人教版九年级上册数学二十三章《信息技术应用 探索旋转的性质》

合集下载

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

第二十三章—旋转一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点。

2、旋转的性质(1)对应点到旋转中心的距离相等。

(旋转中心就是各对应点所连线段的垂直平分线的交点。

)(2)对应点与旋转中心所连线段的夹角等于旋转角。

(3)旋转前、后的图形全等。

3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。

4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。

5、有关图形旋转的一些计算题和证明题例题练习1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.数学来源于生活,下列生活中的运动属于旋转的是 ( )A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输东西5.如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是 ( )6.如图,在△ABC中,AB=AC,∠ABC=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC.其中正确的为( )A.②③B.②③④C.①②③D.①②③④7.如图,将△ABC绕点A顺时针旋转得到△ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是()8.如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△FAC≌△BAE;(2)图中可以通过旋转△BAE而得到△FAC,请你说出旋转中心、旋转方向和旋转角的度数.9.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE 绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,连接EN,作FG⊥BC交BC的延长线于点G.(1)求证:BE=CG;(2)若BE=2,DN=3,求EN的长.二、中心对称图形1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。

人教版初中数学九年级上册第二十三章:旋转(全章教案)

人教版初中数学九年级上册第二十三章:旋转(全章教案)

第二十三章旋转本章的内容包括:图形的旋转的概念与性质,中心对称(图形)的概念及性质,简单的图案设计.教材通过具体事例认识平面图形的旋转,探索旋转的基本性质;能够按要求画出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;通过具体实例认识中心对称图形的概念,探索它们的基本性质;探索图形之间的变化关系,会用轴对称、平移、旋转的组合进行图案设计.本章内容是中考的必考内容,主要考查图形的旋转的性质,中心对称(图形)的概念及性质.【本章重点】平面图形的旋转变换和中心对称图形的性质.【本章难点】旋转作图、中心对称、旋转等图形变换的灵活运用.【本章思想方法】1.体会对比数学思想.如:本章中要运用对比法学习图形的旋转,将变化前后的图形互相对比,可以发现旋转前后的图形只存在位置上的不同,从而,由旋转的定义及特征,进一步发展空间观念,提升设计图案能力.2.体会和掌握转化思想.如:在利用旋转的性质进行计算和证明时,利用转化法把求线段的相等转化为关于旋转的性质的问题.3.掌握数形结合思想.如:在解旋转知识与平面直角坐标系等知识的综合题时,利用几何图形将“数”与“形”结合起来,运用数形结合的思想解答.23.1图形的旋转1课时23.2中心对称3课时23.3课题学习图案设计1课时23.1图形的旋转一、基本目标【知识与技能】1.了解旋转及其旋转中心、旋转角、对应点的概念及应用它们解决一些实际问题.2.通过具体实例认识旋转,探索它的基本性质.3.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.【过程与方法】通过具体实例认识平面图形的旋转,通过提问、小组交流等方式探讨旋转的基本性质.【情感态度与价值观】1.通过具体实例认识平面图形的旋转,体会数学知识应用的价值,提高学生学习数学的兴趣.2.了解数学对促进社会进步和发展人类理性精神的作用,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】旋转及对应点的有关概念及其应用.【教学难点】旋转的基本性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P59~P62的内容,完成下面练习.【3 min反馈】1.观察教材P59“思考”,回答问题.(1)教材上面的情景中的转动现象,有什么共同的特征?解:指针、风车叶片分别绕中间点旋转.(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?解:形状、大小不变,位置发生变化.(3)从3时到5时,时针转动了__60__°.(4)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了__60__°。

