。
稳恒磁场一

稳恒磁场一班级 学号 姓名 一、选择题1、电流由长直线1沿平行bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿cb 流出,经长直线2返回电源(如图),已知直导线上的电流为I ,三角框的每一边长为l 。
若载流导线1、2和三角形框在三角框中心O 点产生的磁感应强分别用1B 、2B 和3B表示,则O 点的磁感应强度的大小 ( )(A )B=0,因为B 1=B 2=B 3=0 (B )B=0,因为021=+B B、B 3=0 (C )B ≠0,因为021=+B B 但B 3≠0(D )B ≠0,因为B 3=0,但021≠+B B 2、无限长直圆柱体,半径为R ,设轴向均匀流有电流,没圆柱体内(r<R )的磁感应强度为B i ,圆柱体外(r>R )的磁感应强度为B e ,则有 ( ) (A )B i 、B e 均与r 成正比 (B )B i 、B e 均为r 成反比(C )B i 与r 成反比,B e 与r 成正比 (D )B i 与r 成正比,B e 与r 成反比3、如图,在一圆形电流I 所在的平面内,选取一个同心圆形的闭合回路L ,则由安培环路定理可知 ( ) (A ) 0=⋅⎰Ll d B , 且环路上任意一点B =0(B ) 0=⋅⎰Ll d B, 且环路上任意一点B ≠0(C ) 0≠⋅⎰Ll d B , 且环路上任意一点B ≠0(D ) 0≠⋅⎰Ll d B,且环路上任意一点B=常量 4、下列结论中你认为正确的是( ) (A(B )用安培环路定理可以求出有限长一段直线电流周围的磁场;(C )B的方向是运动电荷所受磁力最大的方向(或试探载流线圈所受力矩最大的方向);(D )一个点电荷在它的周围空间中任一点产生的电场强度均不为零,一个电流元在它的周围空间中任一点产生的磁感应强度也均不为零;(E )以上结论均不正确。
5、在磁感应强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为α,则通过半球面S 的磁通量为 ( )(A )2r π B (B )22r π B (C )-2r πB sin α (D )-2r πB cos α二、填空题1、一长直螺线管是由直径d =0.2mm 的漆包线密绕而成,当它通以I =0.5A 的电流时,其内部的磁感应强度B = 。
电磁感应一章习题答案

电磁感应一章习题答案习题11—1 如图,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速度旋转,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时。
图(A)——(D)的ε—t 函数图象中哪一条属于半圆形闭合导线回路中产生的感应电动势?[ ]解:本题可以通过定性分析进行选择。
依题设,半圆形闭合导线回路作匀角速度旋转,因此回路内的磁通量变化率的大小是一个常量,但是其每转动半周电动势的方向改变一次。
另一方面,若规定回路绕行的正方向为顺时针的,则通过回路所围面积的磁通量0>Φ,当转角从0到π时,0>Φdt d ,由法拉第电磁感应定律,0<ε;当转角从π到π2时,0<Φdt d ,由法拉第电磁感应定律,0>ε,如此重复变化……。
因此,应该选择答案(A)。
习题11—2 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线。
外磁场垂直水平面向上,当外力使ab 向右平移时,cd [ ](A) 不动。
(B) 转动。
(C) 向左移动。
(D) 向右移动。
解:ab 向右平移时,由动生电动势公式可以判断出ab 中的电动势的方向是b →a →c →d →b ,因而在cd 中产生的电流方向是c →d ,由安培力公式容易判断出cd 将受到向右的磁场力的作用,因此,cd 也将向右移动。
所以应选择答案(D)。
习题11—3 一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴O O '转动,转轴与磁场方向垂直,转动角速度为ω,如图所示。
用下述哪一种方法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?[ ](A) 把线圈的匝数增加到原来的两倍。
