六年级数学上册圆知识点

合集下载

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理
以下是六年级上册数学《圆》的主要知识点整理:
1. 圆的定义:圆是由平面上距离一个定点(圆心)相等的所有点组成的图形。

2. 圆的要素:圆心、半径、弧、弦、直径。

3. 圆心角:以圆心为顶点的角叫做圆心角。

4. 圆周角:在圆上的两条弧所对的圆心角叫做圆周角。

5. 弧长:圆的弧的长度。

6. 第一惯性定理:同一圆上的任意两个圆心角相等的弧长也相等。

7. 第二惯性定理:在同一圆上,相等的弦所对的圆周角相等。

8. 第三惯性定理:在同一圆上,相等的弧所对的圆周角相等。

9. 相交弧:两个圆相交所形成的弧。

10. 接触弧:两个圆的外接或内切所形成的弧。

11. 切线:与圆只有一个公共点的直线叫做切线。

12. 切点:切线与圆的交点叫做切点。

13. 弦与切线定理:一条弦与切线在弦的两侧交于一点,这个点到弦的两个端点所形成的两个角相等。

14. 弦的性质:相等弦所对的两个圆心角相等;在同一圆上,离圆心较近的弦较长。

15. 弧和角的关系:相等的弧所对的圆心角相等;弧所对的圆心角越大,弧越长;弧所对的圆周角越大,弧越小。

16. 圆与直线的位置关系:圆与直线有内切、外切和相交三种关系。

这些是六年级上册数学《圆》的主要知识点,希望对你有帮助!。

六年级上册数学圆的知识点

六年级上册数学圆的知识点

六年级上册数学圆的知识点圆是数学中的一个重要概念,广泛应用于几何学和数学中的其他分支。

在六年级上册数学课程中,学生将学习和掌握与圆相关的一些基本知识和技能。

本文将介绍六年级上册数学圆的主要知识点,包括圆的定义、圆的要素、圆的性质以及与圆相关的测量和计算等内容。

一、圆的定义圆是由一个平面内离一个定点距离相等的所有点构成的集合。

该定点称为圆心,距离称为半径。

圆可以由圆心和半径唯一确定,记作⦁O(r),其中⦁O表示圆心,r表示半径。

二、圆的要素圆的要素主要包括圆心、半径和直径等。

1. 圆心(O):圆中心点的位置,圆的位置关系和性质与圆心有关。

2. 半径(r):圆心到圆上任意一点的距离,用来确定圆的大小。

3. 直径(d):通过圆心并且两端都在圆上的线段,它的两倍就是圆的直径,在圆上任意两点之间线段的最大长度。

三、圆的性质1. 圆的对称性:圆具有轴对称性,任意一条通过圆心的直线都是圆的对称轴。

2. 圆的直径性质:任意一条直径平分圆,即将圆分为两个面积相等的半圆。

3. 圆的切线性质:与圆相切的直线只有且仅有一条,并且切点在圆的切线上。

四、与圆相关的测量和计算1. 圆的周长:圆的周长是圆上所有点到圆心的距离之和,可以用公式C = 2πr计算,其中C表示圆的周长,r表示半径。

2. 圆的面积:圆的面积是圆内的所有点组成的部分,可以用公式A = πr²计算,其中A表示圆的面积,r表示半径。

五、圆的应用圆的知识在生活中有着广泛的应用,例如:1. 自行车的车轮、手表等圆形零件的设计与制造。

2. 古代建筑中圆形窗户或天花板的构造。

3. 饼、蛋糕等甜点的形状是圆的,制作时需要对圆的周长和面积进行计算。

通过对六年级上册数学圆的知识点的学习,学生将能够准确理解圆的定义和要素,掌握圆的性质和相关测量计算,培养对圆的应用能力。

同时,通过实际生活中的例子和问题,帮助学生理解和运用圆的知识,提高解决问题的能力。

六年级上册数学圆的知识点详细且全面地介绍了圆的定义、要素、性质以及与圆相关的测量和计算。

六年级上册数学圆的知识点

六年级上册数学圆的知识点

六年级上册数学圆的知识点
一、圆的定义
1.圆(circle)是一种特殊的平面图形,是由一组等距离的点连线构成的,既不留空又不闭合的图形,称为圆。

2. 两点组成的圆,也可以理解为一种椭圆形,即是一个中心和半径组成的圆环形。

3. 由任意三个不共线点组成的圆,其中一点作为圆心,距离圆心相等的两点分别位于圆的两端,这两端之间的距离即为圆的半径。

二、圆的数学表达式
1. 圆的数学表达式通常由三部分组成,即圆心坐标、圆上一点坐标和它们之间的距离。

2. 以圆心坐标(x0,y0)和圆上任意一点坐标(x,y)为例,可以用下列几种表达式表示圆:(1)(x-x0)2+(y-y0)2=r2 (2) (x-x0)2/a2 + (y-
y0)2/b2 =1,其中a和b分别为长轴和短轴长度;(3)(x-x0)2 + (y-y0)2-r2 = 0,其中r为半径;(4)(x-x0)2 + (y-y0)2-d2 = 0,其中d为圆心到圆上任意一点的距离。

