单摆运动规律的研究模板

合集下载

单摆运动的研究报告

单摆运动的研究报告

单摆运动的研究报告引言单摆运动是一种非常基础而重要的物理现象,在力学的研究中占有重要地位。

本文旨在通过理论分析和实验研究,深入探讨单摆运动的特性、影响因素以及应用领域。

一、单摆运动的定义和基本原理1.1 定义单摆运动是指一个绳/线连接的质点由一个固定的铅垂线束缚而形成的一种周期性运动。

1.2 基本原理单摆运动的基本原理可以归结为以下几点:•单摆系统由一个质点和一个可摆动的轻线组成。

•单摆的运动主要受到重力和摆长的影响。

•在小摆角范围内,单摆的运动近似为简谐振动。

二、单摆运动的特性和影响因素2.1 摆长对单摆运动的影响•摆长是指摆线/摆杆的长度,影响着单摆的周期和频率。

•通过理论推导和经验公式,我们发现摆长与周期成正比,与频率成反比。

2.2 重力对单摆运动的影响•重力是单摆运动的驱动力,影响着单摆的振幅和周期。

•增大重力将使摆动幅度变小,减小重力将使摆动幅度变大。

2.3 起始条件对单摆运动的影响•起始条件是指单摆最初的初始角度和初始速度。

•不同的起始条件将导致不同的振动行为,如摆动的幅度、周期和相位等。

2.4 阻力对单摆运动的影响•阻力会减弱单摆的振幅,并逐渐使其停止摆动。

•此外,阻力还会影响单摆的周期,并使其变得不规则。

三、实验研究与结果分析3.1 实验目的本实验旨在验证单摆运动的特性和影响因素,并通过实验结果分析其规律和特点。

3.2 实验装置和步骤•实验装置:摆线、支架、质点。

•实验步骤:1.在支架上悬挂摆线,将质点固定在摆线下方。

2.给质点一个初始角度,并释放质点进行摆动。

3.使用定时器记录摆动的时间,重复多次实验。

4.根据实验数据计算周期、频率和摆长。

3.3 实验结果与分析经过多次实验,我们得到了如下数据:实验次数摆长(m)周期(s)频率(Hz)1 0.5 1.33 0.752 1.0 1.88 0.533 1.5 2.21 0.454 2.0 2.65 0.38根据数据分析,我们可以发现摆长与周期成正比、与频率成反比的关系得到验证。

单摆实验报告3篇

单摆实验报告3篇

单摆实验报告第一篇:单摆实验原理和实验装置一、实验原理单摆实验是研究简谐振动的基本实验之一,它是利用牛顿力学的基本原理和能量守恒定律,来探究单摆振动的特征和规律。

单摆实验中,我们可以测量摆的周期、振幅等参数,以验证其满足简谐振动的特性。

二、实验装置单摆实验的装置通常由摆杆、铅球、计时器和支架等组成。

具体实验装置如下:摆杆:由一根细且坚韧的杆子组成,可用金属杆或木制杆制成。

铅球:实验中有许多不同重量和大小的铅球可供使用,可以根据实验需求选择。

计时器:用于测量摆的周期,通常使用电子计时器或手机计时等设备。

支架:用于支撑摆杆和铅球,通常由钢架或木架制成。

三、实验步骤1. 将摆杆固定到支架上,并挂上铅球,调整铅球的高度,使其能够自由地摆动。

2. 用计时器测量摆杆的周期,并记录下来。

3. 改变铅球的重量和长度,并重复步骤2,记录下来不同条件下的周期和振幅等参数。

4. 使用数据处理软件处理实验数据,提取出实验结果。

四、实验注意事项1. 实验过程中,要注意铅球摆动的幅度,避免气流和震动对实验数据的影响。

2. 同一摆杆和铅球要保持固定,否则,实验数据将有很大的偏差。

3. 实验过程中,要注意安全事项,避免伤害自己和他人。

5. 实验结果通过单摆实验,我们可以得到摆的周期、振幅等参数,以验证摆的运动满足简谐振动特性。

同时,我们还可以通过实验数据的统计分析,得出摆的振幅与周期之间的关系函数。

这些数据和函数可以用于学习和探究简谐振动的基本规律和特征。

总之,单摆实验是一项非常基础和重要的物理实验,可以帮助学生深入理解简谐振动的特性和规律,同时也提高学生的实验技能和数据处理能力。

单摆实验研究实验报告

单摆实验研究实验报告

一、实验目的1. 了解单摆的基本原理和运动规律;2. 掌握单摆实验的基本操作步骤和测量方法;3. 通过实验验证单摆的周期与摆长、摆角的关系;4. 测定当地的重力加速度。

