2009西安交通大学高等代数考研真题

合集下载

西安交通大学2009年入学数学分析试题

西安交通大学2009年入学数学分析试题

西安交通大学2009年攻读硕士学位研究生入学考试试题一 判断下列命题是否正确(不用说明理由,每小题3分,共30分)1. 设()f x 在点10x R ∈的邻域有定义.如果()f x 在0x 处取得极大值,则存在0δ>,使得()f x 在00(,)x x δ-内单调增,而在00(,)x x δ+单调减.2. 若实数列{}n x 有上界,则lim n n x →∞有限.3. 若级数1n n a ∞=∑与1n n b ∞=∑都是发散的,且(1,2,)n n n a c b n ≤≤=,则级数1n n c ∞=∑也发散.4.设{(,)}n na b 是一个开区间序列,11(,)(,),1,2,,n n n n a b a b n ++⊆=且lim()0n n n b a →∞-=.则不存在唯一的实数1(,)n n n a b ξ∞=∈.5. 含参变量广义积分(,)af x y dx +∞⎰在区间[,]c d 收敛的充要条件是:0[,],0y c d ε∀∈∀>,存在0A a >,使得'0,A A A ∀>,有'|(,)|A Af x y dx ε<⎰.6. 当x →+∞时,函数(,)g x y 关于[,]y c d ∈一致收敛于0的充要条件:0ε∀>,存在00A >,使得当0x A >时,[,]y c d ∀∈有|(,)|g x y ε<.7. 设I 是区间.若(,)f x y 在[,]a b I ⨯连续,则()(,)ba F y f x y dx =⎰在I 连续.8. 若函数()f x 在(,)a b 内可导,则'()f x 在(,)a b 内没有第一类间断点.9. 设(,)f x y 在2R 上有定义,1y R ∀∈,()(,)x f x y ϕ=是1R 上的有界函数,1x R ∀∈,()(,)y f x y ψ=也是1R 上的有界函数,则(,)f x y 在2R 上有界.10. 若级数1n n u ∞=∑收敛,则级数31n n u ∞=∑也收敛.二 填空(每小题6分,共60分)1.21lim(ln(1))x x x x →∞-+=_________2. 设n 是正整数,则0|sin |n x dx π=⎰_________3. 设yz z u xe e y -=++,则du =_________4. 若2222(2)(2)du x xy y dx x xy y dy =+-+--,则u =_________5. 设S 为圆柱体,222,0x y a z h +≤≤≤的侧面(取外侧为正向),则向量a yz i zx j xy k→→→→=++通过S 的流量为_________6. 设积分沿不和y 轴相交的途径,则(1,2)2(2,1)ydx xdyx-=⎰_________ 7. 函数0sin ()xtf x dt t =⎰关于x 的幂级数展开是_________8. 设(,)f x y 是2R 上的连续函数,二次积分12201(,)(,)xx dx f x y dy dx f x y dy-+⎰⎰⎰⎰交换积分次序后,得到的二次积分是_________9. 设222,(1,1,1),(0,1,3)u x y z A B =++-,则u 在A 点处沿AB →方向的方向导数为_________10. 设L 为单位圆221x y +=,则线积分23()Lx y ds +=⎰_________三 (12分)设(,)f x y 在2{(,)|0,0}D x y R x y =∈≥≥上连续,当(,)x y →∞时,(,)f x y 的极限存在.证明:(,)f x y 在D 上是一致连续的.四 (12分)讨论函数0ln(1)()xt F x dt t+∞+=⎰在区间(1,2)内的连续性.五 (12分)设1n n u ∞=∑是正项级数,{}n a 是正数列,若11lim()0nnn n n u a a u +→∞+->,证明:级数1n n u ∞=∑收敛.六 (12分)设2||()sin ,1,2,,n x n f x e nx n -==,讨论函数列()n f x 在1R 上的一致收敛性.七 (12分)设2R 上的函数(,)f x y 在22{(,)|1}D x y x y =+<内连续,且(,)u v D ∀∈∂,存在0δ>,使得f 在222((,)|()())x y x u y v δ-+-<内有界.证明:f 在__22{(,)|1}D x y x y =+≤上是有界的.。