人教版九年级上册数学精品教学课件 第二十三章 旋转 图形的旋转 第1课时 旋转的概念与性质

人教版九年级上册数学精品教学课件 第二十三章 旋转 图形的旋转 第1课时 旋转的概念与性质

随堂训练 基础巩固
1.下列图案中能由一个图形通过旋转而构成的是_①__②___.(填序号)
2.(2020·大连)如图,△ABC中,∠ACB=90°,∠ABC=40°. 将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落 在边AB上,则∠CAA′的度数是( D )
A.50° B.70° C.110° D.120°
点A、B、P的对应点分别为 C、B、P′ .
旋转中心就是在旋转过程中始终保持固定不变的那个点, 它可以在图形的外部或内部,还可以在图形上,即它可以是平 面内的任意一点.
旋转角:任意一对对应点与旋转中心的连线所成的角.
练习
①时钟的时针在不停地旋转,从上午6时到上午9时,时针 旋转的角度是多少?从上午9时到上午10时呢?
解:从上午6时到上午9时,时针旋转的角度为90°,从上 午9时到上午10时,时针旋转的角度是30°.
②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是 点 O ,旋转角是 ∠AOA′,点A的对应点是点 A′ .
知识点2 旋转的性质
在硬纸板上先挖一个三角形洞,再在三角形
洞外挖一个小洞O(作为旋转中心),把挖好洞 的硬纸板放在白纸上,在白纸上描出挖掉的三角
R·九年级上册
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念与性质
新课导入 导入课题
欣赏日常生活中一些物体的运动现象,观察运动的过程。
学习目标
(1)了解生活中广泛存在的旋转现象,知道旋转是继平移、 对称之后的又一种基本变换. (2)能结合图形指出什么是旋转中心、旋转角和对应点. (3)体会旋转的形成过程,并探究旋转的性质.
3.(教材P60例题变式)如图,四边形ABCD是正方形,△ADF按 顺时针方向旋转一定的角度得到△ABE,已知AF=4,AB=7.

人教版初中数学九年级上册第二十三章23.1.1旋转的概念与性质

人教版初中数学九年级上册第二十三章23.1.1旋转的概念与性质

3.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对 应点D恰好落在BC边上.若AC= 3 , ∠B=60 °,则CD的长为( D ) A. 0.5 B. 1.5 C. 2 D. 1
E
A
C
D
B
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,旋转角等 于 44 ° .
A1 C,
A1B
BC,
A1BD CBF,
△BCF≌△BA1D;
1.下列现象中属于旋转的有( C )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的
转动;⑤钟摆的运动;⑥荡秋千运动.
A.2 B.3 C.4 D.5
2. 下列说法正确的是( B )
A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
3.旋转不改变图形的形状和大小.
A E
F
B
D O C
探究新知
素养考点 1 旋转作图
例1 如图,E是正方形ABCD中CD边上任意一点,以点A 为中心,把△ADE顺时针旋转90°,画出旋转后的图形.
想一想:本题中作 图的关键是什么?
A
D
E
作图关键-确定点E的对应点E′
B
C
例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点 B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=
x
A.45°,90° B.90°,45° C.60°,30° D.30°,60°

九年级数学上册第23章季第二十三章《旋转》教材分析(人教版)

九年级数学上册第23章季第二十三章《旋转》教材分析(人教版)

第二十三章《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.与平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一,同时旋转变换较之前两种变换理解难度稍大,需要的直观想象和抽象能力更强,所以在教学中应更注重这方面循序渐进的培养。

旋转是工具性的知识,旋转变换在平面几何中有着广泛的应用。

在学习基本图形的旋转的过程中,既是为发现旋转的基本性质做准备,也是为后期旋转的应用做铺垫,所以要调动学生的主观能动性,切忌以大量的练习代替对概念的探究与分析。

旋转本章的教学还可以作为初中全等变换教学的一个总结,可以通过引导学生归纳之前学习的平移、轴对称变换的基本性质来总结几何要素,从而明确研究旋转变换的研究对象。

还可以引申探究三种变换的内部关系以帮助学生对这三种变换有一个统领性的,更深刻的认识。

同时在旋转的学习中,也是为后续圆的学习进行铺垫。

值得注意的是,由于知识水平的限制,对于平移变化,在平面直角坐标系中我们可以进行全方位的研究;对于轴对称变换,课标和考试说明中只要求了横平竖直的对称轴,对关于任意直线的对称只是作为拓展内容;而对于旋转,除了中心对称为课标要求,30°,45°,60°,90°的旋转可转化为几何问题来解决,对于任意角度的旋转往往涉及高中知识太多,在初中解析几何中往往以圆为载体出现。