二、实验原理单摆是一种理想化的物理模型,它由一根不可伸长的细线和一个小球组成。

当小球从某一角度被释放后,在重力作用下,小球将进行周期性的往返运动。

单摆的运动可以近似看作简谐振动,其周期T与摆长L、重力加速度g之间的关系为:T = 2π√(L/g)当摆角θ较小时(一般不超过5°),单摆的运动可以近似看作简谐振动,此时单摆的周期T与摆角θ无关。

但当摆角较大时,单摆的运动将偏离简谐振动,周期T将随摆角θ的增加而增加。

三、实验仪器1. 单摆装置:由一根细线和一个小球组成;2. 秒表:用于测量单摆的周期;3. 水平仪:用于调节摆线水平;4. 刻度尺:用于测量摆长;5. 游标卡尺:用于测量小球直径。

四、实验步骤1. 装置单摆:将细线固定在支架上,将小球悬挂在细线末端,调节摆线水平;2. 测量摆长:使用刻度尺测量摆线长度,即为摆长L;3. 测量小球直径:使用游标卡尺测量小球直径,即为小球直径D;4. 测量周期:将小球拉至一定角度,释放后,使用秒表测量单摆完成N次往返运动所需时间t;5. 计算周期:周期T = t/N;6. 重复上述步骤,进行多次测量,以减小误差。

五、实验数据及处理1. 测量摆长L:L1 = 100.0 cm,L2 = 100.1 cm,L3 = 100.2 cm,平均摆长L = (L1 + L2 + L3)/3 = 100.1 cm;2. 测量小球直径D:D1 = 1.00 cm,D2 = 1.01 cm,D3 = 1.02 cm,平均直径D = (D1 + D2 + D3)/3 = 1.01 cm;3. 测量周期T:T1 = 2.01 s,T2 = 2.02 s,T3 = 2.03 s,平均周期T = (T1 + T2 + T3)/3 = 2.02 s;4. 计算重力加速度g:g = 4π²L/T² = 4π²×100.1 cm/(2.02 s)² ≈ 9.81m/s²。

单摆实验报告5页

单摆实验报告5页

单摆实验报告5页单摆实验报告实验目的:1、研究单摆周期与摆长、重力加速度之间的关系。

2、通过实验验证单摆的周期公式。

实验仪器:单摆、秒表、直尺、千分尺、万能电表、万用表。

实验原理:单摆又称为简单重力摆,是一种由一定重量的物体(摆球)悬挂于一个细绳或细杆上,自由受重力作用而成摆的简单物理实验。

单摆周期定律的表述:单摆的周期与摆长的平方根成正比,与重力加速度的平方根成反比。

单摆的周期公式为:T=2π√l/g(g为地球重力加速度实验步骤:1、调整单摆的摆长,使其长短均匀,用直尺及千分尺测量并记录摆长l的值。

2、测量摆球重量w,用万能电表测量摆球在空气中的阻力f。

3、将摆球拉到一定高度A处,放松球,用秒表测量N个周期的时长t1,t2, ...... tn。

4、分别计算每个周期的平均值T1,t2,...... tn。

结果计算:摆球重量为w,在空气中的阻力为f。

所以摆球所受重力为(w-f),整个单摆系统所受的合力为(w-f)。

根据牛顿第二定律,可得:(w-f)g=(w-f)a其中a为摆球所做的向心加速度,可用公式a=v²/l求得,其中v为摆球的速度,由摆球所在位置的高度算得(对于单摆振动的摆角很小的情况,可以认为一摆球速度都与摆球高度相同,即仅与最大位移有关)。

又可得:T=2π√l/(w-f)g得到每组实验数据后,我们可以将它们带入式子,按照周期公式计算每组数据的周期T1,T2......Tn。

根据上述计算方法,得到如下表格数据:表格(略)实验结果:由表可知,单摆周期T与摆长l的平方根成正比,与重力加速度的平方根成反比。

而单摆的周期公式T=2π√l/g,于是我们可以将实验测得的周期带入公式中,计算出地球重力加速度g 的值。

即g=4π²l/T²通过实验,我们得到的地球重力加速度为g=9.75m/s²,与标准值g=9.80m/s²比较,误差约为0.5%。

这说明我们的实验结果是可靠的。

工作报告之单摆的研究实验报告

工作报告之单摆的研究实验报告

单摆的研究实验报告【篇一:实验报告单摆的设计与研究】肇庆学院电子信息与机电工程学院普通物理实验课实验预习报告班组实验合作者实验日期姓名: 王英学号29号老师评定实验题目:【实验简介】单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。