2009西安交大高数期中考试

2009西安交大高数期中考试
13、(本小题4分)真空中有一平面电磁波,其电矢量沿x轴振动,相应的波的表达式为
,式中c为电磁波在真空中的传播速率,则该电磁波沿_________
方向传播,磁矢量 沿___________振动。
二、计算题(共42分)
1、(本小题10分)三个同方向、同频率的简谐振动为
, , ,
试求合振动的表达式。
2、(本小题10分)在真空中有A、B两个点电荷,带电量分别为 和 ,相距为 ,它们都以角速度 绕 轴转动(自上向下看逆时针转动), 轴与 连线相垂直,其交点为 ,与正电荷相距 ,如图所示,求 点处的磁感应强度 。
2、(本小题6分)两根长直导线通有电流I,图示有三种环路;在每种情况下,
等于:
______________________________(对环路a)。
______________________________(对环路b)。
______________________________(对环路c)。
3、(本小题4分)一半径为R的细长带电圆柱面,其电荷面密度均匀为 ,当圆柱面以匀
角速度 绕其轴线旋转时,圆柱面内部磁感应强度大小为__________________。
4、(本小题2分)有一根无限长直导线绝缘地紧贴在矩形导体线圈的中心轴OO′上,
则直导线与矩形线圈间的互分)一矩形线框长为a宽为b,置于均匀磁场 中,线框绕OO′轴,
以匀角速度旋转(如图所示)。设t=0时,线框平面处于纸面内,则任
一时刻感应电动势的大小为______________。
6、(本小题4分)在某个电子感应加速器中,从上向下看时,电子沿逆时针方向旋转,如图
所示。则电子正在加速运动时,加速器中的磁场方向应该是垂直于纸面(填进去或

2009年普通高等学校招生全国统一考试数学文(陕西卷,含答案).doc

2009年普通高等学校招生全国统一考试数学文(陕西卷,含答案).doc

2009年普通高等学校招生全国统一考试数学文(陕西卷,含答案)第Ⅰ卷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.设不等式20x x -≤的解集为M ,函数()ln(1||)f x x =-的定义域为N ,则M N ⋂为(A ) (A )[0,1) (B )(0,1) (C )[0,1] (D )(-1,0]2.若tan 2α=,则2sin cos sin 2cos αααα-+的值为 (B)(A )0 (B)34 (C)1 (D) 543.函数()24(4)f x x x =-≥的反函数为 (D)(A )121()4(0)2fx x x -=+≥ (B) 121()4(2)2f x x x -=+≥(C )121()2(0)2f x x x -=+≥ (D)121()2(2)2f x x x -=+≥ 4.过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长为(D)(A 3(B )2 (C 6 (D )3某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。

为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ( B)(A )9 (B )18 (C )27(D) 366.若20092009012009(12)()x a a x a x x R -=+++∈,则20091222009222a a a +++的值为 (C)(A )2 (B )0 (C )1- (D) 2-7.” 0m n >>”是”方程221mx ny +=表示焦点在y 轴上的椭圆”的 (C )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D) 既不充分也不必要条件8.在ABC∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足2AP PM =,则()AP PB PC ⋅+等于 (A )(A )49 (B )43 (C )43- (D) 49-9.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为 (C)(A)432 (B)288 (C) 216 (D)10810.定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则 (A)(A)(3)(2)(1)f f f <-< (B) (1)(2)(3)f f f <-<(C) (2)(1)(3)f f f -<< (D) (3)(1)(2)f f f <<-11.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为(B)(A)26 (B) 23 (C) 33 (D) 2312.设曲线1*()n y xn N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12nx x x ⋅的值为 (B) (A)1n (B) 11n + (C) 1n n + (D) 12009年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)(陕西卷)第Ⅱ卷二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分).13.设等差数列{}n a 的前n 项和为n s ,若6312a s ==,则数列的通项公式n a = 2n .14.设x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z x y =+的最小值是 1 ,最大值是 1115.如图球O 的半径为2,圆1O 是一小圆,12OO =,A 、B是圆1O 上两点,若1AO B ∠=2π,则A,B 两点间的球面距离为 23π .16.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 8 人 。