习题11―1图t εO(A)tεO(B)tεO(C)tεO(D)abc d M NB ρ 习题11―2图(B) 把线圈的面积增加到原来的两倍,而形状不变。
(完整word)稳恒磁场一章习题解答

稳恒磁场一章习题解答习题9—1 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
正确的图是:[ ]解:根据安培环路定理,容易求得无限长载流空心圆柱导体的内外的磁感应强度分布为⎪⎪⎪⎩⎪⎪⎪⎨⎧--=rIa b r a r I B πμπμ2)(2)(0022220 )()()(b r b r a a r >≤≤< 所以,应该选择答案(B ).习题9—2 如图,一个电量为+q 、质量为度v沿X 轴射入磁感应强度为B 直纸面向里,其范围从x =0和y =0处进入磁场,则它将以速度v-这点坐标是x =0和[ ]。
(A) qB m y v +=。
(B ) qBm y v2+=.(C ) qB m y v 2-=. (D ) qBm y v-=。
解:依右手螺旋法则,带电质点进入磁场后将在x 〉0和y 〉0区间以匀速v 经一个半圆周而从磁场出来,其圆周运动的半径为qBm R v =因此,它从磁场出来点的坐标为x =0和qBm y v2+=,故应选择答案(B)。
习题9-3 通有电流I 的无限长直导线弯成如图三种形状,则P ,Q ,O B P ,B Q ,B Or BOa b(A)(B)B a b r O B r O a b(C)B Ora b(D)习题9―1图习题9―2图I间的关系为[ ]。
(A) O Q P B B B >>。
(B ) O P Q B B B >>。
(C) P O Q B B B >>。
(D ) P Q O B B B >>说明:本题得通过计算才能选出正确答案。
对P 点,其磁感应强度的大小aIB P πμ20= 对Q 点,其磁感应强度的大小 [][])221(2180cos 45cos 4135cos 0cos 4000+=-+-=a I a I a I B Q πμπμπμ对O 点,其磁感应强度的大小 )21(2424000ππμπμμ+=⋅+=a I a I aIB O 显然有P Q O B B B >>,所以选择答案(D )。
大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。
(完整版)稳恒磁场作业习题及参考答案.doc

赵近芳编大学物理学 ch9. 稳恒磁场 作业习题及参考答案9-6 已知磁感应强度B 2.0 Wb ·m -2 的均匀磁场,方向沿x 轴正方向,如题 9-6 图所示.试求:(1) 通过图中 abcd 面的磁通量; (2) 通过图中 befc 面的磁通量; (3)通过图中 aefd 面的磁通量.解: 如题 9-6 图所示(1) 通过 abcd 面积 S 1 的磁通是 : 1B S 1 2.0i (0.3 0.4)i 0.24 ( Wb )(2) 通过 befc 面积 S 2 的磁通量 :2B S 22.0i (0.3 0.3)k(3) 设 aefd 面积 S 3 的法线正方向如图,则通过aefd 面积 S 3 的磁通量:3 B S 32 (0.30.5)cos20.15 4 0.24 ( Wb )题 9-6 图59-7 如题 9-7图所示, AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半径为R .若通以电流 I ,求 O 点的磁感应强度.解:如题9-7 图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中AB 段产生: B 1BC 段产生:B 2 0I60I(即垂直纸面向里)2R 360,方向题 9-7 图12 RCD 段产生: B 3I (sin 90 sin 60 ) 0I (13) ,方向4 R2 R 22【或: B 3I(cos120cos180 )I(13) ,方向 】4 R2 R22∴B 0B 1B 2B 30 I(13 ) , 方向 .2 R2 69-8 在真空中,有两根互相平行的无限长直导线L 1 和 L 2 ,相距 0.1m ,通有方向相反的电流, I 1 =20A,I 2 =10A ,如题 9-8图所示. A , B 两点与导线在同一平面内.