本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。

【设计任务与要求】1、用误差均分原理设计一单摆装置,测量重力加速度,测量精度要求?g?2%。

g2、对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求。

3、自拟实验步骤研究单摆周期与质量、空气阻力等因素的关系,试分析各项误差的大小。

【设计的原理思想】t?2?l(1) gg?4?2l2(2) t式中l为单摆长度。

单摆长度是指上端悬挂点到球心之间的距离;g为重力加速度。

如果测量得出周期t、单摆长度l,利用上面式子可计算出当地的重力加速度g。

从上面公式知t 2和l具有线性关系,224?即t?l。

对不同的单摆长度l测量得出相对应的周期,可由t ~l图线的斜率求出g值。

g2【测量方案的制定和仪器的选择】?g?l?t?()2?(2)2从式glt?l2)?(1%)2,本实验中单摆的l1同理 (2?t2)?(1%)2,当摆长约为1m时,单摆摆动周期约为2秒,可以计算出周期的测量误差要求t【实验步骤的设计】3、测量周期t:计时起点选在摆球经过平衡位置的时刻,用停表测出单摆摆动50次的时间 t50,共测量6次,取平均值。

4、计算重力加速度:将测出的和t50代入 g?4?2算出重力加速度g,并计算出测量误差。

5、用金属作为摆线,以改变摆线的质量,以研究摆线质量对测g的影响6、用乒乓球作为摆球,形容空气浮力对测g影响中(其中n为周期的连续测量次数),计2(n/n)d 2【实验记录和数据处理】1、重力加速度g对摆长为l的单摆,测量在??5的情况下,测量连续摆动n次的周期说明:(1)摆长l应是摆线长加小球的半径(如图2)。

单摆实验报告样本

单摆实验报告样本

0.735
0.714
1.000
100
90
80
70
60
60
3.33
3.00
2.67
2.33
2.00
2.00
11.11 9.00
7.11
5.44
4.00
4.00
2.24
2.63 前6组3平.16
3.92
5.03
9.86
重力加速度平均值

2.78 总平均 3.63
以摆长为横轴、周期的2次方根为纵轴画图象,看是否接近直线
4.33
4.00
2.00
32.11
25.00
21.78
18.78
16.00
4.00
1.00
1.23
1.36
1.51
1.70
9.86
第7次 第8次 第9次 第10次 第11次 第12次
62
59
56
53
50
98.95
0.631
0.601
0.571
0.541
0.511
1.000

0.794
0.775
0.755
以小球到达最高点时作为计时开始和停止的时刻较 4 好,应测量30次(甚至更多次)全振动的时间然后做
除法得到周期
5 数据分析可以采用做图象的方式
通过直接测量得到的 数据
绳长(cm)、球直径(基本统一2.1cm)、30倍周期(s)
通过计算得到的数据
摆长(m)、摆长的2次方根、周期(s)、g(m/s^2)
实验:单摆周期与摆长的关系&测定重力加速度
实验目的
1 探究单摆周期与摆长的关系 2 测定当地的重力加速度

摆的研究实验记录单

摆的研究实验记录单
总结词
通过实验,了解单摆在物理学中的应用,包括钟摆、摆锤等。
详细描述
在实验中,观察不同类型的单摆应用,如钟摆、摆锤等。通过这些实例,了解单 摆在物理学中的重要应用。
02
实验原理
单摆的周期公式
摆长(L):指单摆悬挂点到摆球的垂直距离。 摆球质量(m):指单摆球体的质量。 单摆的周期公式为:T=2π√(L/g)
验证单摆的周期与重力加速度之间的关系
总结词
通过实验,验证单摆的周期与重力加速度之间的关系,发现重力加速度越大 ,周期越小。
详细描述
在实验中,使用不同重力加速度的环境(例如在山顶和在海平面上进行实验 )来观察单摆的周期变化。通过数据分析,发现重力加速度与周期之间存在 反比关系。
了解单摆在物理学中的应用
摆角(θ):指单摆偏离竖直位置的角度。
重力加速度(g):由于地球的引力产生的加速度。
其中,T为单摆的周期,L为摆长,g为重力加速度。该 公式描述了单摆摆动的周期与摆长和重力加速度之间的 关系。
重力加速度对单摆周期的影响
1
在不同地理位置,由于重力加速度的变化,单 摆的周期也会发生变化。
2
重力加速度值增加,单摆的周期会变短;重力 加速度值减小,单摆的周期会变长。
游标卡尺
测量范围
根据实验需要,选择合适的测量范围。
精度
选用高精度的游标卡尺,以获取更准确的数据。
砝码盘及砝码
质量选择
根据实验需要,选择合适质量的砝码。
平衡状态
在实验开始前,确保砝码盘和砝码处于平衡状态。
04
实验步骤
组装单摆实验装置
准备实验器材
铁架台、单摆实验器、秒表、游标卡尺、重物等。
安装铁架台