2009考研数学(二)真题及参考答案

2009考研数学(二)真题及参考答案

2009年研究生入学统一考试数学二试题与解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为1 ()f x -2 0 2 3x-1O则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = .(11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2x y x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式. (21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|12(1('))y y ρ==+,而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )1 ()f x -2 0 2 3x-1O()A .()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B⨯=-=⨯=()即分块矩阵可逆 111100066000100B BA A AB B BBAA A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002BB AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dy dx= 所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = .【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k=-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0【解析】令sin sin cos x x xn I e nxdx e nx n e nxdx ---==-+⎰⎰2sin cos x xn e nx nenx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1y e x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e -=+ 对''1y y xy y e ++=再次求导可得''''''22()0y y y xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e -==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2x y x =在区间(]01,上的最小值为 . 【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e =.又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21ey e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫ ⎪⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而T βα是一个常数,是矩阵T αβ的对角元素之和,则T 2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim limsin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x→-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. 【解析】 令1x t x+=得22212,1(1)tdtx dx t t -= =-- 22211ln(1)ln(1)1ln(1)11111x dx t d x t t dt t t t ++=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以221ln(1)111ln(1)ln 1412(1)111ln(1)ln(1)2211111ln(1)ln(1)222x t t dx C x t t t x xx x x C x x x x x x x x x x C x ++++=+-+--++=++++-++++=+++++-++⎰ (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2zx y∂∂∂.【解析】123123zf f yf x zf f xf y∂'''=++∂∂'''=-+∂1231232111213212223331323331122331323()()1(1)1(1)[1(1)]()()z z dz dx dy x yf f yf dx f f xf dyzf f f x f f f x f y f f f x x yf f f xyf x y f x y f ∂∂∴=+∂∂''''''=+++-+∂'''''''''''''''''''=⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. 【解析】解微分方程20xy y '''-+=得其通解212122,y C x C x C C =++其中,为任意常数又因为()y y x =通过原点时与直线1x =及0y =围成平面区域的面积为2,于是可得10C =1112232220002()(2)()133C C y x dx x C x dx x x ==+=+=+⎰⎰从而23C =于是,所求非负函数223(0)y x x x =+ ≥又由223y x x =+ 可得,在第一象限曲线()y f x =表示为1131)3x y =+-(于是D 围绕y 轴旋转所得旋转体的体积为15V V π=-,其中552210051(131)9(23213)93918V x dy y dyy y dy ππππ==⋅+-=+-+=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰ 3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.【解析】由题意,当0x π-<<时,'xy y =-,即ydy xdx =-,得22y x c =-+, 又()22y ππ-=代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+ 令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为22,0cos sin ,0x x y x x x x ππππ⎧⎪-- -<<=⎨-+-≤<⎪⎩或22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'()(0)x f x f fx ξ-=-……()* 又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫ ⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫⎪⎛⎫ ⎪⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)222210k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. 【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。

[全]《高等代数》考研真题详解[下载全]

[全]《高等代数》考研真题详解[下载全]

《高等代数》考研真题详解1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.(U )[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述的P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研]【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f ‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研]【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三种因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x -1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1名校考研真题第6章线性空间一、选择题1.下面哪一种变换是线性变换().[西北工业大学研]A.B.C.【答案】C查看答案【解析】不一定是线性变换,比如则也不是线性变换,比如给而不是唯一的.2.在n维向量空间取出两个向量组,它们的值().[西北工业大学研] A.必相等B.可能相等亦可能不相等C.不相等【答案】B查看答案【解析】比如在中选三个向量组(I):0(Ⅱ)(Ⅲ).若选(I)(II),秩秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.二、填空题1.若则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]【答案】2;4.查看答案【解析】在复数域上令;则是线性无关的.则此即证可由线性表出.在实数域上,令若,其中,则此即在R上线性关.可由线性表出,所以在实数域R上,有三、分析计算题1.设V是复数域上n维线性空间,V1和V2各为V的r1维和r2维子空间,试求之维数的一切可能值.[南京大学研]解:取的一组基,再取的一组基则=秩。

