六年级数学上册第一单元 圆 知识整理

合集下载

数学六年级上册圆形知识点

数学六年级上册圆形知识点

数学六年级上册圆形知识点圆形是我们在日常生活中经常遇到的图形之一。

它具有独特的性质和特点,在数学学科中有着重要的地位。

本文将为大家介绍数学六年级上册的圆形知识点,包括圆的定义、圆的要素、圆的性质以及圆的应用等内容。

一、圆的定义圆是由平面上距离一个确定点(圆心)相等的所有点组成的图形。

以大写字母O表示圆心,小写字母r表示圆的半径,用圆周上的一点A和圆心O来表示一个圆,记作⊙O,圆的名称为⊙O。

二、圆的要素1. 圆心:圆的中心点,用大写字母O表示。

2. 半径:圆心到圆周上任意一点的距离,用小写字母r表示。

3. 直径:通过圆心的两个点构成的线段,它的长度等于圆的半径的两倍,用小写字母d表示。

4. 弦:圆上任意两点之间的线段。

5. 弧:圆上两点之间的部分。

6. 弧长:弧的长度,通常用小写字母l表示。

三、圆的性质1. 圆的半径相等:圆心到圆周上任意一点的距离都相等。

2. 圆的直径是半径的两倍:d = 2r。

3. 弦的长度小于等于直径:对于同一个圆来说,任意一个弦的长度都小于等于它的直径。

4. 圆的周长公式:设圆的半径为r,则圆的周长C=2πr,其中π≈3.14。

5. 圆的面积公式:设圆的半径为r,则圆的面积S=πr²,其中π≈3.14。

6. 圆心角和对应弧关系:圆心角的度数等于它所对应的弧所占据的圆心角的度数,即对于同一条弧来说,圆心角的度数等于它所对应的弧的度数。

四、圆的应用1. 圆在建筑设计中的应用:圆形的建筑物如圆形剧场、圆形体育馆等,不仅具有美观的外形,还能提供更好的空间利用效率。

2. 圆在机械加工中的应用:在车床加工、铣床加工等制造过程中,圆形工件的加工操作较为简单,容易控制质量。

3. 圆在艺术设计中的应用:圆形作为一种基本的图形元素,经常被用于绘画、雕塑、标志设计等领域,能够带来视觉上的舒适感和美感。

4. 圆在日常计算中的应用:在计算机图形学、地图测量、天体运动等领域,圆的相关概念和公式被广泛应用。

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理
以下是六年级上册数学《圆》的主要知识点整理:
1. 圆的定义:圆是由平面上距离一个定点(圆心)相等的所有点组成的图形。

2. 圆的要素:圆心、半径、弧、弦、直径。

3. 圆心角:以圆心为顶点的角叫做圆心角。

4. 圆周角:在圆上的两条弧所对的圆心角叫做圆周角。

5. 弧长:圆的弧的长度。

6. 第一惯性定理:同一圆上的任意两个圆心角相等的弧长也相等。

7. 第二惯性定理:在同一圆上,相等的弦所对的圆周角相等。

8. 第三惯性定理:在同一圆上,相等的弧所对的圆周角相等。

9. 相交弧:两个圆相交所形成的弧。

10. 接触弧:两个圆的外接或内切所形成的弧。

11. 切线:与圆只有一个公共点的直线叫做切线。

12. 切点:切线与圆的交点叫做切点。

13. 弦与切线定理:一条弦与切线在弦的两侧交于一点,这个点到弦的两个端点所形成的两个角相等。

14. 弦的性质:相等弦所对的两个圆心角相等;在同一圆上,离圆心较近的弦较长。

15. 弧和角的关系:相等的弧所对的圆心角相等;弧所对的圆心角越大,弧越长;弧所对的圆周角越大,弧越小。

16. 圆与直线的位置关系:圆与直线有内切、外切和相交三种关系。

这些是六年级上册数学《圆》的主要知识点,希望对你有帮助!。

小学六年级上册1单元数学知识点(圆的认识)

小学六年级上册1单元数学知识点(圆的认识)

小学六年级上册1单元数学知识点(圆的认识)1、圆所占平面的大小叫圆的面积。

把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。

2、如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=pi;r2。

3、半圆的周长不是圆的周长的一半,而是圆的周长的一半再加上一条直径长,即pi;r+2r;pi;r 半圆的面积是圆的面积的一半,即。

24、当长方形、正方形、圆的周长相等时,圆的面积最大,长方形的面积最小。

当长方形、正方形、圆的面积相等时,长方形的周长最大,圆的周长最小。

5、一个圆的半径扩大(缩小)几倍,直径就扩大(缩小)几倍,周长也扩大(缩小)几倍,面积就扩大(缩小)几的平方倍,但圆周率永远不变。

26、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=pi;中R=r+环的宽度。

环形的周长=外圆周长+内圆周长。

7、几个公式: R2-pi;r2或 S=pi;(R2- r2)。

其C圆=pi;d =2pi;d = 2r pi;S圆=pi;r 2Cdr = r = 2pi; 28、永远记住要带单位,周长是(cm),面积是平方(cm),体积是立方(cm)。