单摆实验报告 样本

单摆实验报告 样本

单摆实验报告样本一、实验目的1.研究单摆运动的基本特性;2.掌握测量单摆时间的方法;3.验证单摆运动与周期和摆长之间的关系。

二、实验原理1.单摆运动的基本特性单摆是一种简单的物理运动,其基本特性有以下几点:(1) 幅度小摆角度越小,单摆周期越短,且与该摆长的平方根成正比;(2) 摆长越大,周期越长,与该摆长的平方根成正比;(3) 单摆的周期与重力加速度、摆长无关,只与摆球的重量有关。

2.测量单摆时间的方法(1) 直接计时法:用秒表记录单摆一次完整振动的时间;(2) 逐摆计时法:记录相邻两个摆锤从中心点到相位置的时间差,再求平均。

3.公式推导若单摆的摆长为l,摆球质量为m,取重力加速度g为正方向,则单摆的运动方程为:F = mg sinθ = mlθ'' (当θ≤5°时,sinθ≈θ,即sinθ≈θ≈rad)即:θ'' = -(g/l)θ时间周期为:T =2π√(l/g) (g为重力加速度)三、实验器材与仪器1.单摆装置、摆杆、摆球等;2.直尺、卷尺、计时器、秒表等。

四、实验步骤1.测量单摆长度:分别用直尺和卷尺测出单摆的长度,多次测量并求平均值。

2.设置单摆:将摆球抬起一定高度,使其离开静止位置,开始做单摆运动,用计时器计时。

3.逐摆计时:在单摆运动中,记录相邻两次摆动的时间间隔并求平均得到单摆周期。

4.重复步骤2和3,依次改变单摆长度,记录对应的单摆周期。

5.将单摆长度和周期数据在图表上绘制出来,并进行线性回归拟合,求出单摆周期和摆长之间的关系式。

五、实验数据记录与处理1.单摆测量数据记录表单摆长度(m)单摆周期(s)0.20 0.890.30 1.040.40 1.170.50 1.300.60 1.420.70 1.542.绘制单摆周期与摆长的散点图,如下图所示:(图中横坐标为单摆长度,纵坐标为单摆周期)3.线性回归拟合得到回归方程为T=2.04√L-0.02,其相关系数R=0.99,数值较接近于1,故二者之间具有较强的关联性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单摆运动规律的研究
摘要单摆问题是高中物理及大学普通物理实验教学中的一个基础问题。

受各种因素的影响,其运动规律较为复杂。

本文建立了理想模式下单摆的数学模型,现实情况下单摆的数学模型.等对单摆的运动进行了探究。

首先,本文从理想情况出发,由牛顿第二定律进行推理,建立了无阻尼小角度单摆运动模型,对单摆的运动进行了初步探究。

然后,本文又建立了无阻尼大角度单摆运动模型,进一步完善了理想模式下单摆的数学模型。

最后,本文从实际出发,考虑单摆运动中受到的阻力因素,以理想模式下单摆的数学模型为基础,建立了现实情况下单摆的运动模型,深度的对单摆运动进行了探索。

关键词简谐运动角度阻尼运动单摆运动
目录
一、问题的描述
二、模型假设
三、模型建立及求解
1 理想模式下单摆的数学模型
1.1 小角度单摆运动模型
1.1.1 模型建立
1.1.2 模型求解
1.1.3 结果分析
1.2 大角度单摆运动模型
1.2.1 模型建立
1.2.2 模型求解
1.2.3 结果分析
2 现实模式下单摆的数学模型
2.1 小、大阻尼单摆运动模型
2.1.1 模型建立
2.1.2 模型求解
2.1.3 结果分析
四模型分析
一问题的描述
根据平常接触到的摆钟、秋千等实物中,我们可以抽象出单摆的模型。

细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略,球的直接与线的长度相比也可以忽略,这样的装置就叫做单摆.我们从理想情况出发进行分析,并逐渐完善从而推导出单摆实际运动规律。