三、圆的性质
1.内心角性质:圆上任意三点,其三条连线所成的三个内角加起来总等于 180°。

2. 弦长性质:圆上任意两点与圆心所成的角相同,那么它们之间的弦
长也相等。

3. 周长性质:圆周长(C)与圆直径(D)的关系为,C=2πr,其中r为圆的半径长度。

四、圆的定理
1.圆周面积公式:面积S=πr2,其中r为圆的半径长度。

2. 三角形面积公式:S=(h1+h2)ab/2,其中h1、h2分别为三角形的凸角到边之间的距离,a和b分别为三角形的两边长度。

3. 利用弧长来求圆心角:圆心角θ = 弧长L/半径r = 2πr/r = 2π。

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

如下图中,中心的一点O 。

一般用字母O 表示。

它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

如下图红色线。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

如下图蓝色线。

直径是一个圆内最长的线段。

85、圆心确定圆的位置,半径确定圆的大小。

如果已知的是直径,我们要把直径除以2换成半径,确定圆心,然后才开始画圆。

(画圆给出半径标半径r=?,给出直径标直径d=?)要比较两圆的大小,就是比较两个圆的直径或半径。

6、在同圆或等圆内,有无数条半径,有无数条直径。

同圆中所有的半径、直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。

用字母表示为:d = 2r 或r = 2d 或r=d ÷2 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、常见图形的对称轴:只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。

11、正方形里最大的圆。

两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

12、长方形里最大的圆。

两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

新课标版六年级上册数学第五单元《圆》知识点总结

新课标版六年级上册数学第五单元《圆》知识点总结

第五单元《圆》知识点归纳第一节:圆的认识(1)圆心:用圆规画圆时针尖所在的点叫圆心,用字母O表示。

(2)半径:连接圆心和圆上任意一点的线段叫做半径,用字母r表示。

(3)直径:通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。

(4)一个圆里的半径有无数条、直径有无数条、对称轴有无数条;同圆或等圆内所有的直径长度都相等、所有的半径长度都相等,直径长度是半径长度的2倍,半径长度是直径长度的。

(5)圆心决定圆的位置,半径决定圆的大小。

(6)公式:d=2r ;r==d÷2第二节:圆的周长(1)圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率;它是一个无限不循环小数,用字母π表示;计算时通常取近似值π≈3.14(2)公式:①已知直径求周长:C=πd②已知半径求周长:C=2πr③已知周长求直径:d==C÷3.14④已知周长求半径:r==C÷π÷2⑤半圆的周长不是圆周长的一半;半圆的周长=5.14r ;圆周长的一半=πr=3.14r第三节:圆形、环形的面积(1)用割补法可以将圆拼成一个近似的长方形,这个长方形的长近似于圆周长的一半,宽近似于圆的半径。

因为长方形的面积公式:面积=长ⅹ宽,所以圆的面积=圆周长的一半ⅹ半径=πrⅹr=, 即S=(2)公式:①已知半径求面积:S=②已知直径求面积:r=d÷2, S=③已知周长求面积:r=C÷π÷2,S=④环形面积:环=π(-)【计算技巧】-=(R+r)ⅹ(R−r)[外圆半径=内圆半径+环宽; 内圆半径=外圆半径−环宽]⑤外方内圆求边角阴影面积:阴影=正方形面积−圆形面积快捷公式:阴影=0.86⑥外圆内方求边角阴影面积:阴影=圆形面积−正方形面积快捷公式:阴影=1.14【圆内正方形面积:正方形=直径ⅹ半径=dr】第四节:扇形面积扇形:一条弧和经过这条弧两端的两条半径所围成的图形。