这两点与导线L 2 的距离均为 5.0cm .试求 A , B 两点处的磁感应强度,以及磁感应强度为零的点的位置.解:如题 9-8 图所示, B A 方向垂直纸面向里,大小为:B A0 I120 I21.2 10 4 T2 (0.1 0.05)0.05B B 方向垂直纸面向外,大小为:0 I10 I21.33 10 5 T题 9-8 图B B22 (0.1 0.05) 0.05设 B0在 L 2 外侧距离 L 2 为 r 处,则II 20 , 解得: r 0.1 m9-12 两平行长直导线相距d =40cm ,每根导线载有电流 I 1 = I 2 =20A ,如题 9-12图所示.求:(1) 两导线所在平面内与该两导线等距的一点A 处的磁感应强度;(2) 通过图中斜线所示面积的磁通量. ( r 1 = r 3 =10cm, l =25cm) .解: (1) B A0 I10 I24 105 (T) 方向纸面向外2 ( d) 2 ( d)22题 9-12 图(2)dS ldr ,则: dB dS Bldr取面元d r 1 r 2 0 I 1 0 I 2]ldr0 I 1lln 30 I 2 lln1I 1lln 3 2.2 106( Wb )r 1 [S2 r2 (d r )2239-13 一根很长的铜导线载有电流 10A ,设电流均匀分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳恒磁场一章习题解答习题9—1 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
正确的图是:[ ]解:根据安培环路定理,容易求得无限长载流空心圆柱导体的内外的磁感应强度分布为⎪⎪⎪⎩⎪⎪⎪⎨⎧--=rIa b r a r I B πμπμ2)(2)(0022220 )()()(b r b r a a r >≤≤< 所以,应该选择答案(B)。
习题9—2 如图,一个电量为+q 、质量为m 的质点,以速度v沿X 轴射入磁感应强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x =0延伸到无限远,如果质点在x =0和y =0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x =0和[ ]。
(A) qB m y v +=。
(B) qB m y v2+=。
(C) qB m y v 2-=。
(D) qBm y v-=。
解:依右手螺旋法则,带电质点进入磁场后将在x >0和y >0区间以匀速v 经一个半圆周而从磁场出来,其圆周运动的半径为qBm R v =r BO a b (A) (B) B a b r O B r O a b (C) B Or a b(D) 习题9―1图习题9―2图因此,它从磁场出来点的坐标为x =0和qBm y v2+=,故应选择答案(B)。
习题9—3 通有电流I 的无限长直导线弯成如图三种形状,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为[ ]。
(A) O Q P B B B >>。
(B) O P Q B B B >>。
(C) P O Q B B B >>。
(D) P Q O B B B >>说明:本题得通过计算才能选出正确答案。
对P 点,其磁感应强度的大小 aI B P πμ20= 对Q 点,其磁感应强度的大小 [][])221(2180cos 45cos 4135cos 0cos 4000+=-+-=a I a I a I B Q πμπμπμ对O 点,其磁感应强度的大小 )21(2424000ππμπμμ+=⋅+=a I a I aIB O 显然有P Q O B B B >>,所以选择答案(D)。
[注:对一段直电流的磁感应强度公式)cos (cos 4210θθπμ-=aIB 应当熟练掌握。