9、常用的3.14的倍数:3.14times;2=6.28 3.14times;3=9.423.14times;4=12.56 3.14times;5=15.7 3.14times;6=18.843.14times;7=21.98 3.14times;8=25.123.14times;9=28.26 3.14times;12=37.683.14times;14=43.963.14times;16=50.24 3.14times;18=56.523.14times;24=75.36 3.14times;25=78.53.14times;36=113.04 3.14times;49=153.863.14times;64=200.96 3.14times;81=254.34希望为大家提供的小学六年级上册1单元数学知识点,能够对大家有用,更多相关内容,请及时关注我们!。

六年级上册数学圆的知识点

六年级上册数学圆的知识点

六年级上册数学圆的知识点
一、圆的定义
1.圆(circle)是一种特殊的平面图形,是由一组等距离的点连线构成的,既不留空又不闭合的图形,称为圆。

2. 两点组成的圆,也可以理解为一种椭圆形,即是一个中心和半径组成的圆环形。

3. 由任意三个不共线点组成的圆,其中一点作为圆心,距离圆心相等的两点分别位于圆的两端,这两端之间的距离即为圆的半径。

二、圆的数学表达式
1. 圆的数学表达式通常由三部分组成,即圆心坐标、圆上一点坐标和它们之间的距离。

2. 以圆心坐标(x0,y0)和圆上任意一点坐标(x,y)为例,可以用下列几种表达式表示圆:(1)(x-x0)2+(y-y0)2=r2 (2) (x-x0)2/a2 + (y-
y0)2/b2 =1,其中a和b分别为长轴和短轴长度;(3)(x-x0)2 + (y-y0)2-r2 = 0,其中r为半径;(4)(x-x0)2 + (y-y0)2-d2 = 0,其中d为圆心到圆上任意一点的距离。

三、圆的性质
1.内心角性质:圆上任意三点,其三条连线所成的三个内角加起来总等于 180°。

2. 弦长性质:圆上任意两点与圆心所成的角相同,那么它们之间的弦
长也相等。

3. 周长性质:圆周长(C)与圆直径(D)的关系为,C=2πr,其中r为圆的半径长度。

四、圆的定理
1.圆周面积公式:面积S=πr2,其中r为圆的半径长度。

2. 三角形面积公式:S=(h1+h2)ab/2,其中h1、h2分别为三角形的凸角到边之间的距离,a和b分别为三角形的两边长度。

3. 利用弧长来求圆心角:圆心角θ = 弧长L/半径r = 2πr/r = 2π。

【小学数学】六年级上册数学《圆》知识点整理

【小学数学】六年级上册数学《圆》知识点整理

【小学数学】六年级上册数学《圆》知识点整理1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次;折痕相交于圆中心的一点;这一点叫做圆心。

如下图中;中心的一点O 。

一般用字母O 表示。

它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

如下图红色线。

把圆规两脚分开;两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

如下图蓝色线。

直径是一个圆内最长的线段。

85、圆心确定圆的位置;半径确定圆的大小。

如果已知的是直径;我们要把直径除以2换成半径,确定圆心;然后才开始画圆。

(画圆给出半径标半径r=?;给出直径标直径d=?) 要比较两圆的大小;就是比较两个圆的直径或半径。

6、在同圆或等圆内;有无数条半径;有无数条直径。

同圆中所有的半径、直径都相等。

7.在同圆或等圆内;直径的长度是半径的2倍;半径的长度是直径的21。

用字母表示为:d = 2r 或r =2d 或r=d ÷2 8、轴对称图形:如果一个图形沿着一条直线对折;两侧的图形能够完全重合;这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形;都有对称轴。

这些图形都是轴对称图形。

10、常见图形的对称轴:只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

圆是轴对称图形;有无数条对称轴;对称轴就是直径所在的直线。

11、正方形里最大的圆。

两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心;以边长为直径画圆。

12、长方形里最大的圆。

两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心;以宽为直径画圆。

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

如下图中,中心的一点O 。

一般用字母O 表示。

它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

如下图红色线。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

如下图蓝色线。

直径是一个圆内最长的线段。

85、圆心确定圆的位置,半径确定圆的大小。

如果已知的是直径,我们要把直径除以2换成半径,确定圆心,然后才开始画圆。

(画圆给出半径标半径r=?,给出直径标直径d=?)要比较两圆的大小,就是比较两个圆的直径或半径。

6、在同圆或等圆内,有无数条半径,有无数条直径。

同圆中所有的半径、直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。

用字母表示为:d = 2r 或r = 2d 或r=d ÷2 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、常见图形的对称轴:只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。