二、主要内容三、课程学习目标(一) 课标要求1.通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2.了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.3.探索线段、平行四边形、正多边形、圆的中心对称性质.4.认识并欣赏自然界和现实生活中的中心对称图形.(二) 2019年中考说明要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.在平面直角坐标系中,知道已知顶点坐标的多边形,经过中心对称(对称中心)为原点后的对应顶点坐标之间的关系,略高要求:能画出简单平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.在平面直角坐标系中,能写出已知顶点坐标的多边形,经过中心对称(对称中心为原点后)的图形的顶点坐标.较高要求:运用旋转的有关内容解决有关问题.运用坐标与图形运动的有关内容解决有关问题.(三)教学要求1.基本要求①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角) 的性质;②通过具体实例认识旋转,能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.⑥了解关于原点对称的点的坐标之间的关系.2.略高要求①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.四、课时安排本章教学时间约需8课时,具体分配如下(仅供参考) :23.1 图形的旋转2课时23.2 中心对称2课时23.3 课题学习图案设计1课时(补充) 旋转的应用2课时数学活动、小结1课时五、教学重点难点重点: 1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标之间的关系.难点: 1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.六、具体教学建议1.注重与学生已学的图形变换(平移、轴对称)的联系,类比学习(可以类比定义的要素,探究性质等),所以在本章学习中不妨花费一些时间来复习。

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
= 3 ,OA ′ =5 ,旋转角等于44 ° .
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.

人教版九年级上册(新)第23章《旋转》教材分析 (文字稿)

人教版九年级上册(新)第23章《旋转》教材分析 (文字稿)