六年级上册数学第五单元圆知识点归纳

六年级上册数学第五单元圆知识点归纳

六年级上册第五单元《圆》知识点一、认识圆1、圆的定义:圆是平面上的一种曲线图形,也是封闭图形和轴对称图形。

2、圆心:用圆规画圆时,针尖所在的点叫做圆心。

圆心一般用字母“O ”表示。

圆心到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母“r ”表示。

用圆规画圆时,圆规两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母“d ”表示。

直径是一个圆内最长的线段。

5、圆心确定圆的中心位置,半径决定圆的大小。

半径相等的两个圆叫做等圆。

6、一个圆有无数条半径,无数条直径。

在同圆或等圆内,所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。

用字母表示为:d =2r 或r = 2d 8、如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,这个图形叫做轴对称图形。

折痕所在的这条直线叫做对称轴(注:直径不是圆的对称轴,直径所在的直线才是对称轴)。

9、圆是轴对称图形,直径所在的直线是圆的对称轴。

10、轴对称图形 名称对称轴 名称 对称轴 线段1条 等腰梯形 1条 长方形2条 圆 无数条正方形4条 半圆 1条 等腰三角形1条 扇形 1条 等边三角形3条 圆环 无数条 五角星 5条 扇环 1条 11、平行四边形不是轴对称图形1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母“C ”表示。

2、一个圆的周长总是它的直径的3倍多一些。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母“π” 表示。

(1)圆周率π是一个无限不循环小数。

在计算时,一般取π ≈ 3.14。

(2)在判断时,圆的周长总是它直径的π倍,圆的周长大约是它直径的 3.14倍。

圆的周长是它的半径的2π倍。

(3)世界上第一个把圆周率精确到七位小数的人是我国的数学家 祖冲之。

4、圆的周长公式: C= πd d = C ÷π或C=2πr r = C ÷π÷25、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

人教版六年级数学上册第五单元圆知识点总结

人教版六年级数学上册第五单元圆知识点总结

圆一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:圆的中心位置叫做圆心。

一般用字母O表示。

它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

1。

7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的2d用字母表示为:d=2r或r =28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C表示。

2、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai)表示。

(1)圆周率π是一个无限不循环的小数。

在计算时,一般取π ≈ 3.14。

(2)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

(3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

3、圆的周长公式:C= πd d = C ÷π或C=2π r r = C ÷2π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

如图:6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2π r÷ 2 即π r (2)半圆的周长:等于圆的周长的一半加直径。

小学六年级人教版数学上册第四单元《圆》知识点汇总

小学六年级人教版数学上册第四单元《圆》知识点汇总

第四单元圆一、基本概念1、圆心一个圆最中心的那一点,用大写字母O 表示(1) 圆心决定圆的位置。

(2) 圆心到圆上任意一点的距离都相等。

(3) 一张圆形纸片至少对折两次,就能找到圆心。

2、半径圆心到圆上任意一点的线段,用小写字母r 表示(1) 半径决定圆的大小。

(2) 在同一个圆里面,半径都相等。

(3) 在同一个圆里面,半径有无数条。

(4) 半径是直径的一半,即d 21r =3、直径通过圆心并且两端都在圆上的线段,用小写字母d 表示(1) 在同一个圆里面,直径都相等。

(2) 在同一个圆里面,直径有无数条。

(3) 直径是半径的两倍,即r 2d =(4) 在一个正方形内画最大的圆,圆的直径等于正方形的边长(5) 在一个长方形内画最大的圆,圆的直径等于长方形的宽二、使用圆规的步骤1、先确定圆心的位置和半径。

(1) 轴对称图形中,两条对称轴的交点就是中心点(2) 如果知道直径,那么直径的一半就是半径2、用直尺量出两脚之间的距离为半径。

(1) 量好后不能再改变两脚之间的距离3、把针尖放在圆心位置,保持针尖不动,旋转另一只脚一周,即可画出指定的圆。

(1)如果旋转圆规一周不顺手,可以保持圆规不动,旋转纸一周。

(2)如果旋转一周画出来的线条不清晰,可以多旋转几周加深线条。

三、轴对称图形1、轴对称图形沿对称轴对折之后,两边可以完全重合。

2、常见的轴对称图形以及它们的对称轴条数:(1)只有一条对称轴的图形:角、等腰三角形、等腰梯形、扇形、半圆(2)有2条对称轴的图形:长方形(3)有3条对称轴的图形:等边三角形(4)有4条对称轴的图形:正方形(5)有无数条对称轴的图形:圆、圆环【圆的对称轴就是直径】四、周长与面积1、圆周率ππ是一个无限不循环小数,一般取 3.14π≈。