11、正方形里最大的圆。

两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

12、长方形里最大的圆。

两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

六年级数学上册圆形知识点

六年级数学上册圆形知识点

六年级数学上册圆形知识点
六年级数学上册圆形知识点包括:
1. 圆的定义:圆是由平面上所有到一个固定点的距离都相等的点的集合。

2. 圆的元素:圆心(固定点),半径(连接圆心和圆上任意一点的线段)。

3. 圆的直径:通过圆心的两个点,长度是半径的两倍。

4. 圆的周长:圆的周长等于圆的直径乘以π,其中π约等于3.14159。

5. 圆的面积:圆的面积等于半径的平方乘以π。

6. 弧:圆上的一段弧是圆的一部分。

7. 弧长:弧的长度。

8. 弧度制:以半径为单位度量角度的一种方式。

9. 切线和半切线:切线是与圆只有一个交点的直线,半切线是与圆只有一个交点的射线。

10. 弦:圆上的两点间的线段。

11. 正切线:与圆只有一个交点且垂直于半径的直线。

12. 圆内接多边形和外接多边形:内接多边形的顶点都在圆上,外接多边形的边都与圆相切。

以上是六年级数学上册关于圆形的主要知识点,希望对你有帮助!。

六年级上册数学《圆》知识点+同步练习,全是重点!

六年级上册数学《圆》知识点+同步练习,全是重点!

六年级上册数学《圆》知识点+同步练习,全是重点!一、圆的特征1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。

圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。

在同一个圆里,有无数条半径,且所有的半径都相等。

半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。

在同一个圆里,有无数条直径,且所有的直径都相等。

直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学上册第一单元 圆 知识整理
一、圆各部分的名称.
1、圆心 圆中心的一点叫圆心。

,一般用字母o 表示也可以用其它字母表示。

圆心确定圆的位置。

把圆形纸片对折再对折,折痕的交点就是圆心。

2、半径 连接圆心到圆上任意一点的线段叫半径。

一般用字母r 表示。

有无数条半径。

半径决定圆的大小。

画圆时,圆规两脚张开的距离就是圆的半径。

3、直径 通过圆心,两端都在圆上的线段叫直径。

一般用字母d 表示。

有无数条直径。

直径所在的直线就是圆的对称轴,圆有无数条对称轴。

4、在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径的长度是半径的2倍。

可用字母表示为d=2r , r=d 2
(或r=d ÷2)
二、轴对称图形
三、圆的周长
1、围成圆的曲线的长叫圆的周长。

2、圆周率表示圆的周长和直径的商,是一个固定的数。

(它不因圆的大小而改变)它是一个无限不循环小数,用字母∏表示,值在(3.1415926-3.1415927)之间,计算时取两位小数3.14
3、圆的周长计算公式
顺用:知道直径:C =πd 知道半径: c=2πr
反用:d=c ÷π r= c ÷π÷2
四、圆的面积
1、圆面积公式的推导过程
把圆分成若干等分,剪拼成一个长方形,长方形的长等于圆周长的一半∏r ,宽等于半径r 。

2、圆的面积计算公式: s=πr 2
3、求面积的4种基本情况
(1)已知半径求面积 直接用公式。

(2)已知直径求面积 先求半径,再用公式。

(3)已知周条求面积 先求半径,再用公式。

(4)已知r 2求面积 把r 2看作一个整体直接用公式。

在图中一般用r 2
正方形的面积(此时正方形的边长就是圆的半径。


五、半圆的周长和面积
1、半圆的周长等于同圆周长的一半加直径。

2、半圆的面积等于同圆面积的一半。

六、几个常用结论
1、等圆的含义是半径相等,直径相等、周长相等、面积相等。

2、一个圆的半径扩大到原来的n 倍,直径、周长也扩大到原来的n 倍,而面积扩大到原来的n
2 3、在正方形中画一个最大的圆,边长作圆的直径,在长方形中画一个最大的圆,短边作直径。

4、周长相等的平面图形,圆的面积最大。

七、有关圆的组合图形中的阴影部分的面积
1、常用方法加减法割补法
2、用认真观察图形发现数据之间的关系,找准条件。

八、重要应用
1、利用车轮的转速,求路程和时间。

2、钟面上的数学
(1)求针尖转动若干周转动的路程或求分针时针转动若干周扫过的面积。

分针1小时1周。

时针12小时1周,一天(一昼夜)2周。

(2)求绕过某个时间,分针或时针转动的角度(四年级)进而求出几分之几个圆。

相关文档
最新文档