第二十三章 《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.和平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一.旋转是工具性的知识. 学习旋转的基本性质, 欣赏并体验旋转在现实生活中的广泛应用, 不仅是初中学习的重要目标之一, 也是密切数学与现实之间联系的重要桥梁之一.旋转变换在平面几何中有着广泛的应用, 特别是在解(证)有关等腰三角形(主要是等腰直角三角形、等边三角形)以及正方形等问题时, 更是经常用到的思维方法. 此前, 学生已学习了平移、轴对称两种图形变换, 对图形变换已具有一定的认识, 通过本章的学习, 学生对图形变换的认识会更完整, 同时, 也能对平移、轴对称有更深的认识. 进一步建立的几何变换的意识可帮助我们用运动的观点认识图形,从而使解决问题的思路更加简明、清晰.二、主要内容三、课程学习目标(一)课标要求1. 通过具体实例认识平面图形关于旋转中心的旋转, 探索旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2. 能够按要求画出简单平面图形旋转后的图形, 欣赏旋转在现实生活中的应用.3. 通过具体实例认识中心对称、中心对称图形的概念,探索它们的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 了解线段、平行四边形是中心对称图形.,认识并欣赏自然界和现实生活中的中心对称图形.4. 探索图形之间的变化关系(轴对称、平移、旋转及其组合),会运用轴对称、平移、旋转的组合进行图案设计.旋转及其性质 中心对称 关于原点对称的点的坐标图案设计中心对称图形旋转的基本知识特殊的旋转 --中心对称 平移、旋转、轴对称的综合运用平移及其性质 轴对称及其性(二)实际教学要求1.基本要求:①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角)的性质;——什么是旋转?旋转的三要素是什么?旋转前、后图形之间对应元素具有哪些性质?②通过具体实例认识旋转, 能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;——怎样确定旋转中心与旋转角?③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.——旋转与中心对称之间具有怎样的联系?中心对称与中心对称图形之间具有怎样的关系?⑥了解关于原点对称的点的坐标之间的关系.2.略高要求:①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求:①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.(三)2015中考说明中对旋转的要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.略高要求:能画出平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.较高要求:运用旋转的有关内容解决有关问题.四、课时安排本章教学时间约需9课时, 具体分配如下(仅供参考):23.1图形的旋转2课时23.2中心对称2课时23.3课题学习图案设计1课时(补充)旋转的应用(计算与证明) 2- 3课时数学活动、小结1课时五、教学重点难点重点:1. 图形旋转的基本性质.2. 中心对称的基本性质.3. 两个点关于原点对称时, 它们坐标之间的关系.难点:1. 图形旋转的基本性质的归纳与运用.2. 中心对称的基本性质的归纳与运用.六、教学建议:1、注重与学生已学的图形变换的经验联系,类比学习.在本章学习前,学生已经学习了平移、轴对称,对图形变换已经有所认识,一般地,学习一种图形变换大致包括以下内容⑴通过具体实例认识图形变换; ⑵探索图形变换的性质;⑶作出一个图形变换后的图形⑷利用图形的变换进行图案设计;⑸用坐标表示图形变换.本章“旋转”的学习也是从以上几个方面展开的. 关于⑸,本章正文中只涉及一些特殊旋转用坐标表示的问题,如以原点为对称中心的中心对称的坐标表示,在数学活动和习题中则涉及用坐标表示以原点为旋转中心,旋转角为直角的旋转.2、注意揭示旋转概念的实际背景与广泛应用旋转与现实生活联系紧密, 为此, 在教学中应列举大量实例来使学生认识和感受它们, 增强学生对旋转的理解. 利用图形变换进行图案设计、解决实际问题既可以进一步促进学生对知识的理解,又加强了图形变换与现实生活的联系.3、注意培养动手操作的意识教材在探索旋转的性质、中心对称的性质以及如何设计图案最美观等问题时, 安排了转动硬纸板、转动三角板、转动模板等应用动手操作来探索结论的内容. 动手操作是解决问题的一种方法, 应给学生操作的时间和体验,加强学生主动进行动手操作的意识.4、注意安排对重要结论的探究教材在发现旋转的性质、中心对称的性质、关于原点对称的点的坐标特征、图形之间的变换关系、如何设计图案最美观、从坐标的角度揭示中心对称与轴对称的关系等问题中,教科书注意安排画图、分析、归纳等探究活动.教学中,应充分利用这些资源,进行开放式探究,重视培养学生观察、发现、比较、归纳、说理等综合能力,从而逐步提高学生的探究能力.5、注意概念之间的区别与联系⑴平移、旋转、轴对称学习旋转变换与学习平移、轴对称的过程基本一致, 主要都是研究变换过程中的不变量, 是研究几何问题、发现几何结论的有效工具. 平移、轴对称、旋转都是全等变换, 只改变图形的位置, 不改变图形的形状和大小. 由于变换方式的不同, 故变换前后具有各自的性质.⑵旋转与中心对称中心对称是一种特殊的旋转(旋转180°), 满足旋转的性质, 由旋转的性质可以得到中心对称性质⑶中心对称与轴对称教材中P74的数学活动1还从坐标的角度揭示了中心对称与轴对称的关系. 作点A关于x轴的对称点B,作点B关于y轴的对称点C,则点A与点C关于原点对称. 由此可知,将一点作上述两次轴对称变换相当于作出这个点关于原点的对称点.⑷两个图形成中心对称与中心对称图形6、注意用计算机辅助教学利用几何画板的旋转功能, 可以方便地作出一个图形绕某一点旋转某个角度后的图形.利用几何画板的度量功能, 可以发现旋转变换中的不变量; 关于原点对称的点的坐标特征. 进行图案设计时, 利用计算机, 可以让学生直观地看到改变旋转中心、旋转角会出现不同的效果. 同时利用计算机, 可以直观地看到图形运动变换的过程,对图形性质的探究和发现会很有帮助.7、培养学生良好的作图习惯,加强学生对图形的认识和理解.几何作图是本章教学过程中不可缺少的重要组成部分. 通过作图可以加深学生对旋转的认识和理解. 旋转的过程中, 实际上其运动轨迹均为圆, 利用圆规构造旋转变换的图形是学生应该掌握并熟练应用的. 在教学中,教师应当指导学生利用尺规和其它工具规范作图, 培养学生良好的作图习惯.本章主要作图有:OA'①按要求作旋转后的图形;②已知旋转前后的图形,确定旋转中心、旋转角;③作一个图形关于一点成中心对称的图形;④已知成中心对称的两个图形(或已知某一图形是中心对称图形), 确定对称中心;⑤在平面直角坐标系中, 作一个图形关于原点对称的图形.上述五种作图是本章的基本技能. 在教学中一定要让学生动手完成.8、从三个层面理解借助旋转移动图形:①从旋转的角度认识静态图形,发现图形关系,实际不需要移图;②图形按指令语言(题干)要求移动,解决在图形移动过程中形成的问题;③根据题目需要和图形特征有目的的旋转图形的某一部分,形成新的图形关系,从而将分散的条件集中,使知识与知识之间形成紧密的联系,产生新的信息,有利于解决问题。