]习题9—4 如图所示,一固定的载流大平板, 在其附近有一载流小线框能自由转动或平 动,线框平面与大平板垂直,大平板的电流 与线框中的电流方向如图所示,则通电线框习题9―3图题解9―4图的运动情况从大平板向外看是:[ ](A) 顺时针转动 (B) 靠近大平板AB (C) 逆时针转动(D) 离开大平板向外运动解:根据大平板的电流方向可以判断其右侧磁感应强度的方向平行于大平板、且垂直于I 1;小线框的磁矩方向向上,如图所示。
由公式B P M m ⨯= 可以判断小线框受该力矩作用的转动方向如图所示,因此应该选择答案(C)。
习题9—5 哪一幅曲线图能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系?(X 坐标轴垂直于圆线圈平面,圆点在圆线圈中心O )[ ]解:由载流圆线圈(N 匝)轴线上的磁感应强度公式232220)(2)(x R NIR x B +=μ可以判断只有曲线图(C)是正确的。
习题9—6 两根无限长直导线互相垂直地放着,相距d =2.0×102m ,其中一根导线与Z 轴重合,另一根导线与X 轴平行且在XOY 平面内。
设两导线中皆通过I =10A 的电流,则在Y 轴上离两根导线等距的点P 处的磁感应强度的大小为B = 。
解:依题给坐标系,与Z 轴重合的一根导线单独在P点产生的磁感应强度为B X O (A) X B O(B) B O (C) X B O (D) X BO (E) 习题9―5图习题9―6图)T (102100.210104)2(282701i i i d I B --⨯-=⨯⨯⨯⨯-=-=πππμ 同理,另一根与X 轴平行的导线单独在P 点产生的磁感应强度为(T)102)2(2802k k d I B -⨯==πμ由叠加原理,P 点处的磁感应强度的大小为(T)102282221-⨯=+=B B B习题9—7 如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根导线之间相距为a ,则(1) AB 中点(P 点)的磁感应强度P B= 。
(2) 磁感应强度B沿图中环路l 的线积分⎰ll d B·= 。
解:(1) A 、B 两载流导线在P 点产生的磁感应强度等大而反向,叠加的结果使P 点最终的磁感应强度为零,因此,0=P B 。
(2) 根据安培环路定理容易判断,磁感应强度B沿图中环路l 的线积分等于-I 。
习题9—8 如图,半圆形线圈(半径为R )通有电流I ,线圈处在与线圈平面平行向右的均匀磁场B中。
则线圈所受磁力矩的大小为 ,方向为 。
把线圈绕O O '转过角度 时,磁力矩恰为零。
解:半圆形线圈的磁矩大小为I R P m 221π=因而线圈所受磁力矩的大小为IBR IB R B P M m 22212sin 21sin πππθ==⋅⋅=习题9―7图习题9―8图根据磁力矩公式B P M m ⨯=可以判断出磁力矩M的方向向上。
容易知道,当πθk =,k =0,±1,±2,……时,磁力矩恰为零,这等价于把线圈绕O O '转过22)12(πππϕ+=+=k k ,k =0,1,2,3,……。
习题9—9 在均匀磁场B中取一半径为R 的圆,圆面的法线n与B 成60°角,如图所示,则通过以该圆为边线的如右图所示的任意曲面S 的磁通量=•=⎰⎰SS S d BΦ 。
解:通过圆面的磁通量222160cos R B R B ππΦ=⋅⋅= 圆 根据磁场的高斯定理,通过整个闭合曲面的磁通量等于零,即0=+=圆ΦΦΦS所以221R B S πΦΦ-=-=圆习题9—10 如图所示,均匀电场E 沿X 轴正方向,均匀磁场B沿Z 轴正方向,今有一电子在YOZ 平面沿着与Y 轴正方向成135°角的方向以恒定速度v运动,则电场E 和磁场B在数值上应满足的关系是 。
解:电子以恒定速度v运动,说明其所受到的合外力为零,即有0=+m e F F即 0)()(=⨯-+-B e E ev)(45sin )(=--+-i B e i eEv习题9―9图习题9―10图∴ B E v 22=习题9—11 如图,在无限长直载流导线的右侧有面积为S 1和S 2两矩形回路。
两个回路与长直载流导线在同一平面,且矩行回路的一边与长直导线平行。
则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为 。