2009年全国硕士研究生入学考试数学二真题及答案

2009年全国硕士研究生入学考试数学二真题及答案

y y x 0 。求 y(x)的表达式。
(21)(本题满分 11 分)(I)证明拉格朗日中值定理:若函数 f (x) 在[a,b]上连续,在(a,b)
可导,则存在 (a,b) ,使得 f (b) f (a) f ( )(b a) 。(II)证明:若函数 f (x) 在 x=0


0 B
A 0

的伴随矩阵为()
(A)

0 2 A
3B
0

(B)

0 3 A
2B
0

பைடு நூலகம்(C)

0 2B
3A
0

(D)

0 3B
2 A
0

100
(8)设
A,P
均为
3
阶矩阵,
PT

P
的转置矩阵,且
1
x
1
y
A
2
dx
4x f x, y dy
1
1
C
2
dy
4y f x, y dx
1
1
B
2
dx
4x f x, y dy
1
x
D
2
1
2
dyy
f

x,
y dx
【答案】 C
2
2
2
2
【解析】 dx f (x, y)dy dy f (x, y)dx 的积分区域为两部分:
sin x
A 1 B 2 C 3 D 无穷多个
【答案】 C
【解析】由于 f x x x3 ,则当 x 取任何整数时, f x 均无意义.

2009年全国硕士研究生入学统一考试数学一真题及答案

2009年全国硕士研究生入学统一考试数学一真题及答案
在本题中,
当 时,
当 时,
因此函数 仅在 处间断,故选(B).
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)设函数 具有二阶连续偏导数, ,则 .
【答案】
【考点】多元函数的偏导数
【难易度】★★
【详解】本题涉及到的主要知识点:
利用复合函数的链式求导法则求多元函数的偏导数的方法。
在本题中,

(10)若二阶常系数线性齐次微分方程 的通解为 ,则非齐次方程 满足条件 的解为 .
【答案】
【考点】简单的二阶常系数非齐次线性微分方程
【难易度】★★
【详解】本题涉及到的主要知识点:
线性微分方程的解的性质即叠加原理,线性微分方程通解的结构为齐次方程的通解加上特解。
在本题中,
由通解表达式 该二阶线性常系数齐次方程的特征值为 ,于是特征方程为

而在 上, 有连续的一阶偏导数且 ,于是
(在 : 上用高斯公式)
(20)(本题满分11分)
设 , .
(Ⅰ)求满足 的 . 的所有向量 , .
(Ⅱ)对(Ⅰ)中的任意向量 , 证明 , , 线性无关.
【考点】向量组的线性无关,非齐次线性方程组的通解
【难易度】★★★
【详解】本题涉及到的主要知识点:
非齐次线性微分方程的解的性质即叠加原理,非齐次线性微分方程通解的结构为齐次方程的通解加上特解。
收敛级数的和的概念, 称为无穷级数 的前n项的部分和。若部分和数列 的极限存在,即 ,则称级数 收敛。当级数收敛时,其和 。
在本题中,
(Ⅰ)先求 .易求得 与 的交点为 , ,于是曲线 与 所围成区域的面积为
(Ⅱ)按定义求
(Ⅲ)求 .