九年级数学上册 第23章 旋转 旋转性质的综合应用教案 (新版)新人教版

九年级数学上册 第23章 旋转 旋转性质的综合应用教案 (新版)新人教版

旋转性质的综合应用课教材背景分析和教学安排说明:本节课是人教版数学九年级上册第二十三章《旋转》第7课时,是一节综合应用课;在此之前学生已经学完了旋转的单元知识,本节课主要目的是培养学生综合运用能力,锻炼学生的分析问题,解决问题的能力。

本节课的教学我以实例为切入点,以探究活动为主线设计了5个环节,让学生通过具体实例进一步学习旋转,动手进行数学实验探索,经历旋转现象的观察分析,证明过程,引导学生用旋转的思想解决有关问题。

近几年,有关旋转知识,在广州中考中所占分值统计表246810121416分值旋转已成为广州中考的重点与热点内容之一,当图形的形状不规则,难以直接应用数学知识求解或是条件比较分散,难以发现其内在联系时,可通过旋转使不规则图形转化为规则图形,使分散的条件发生“转移”,变得相对集中,从而使待求问题明朗化,这种解决问题的思想就是旋转变换思想.教学任务分析 教 学 目 标 知识与技能 建立旋转及相关性质的知识框架,掌握旋转的性质并能运用有关知识进行推理和计算。

过程与方法 在探究的过程中经历操作——猜想——验证的过程,发展学生分析、归纳、抽象概括的思维能力,积累数学经验。

情感态度 价值观学生经历图形旋转的操作,进一步发展空间观念,培养运动几何的观点。

让学生通过独立思考,自主探究,合作交流进一步体会旋转的数学内涵,获得知识,体验成功。

增强学习的积极性。

教学重点 旋转的基本性质的运用,解决旋转问题的一般方法。

教学方法采用以学生的合作探究为主,教师的适时引导为辅的教学方式。

活动流程图 时间安排 环节l 知识再现 4分钟 环节2 例题讲解 8分钟 环节3 探索一 15分钟 环节4 当堂训练10分钟环节5小结,布置作业 3分钟环节6 教学反思课后教师完成教学过程设计问题与情境师生行为设计意图「环节1」:知识再现(1)如图正方形ABCD,点E是CD上的任意一点,将ΔADE绕着点A顺时针旋转900后到达ΔABF的位置,连接EF,则①旋转中心是②指出旋转角③BF和DE有何关系是(2).ΔABC是等边三角形,将ΔADB绕点A逆时针旋转到ΔAEC,连结DE,则ΔADE的形状是(3)如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)已知线段AB和O点,画出线段AB关于点O的对称线段A' B' .
B'
A
O
A' B 简记为:一连;二延;三截取等长;四连线.
(3)如图,选择点O为对称中心,画出与△ABC关于点O 对称的△A′B′C′.
C
A
B′
O
B
A′
△A′B′C′为所求作的三角形
C′
考考你 如图,已知△ABC与△A′B′C′中心对称,找出它们的对称中心
3 翻转后和另一个图形重合 旋转后和另一个图形重合
当堂练习
1.判断正误: (1)轴对称的两个图形一定是全等形,但全等的两个 图形不一定是轴对称的图形.( )√ (2)成中心对称的两个图形一定是全等形.但全等的两 个图形不一定是成中心对称的图形. ( ) √ (3)全等的两个图形,不是成中心对称的图形,就是 成轴对称的图形. ( )×
布置作业
课本69页: 1、习题23.2 第一题 2、预习《23.2.2 中心对称图形》。
中心对称这个特殊的旋转与一般的旋 转有什么区别和联系?
区别:中心对称的旋转角度都是180°, 一般的旋转的旋转角度不固定,中心对 称是特殊的旋转。
联系:中心对称和一般的旋转都是绕 着某一点进行旋转;
谢谢
(180°)
(完全重合)
(点 O)
像这样,把一个图形绕着(
)旋转(某一点),如果它能够与另1一80个°图形