解:建立如图所示的坐标轴OX 轴,并在矩形回路内距长直导线x 处取宽为dx 的窄条面元dS =hdx (图中带阴影的面积),则通过该面元的元磁通为hdx xIBdS d πμ20==Φ 所以,通过回路S 1的磁通量为 2ln 220201πμπμIhx dx Ih dS a a ===Φ⎰⎰ 通过回路S 2的磁通量为2ln 2204202πμπμIh x dx Ih dS a a ===Φ⎰⎰ 故,1121=ΦΦ习题9—12 两根长直导线通头电流I ,如图所示有三种环路,在每种情况下,⎰•Ll d B等于:(对环路a ) (对环路b ) (对环路c )习题9―11图习题9―12图解:根据安培环路定理,容易得到:对环路a , ⎰•Ll d B等于I 0μ;对环路b ,⎰•Ll d B 等于0;对环路c ,⎰•Ll d B等于2I 0μ。
习题9—13 如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过的稳恒电流为I ,则圆心O 处的电流元l Id 所受的安培力F d的大小为 , 方向为 。
解:圆心O 处的磁感应强度是由半圆形闭合线圈产生的,其直径段的电流在O 处单独产生的磁场为零,其半圆段在O 处产生的磁场即为该点的总磁场aIB O 40μ=O B的方向垂直于图面向内。
根据安培力公式B l Id F d ⨯=可知圆心O 处的电流元l Id 所受的安培力F d的大小为adlI IdlB dF 420μ==力F d的方向垂直于电流元向左。
习题9—14 一根半径为R 的长直导线均匀载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
若假想平面S 可在导线直径与轴O O '所确定的平面内离开O O '轴移动至远处。
试求当通过S 面的磁通量最大时S 平面的位置。
解:见图示,设假想平面S 靠近轴线的一边到轴线的距离为a ,易知长直导线内外的磁场分布为202RIrB πμ=内 (R r ≤≤0)r IB πμ20=外 (R r >)在假想平面S 内、距轴为r 处,沿导线直径方向取一宽度为dr 的窄条面元,通过它的元磁通为l IdO aI习题9―13图习题9―14图 r题解9―14图Bldr d =Φ通过假想平面S 的磁通量为 ldr r I ldr RIr Bldr d R a R RaR a a⎰⎰⎰⎰+++===πμπμΦΦ22020 R R a Il a R R Il ++-=ln2)(202220πμπμ 由最值条件,令012)2(4020=+⋅+-=Ra Il a R Il da d πμπμΦ即 022=-+R Ra a 解得 R Ra 618.0)15(2=-=(其负根已舍去)习题9—15 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通垂直于电流方向的每单位长度的电流为K 。
求球心处的磁感应强度大小。
解:如图所示,取一直径方向为OX 轴。
并沿电流方向在球面上取一宽度为dl 的球带,该球带可以看成载流圆环,其载有的电流为dI =Kdl =θKRd ,其在球心O 处产生的元磁场为θθμθμd KRR dI dB 20320sin 22)sin (==该元场的方向沿X 轴的正方向。
球面上所有电流在O 点产生的磁感应强度大小 为πμθθμπK d KdB B 022041sin 22=⋅==⎰⎰ 场的方向沿X 轴的正方向。
习题9—16 如图,一半径为R 的带电朔料圆盘,其中有一半径为r 的阴影部分题解9―15图均匀带正电荷,面电荷密度为σ+,其余部分均匀带负电荷,面电荷密度为σ-,当圆盘以角速度ω旋转时,测得圆盘中心O 点的磁感应强度为零,问R 与r 满足什么关系?解:取与圆盘同心、半径为r 、宽度为dr 的圆环,其带量电量为 rdr dS dq πσσ2== 其等效的圆电流为rdr rdrT dq dI σωωππσ===22 其在中心O 处产生的元场强为 dr rdIdB σωμμ00212== 因此,中心O 点的磁感应强度为)2(2121210000R r dr dr dB B R r r-=-==⎰⎰⎰σωμσωμσωμ令该磁感应强度为零可得r R 2=习题9—17 如图,有一密绕平面螺旋线圈,其上通有电流I ,总匝数为N ,它被限制在半径为R 1和R 2的两个圆周之间。