我国数学家祖冲之是第一个把圆周率算出来的人。

2、圆的周长(1)圆的周长用大写字母C 表示,计算公式是πd πr 2C ==即圆的周长等于两倍的π乘以半径,也等于π乘以直径(2) 半圆的周长半圆的周长等于半个圆的周长加上直径,即r 2πr +3、圆的面积圆的面积用大写字母S 表示,计算公式是2πr S =4、周长与面积的关系(1) 在同一个圆中,半径扩大或缩小几倍,直径和周长就扩大或缩小几倍,而面积扩大或者缩小这个倍数的平方倍,例如:在同一个圆内,如果半径扩大3倍,那么直径和周长就扩大3倍,面积扩大9倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四单元圆知识点
一、 认识圆
1、圆的定义:圆是平面上的一种曲线图形。

2、圆心:用圆规画圆时,针尖所在的点叫做圆心。

圆心一般用字母O 表示。

圆心到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r 表示。

用圆规画圆时,圆规两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d 表示。

直径是一个圆内最长的线段。

5、圆心确定圆的中心位置,半径决定圆的大小。

半径相等的两个圆叫做等圆。

6、一个圆有无数条半径,无数条直径。

在同圆或等圆内,所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的
2
1。

用字母表示为:d =2r 或r = 2d 8、如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,这个图形叫做轴对称图形。

折痕所在的这条直线叫做对称轴。

9、圆是轴对称图形,直径所在的直线是圆的对称轴。

10、轴对称图形
11、平行四边形不是轴对称图形
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C表示。

2、一个圆的周长总是它的直径的3倍多一些。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π 表示。

(1)圆周率π是一个无限不循环小数。

在计算时,一般取π ≈ 3.14。

(2)在判断时,圆的周长总是它直径的π倍,圆的周长大约是它直径的3.14倍。

圆的周长是它的半径的2π倍。

(3)世界上第一个把圆周率精确到七位小数的人是我国的数学家祖冲之。

4、圆的周长公式:C= πd d = C ÷π
或C=2πr r = C ÷π÷2
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分圆的周长的一半和半圆的周长:
(1)圆的周长的一半等于圆的周长÷2 计算方法:2π r÷ 2 即π r
(2)半圆的周长等于圆的周长的一半加一条直径。

计算方法:πr+2r
7、车轮转动一周,所行的路程就是圆的周长。

三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。

用字母S表示。

2、圆面积公式的推导:
把一个圆等分(偶数份)拼成一个近似的长方形,拼成的长方形的长近似于圆的周长的一半(πr),长方形的宽近似于圆的半径(r),圆的面积公式:S =πr2
注:半圆的面积是这个圆的面积的一半。

3、环形的面积:
一个环形,外圆的半径是R,内圆的半径是r (外圆的半径=内圆的半径+环的宽度.)注:求圆环的面积要先弄清楚外圆的半径和内圆的半径
环形的面积公式:S环 = πR²-πr²或S环= π(R²-r²)
4、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小这倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

5、两个圆:半径比 = 直径比 = 周长比;而面积比等于这个比的平方。

如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9 6.当一个圆的半径增加a,它的周长就增加2πa;当一个圆的直径增加a,它的周长就增加πa。

7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
圆的面积是正方形面积的78.5%
8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。

当长方形,正方形,圆的面积相同时,长方形的周长最长,正方形居中,圆周长最短。

9.在正方形内画一个最大的圆,这个圆的直径等于正方形的边长。

如果圆的半径是r,
那么正方形和圆之间部分的面积是S =0.86r²
10. 在圆内画一个最大的正方形,这个正方形的对角线等于圆的直径。

如果圆的半径是r,
那么正方形和圆之间部分的面积是S =1.14r²
11
四 1、弧:圆上任意两点之间的部分叫做弧。

弧是圆的一部分。

2、扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

3、圆心角:由两条半径组成,顶
4、在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。

5、以半圆为弧的扇形的圆心角是180度,以圆为弧的扇形的圆心角是90度。

10、确定起跑线:
(1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。

(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。

(因此起跑线不同)(3)、每相邻两个跑道相隔的距离是:2×π×跑道的宽度
(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

相关文档
最新文档