),那么就说这两个图形关于(
)或(
)。这个点
叫做对称中心(简称中心)。
重合
这个点对称
中心对称
这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点。
1、下列英文缩写中,是中心对称的是( A )
O. C A′ B′ B
A C′
解法1:根据观察,B、B′应是对应点,连接BB′,用刻度尺找出 BB′的中点O,则点O即为所求(如图).
C A′
O B′
ቤተ መጻሕፍቲ ባይዱ
B
A
C′
解法2:根据观察,B、B′及C、C′应是两组对应点,连接BB′、 CC′,BB′、CC′相交于点O,则点O即为所求(如图).
C A′
O B′ B A
A、SOS B、CEO C 、MBA D 、SAR
2、如图,△CDO是△ABO绕着点 O 旋转 180°后得到的,请指出对称中心、对称点、 对应线段、对应角。
A
D
O
B
C
旋转三角尺,感受画图过程,探究性质: 第思一考步::画出三角板内部的△ABC
(1)点 O 在线段 AA'上吗?如果在,在什么位置? 第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,画出 △A′(B2′)C△′ABC 和△A′B′C′有什么关系?
A
B′ C′
O
B
C
A′
课堂小结
概念
把一个图形绕着某一个点旋转 180°,如果它能够与另一个图形 重合,那么就说这两个图形关于 这个点对称或中心对称
中心对称
性质 作图
1.中心对称的两个图形,对称点所连线 段经过对称中心,而且被对称中心 所平分
2.成中心对称的两个图形是全等形
应用1:作中心对称图形; 应用2:找出对称中心.
信息技术应用 探索旋转的性质
学习目标
1.理解中心对称的定义. 2.探究中心对称的性质.(难点) 3.掌握中心对称的性质及其应用.(重点)
导入新课
观察与思考
D C
Bo
A
1.从A旋转到B,旋转中心 是?旋转角是多少度呢? 2.从A旋转到C呢?
3.从A旋转到D呢?
了解中心对称的概念
思考:(1)如图,把其中一个图案绕点 O 旋转 180°,你有什么发现?
C′
注意:如果限制只用直尺作图,我们用解法2.
(2)图中的两个四边形关于某点对称,找出
它们的对称中心。(课本66页练习题)
G
B
C
A
D
F
E
D
四 中心对称与轴对称的区别与联系
A
O BC
C1 B1
A1
轴对称
中心对称
1 有一条对称轴 ——直线 有一个对称中心 ——点
2 图形沿轴对折(翻转 180°) 图形绕中心旋转 180°
2.如下所示的4组图形中,左边数字与右边数字成中心对称的有
( )c
A.1组 B.2组 C.3组 D.4组
3.如图,已知△AOB与△DOC成中心对称,△AOB的面积
是6,AB=3,则△DOC中CD边上的高是( B )
A.2
B.4
C
D
C.6
D.8
O
A
B
4.如图,已知等边三角形ABC和点O,画△A′B′C′,使△A′B′C′和 △ABC关于点O成中心对称.
两个图案能够完全重合在一起。
O
了解中心对称的概念
问题1(2)如图,线段 AC,BD 相交于点
O,OA=OC,OB=OD。把 △OCD 绕点 O 旋
转 180°,你有什么发现?
两个图案能够完全重合在一起。
A
D
O
B
C
(1)上述两个旋转都是绕着哪一点旋转的?
(2)旋转的角度是多少? (3)两个图形的关系?
(3)你能从这个探究中得到什么结论? 第三步:移开三角尺
C
A
B
.
O
B′
A′
C'
归纳:
1. 中心对称的两个图形,对称点所 连线段都经过对称中心,而且被对称中 心所平分。
2. 中心对称的两个图形是全等图形。
三 性质应用
典例精析
例1 (1)已知A点和O点,画出点A关于点O的对称点A'.
A
O
A'
第一步:连接AO, 第二步:延长AO至A',使OA'=OA, 则A'是所求的点.
相关文档
最新文档