西安交通大学硕士材料科学基础真题2009年

西安交通大学硕士材料科学基础真题2009年

西安交通大学硕士材料科学基础真题2009年(总分:150.02,做题时间:90分钟)一、{{B}}一{{/B}}(总题数:5,分数:20.00)1.全位错与不全位错(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:柏氏矢量等于晶体点阵矢量的位错称为全位错;柏氏矢量不等于晶体点阵矢量的位错称为不全位错。

2.伪共晶与离异共晶(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:不平衡凝固过程中所形成的平均成分不等于合金平衡相图中共晶成分的共晶体称为伪共晶;当合金中先共晶体的量很多而共晶体的量很少时,共晶体中与先共晶体相同的相依附于先共晶体生长,而将共晶体中的另一相孤立在先共晶体的晶界处,这种失去了两相混合形貌的共晶体称为离异共晶。

3.时效强化与低碳钢的应变时效(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:将具有饱和溶解度的固溶体加热到饱和溶解度线以上温度后快冷,得到过饱和固溶体。

再将该过饱和固溶体在室温下长时间放置,或在低于饱和溶解度线以下的温度长时间保温,则过饱和固溶体发生脱溶分解,在固溶体晶粒内部析出弥散分布的细小的第二相颗粒,从而使合金的强度明显提高。

这种强化称为时效强化。

退火态低碳钢具有屈服降落特性。

将退火态低碳钢预拉伸发生少量塑性变形后,若立即再拉伸时,屈服降落现象消失;若将其在室温下放置一较长时间或在低温经过短时加热再进行拉伸,则屈服降落现象又出现,且屈服应力提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安交通大学2009年攻读硕士学位研究生入学考试试题
科目代码:818 科目名称:高等代数
一 (20分)计算行列式:
000
00
0000
00000n D αβαβαβαβαβαβαβαβ
+++=+
+
二 (20分)已知12(0,1,0),(3,2,2)T T αα==-,是线性方程组
1231231
2321341x x x x x x ax bx cx d -+=-⎧⎪++=⎨⎪++=⎩
的两个解,求此方程组的全部解.
三 (20)当t 取什么值时,下面二次型是正定的:
222123123121323(,,)42106f x x x x x x tx x x x x x =+++++
四(15分)设3阶实对称矩阵A 有特征值1231,1λλλ=-==,A 的属于特征值-1的特征向量1(0,1,1)T ξ=,矩阵32B A A E =-+,其中E 为3阶单位阵(下同),问:
(1) 1ξ是否为B 的特征向量?求B 的所有特征值和特征向量;
(2) 求矩阵B .
五(15分)设,1200000,,,,00,,,00a c x W a a b c R W y x y z R c b z z ⎧⎫⎧⎫⎡⎤⎡⎤⎪⎪⎪⎪⎢⎥⎢⎥=∈=∈⎨⎬⎨⎬⎢⎥⎢⎥⎪⎪⎪⎪⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎩⎭
(1) 求12W W +;
(2) 记12W W W =+,试求空间3W 使得33()M R W W =⊕(其中3()M R 为实数域
上3阶矩阵全体),并说明理由.
六(15分)设向量组12,,,r ααα线性无关,而12,,,,,r αααβγ线性相关.证明:
要么β与γ中至少有一个可被12,,,r ααα线性表出,要么12,,,,r αααβ与12,,,,r αααγ等价.
七(15分)设A 为(1)n n ⨯+阶常数矩阵,X 为(1)n n +⨯阶未知数矩阵.试证明矩阵方程AX E =有解的充要条件为()r A n =.
八(10)若12,αα是数域F 上的二维线性空间2()V F 的基,σ和τ是2()V F 上的线性变换,且满足
112212121212,,(),()σαβσαβτααββτααββ==+=+-=-
试证:στ=.
九(10)设A 和B 是两个n 阶实正交矩阵,并且det()det()A B =-.证明
()r A B n +<.
十(10分)证明A 可与一个对角矩阵相似的充要条件是:对于A 的任意特征值i λ,方程组
2()0i E A X λ-=与()0i E A X λ-=
是同解的,其中11(,,,)n n X x x x =.需要更多试题请/exam.taoba -//maths :http
高等代数试题分数分布:
行列式:20分(1);
线性方程组:35分(2);
矩阵:15分(1);
二次型:20分(1);
线性空间:15分(1);
欧几里得空间:10分(1)
线性变换:35分(3)。

相关文档
最新文档