二模型假设
1悬挂小球的细线伸缩和质量均忽略不记,线长比小球的直径大得多;
2.装置严格水平;
3.无驱动力。

三模型建立及求解
1 理想模式下单摆的数学模型
图1 简单单摆模型
在 t 时刻,摆锤所受切向力ft(t)是重力mg在其运动圆弧切线方向上的分力,即f(t) =mg sin(t)
完全理想条件下,根据牛顿第二运动定律,切向加速度为:
a(t) =g sin(t)
因此得到单摆的运动微分方程组:
1.1 小角度单摆运动模型
1.1.1模型建立
当摆角θ很小时,sinθ≈θ,故方程1可简化为:
1.1.2 模型求解
利用matlab软件在[0, 5o]分别作出方程(1)和方程(2)的解得图像
小角度单摆摆动规律
(—方程(1)的解,**方程(2)的解)
1.1.3 结果分析
θ<5),两方程的解几乎相等,单摆运动可看为简谐运动。

1.2 大角度单摆运动模型
1.2.1 模型建立
当摆角很大时,方程sin ≈θ
再成立,方程(1)和方程(2)的解不再相近,
1.2.2 模型求解
此时利用MATLAB计算软件, 得到2000个不同摆角的的精确解.然后以摆角为横轴,利用绘图函数polt ( x , y ) 绘制出任意摆角下单摆周期的精确解的曲线
%单摆周期与摆角的关系
a= 0;
b= pi/ 2;
n= 1000;
s1= 1: n;
h= ( b-a) / n;
h1= pi/ ( 2* n)
c= 0: h1: pi/ 2
x= a;
s= 0;
for i1= 1: ( n+ 1)
f0= 2/ sqrt ( 1-( sin( c( i1) / 2) ) ^2* ( sin( x ) ) ^2) / pi; for i2= 1: n
x= x+ h;
f1= 2/ sqrt ( 1-( sin( c( i1) / 2) ) ^2* ( sin( x ) ) ^2) / pi; s= s+ ( f0+ f1) * h/ 2;
f0= f1;
end
disp( 1/ s)
s1( i1) = s;
s= 0;
end
plot( c, s1)
xlabel( ‘theta0/rad’)
ylabel( ‘T/T0’)
大摆角单摆的运动规律
程序如下:
%建立方程( 1)
Function xdot= per( t,x)
xdot= [ -9. 8* sin( x ( 2) ) x( 1) ]
% 建立方程( 2)
Function xdot= per1( t,x)
xdot= [ -9. 8* x( 2) x( 1) ]
%利用ode45 求解微分方程
t0= 0; tf= 10;
[ t, x] = ode45( ‘per’, [ t0, t f] , [ pi/ 2, 0] ) [ t1, x1 ] = ode45 ( ‘per1’, [ t0, tf ] ,[ pi/ 2, 0] ) plot( t, x( : , 2) , ‘-‘)
holdon
plot( t1, x1( : , 2) , ‘‘)
1.2.3 结果分析
如图所示,随着单摆摆角的增大,单摆的周期也会增加图中两根曲线表明:大摆角振动时, 单摆的运动轨迹并不是简单的正、余弦曲线( 虽然很相似),而且,最大摆角越小,两根曲线越相似;摆角越大,分离越明显
2 现实模式下单摆的数学模型
2.1.1 模型建立
现实情况下,绳子的质量,摆球的半径,空气的阻力等等都对单摆的摆动有影响,这些影响的主要作用就是阻止单摆的摆动,为简单起见, 可设单摆在摆动中受到阻力fz,显然阻力与摆锤的运动速度有关,即阻力是单摆线速度的函数:fz = f(v),fz (t) =kv(t)
上式中,k>0为阻力比例系数,式中的负号表示阻力方向与摆锤运动方向相反。

切向加速度由切向合力ft fz产生,根据牛顿第二运动定律,有
因此得到修正后的单摆运动微分方程组
2.1.2 模型求解
据此编写仿真程序:
subplot(2,1,1)
dt=0.0001; %仿真步进
T=16; %仿真时间长度
t=0:dt:T;%仿真计算时间序列
g=9.8;
L=1.5;
m=8;
k=3;
th0=1.5; %初始摆角设置,不能超过π/2
v0=0; %初始摆速设置
v=zeros(size(t)); %程序存储变量预先初始化,可提高执行速度th=zeros(size(t));
v(1)=v0;
th(1)=th0;
for i=1:length(t) %仿真求解开始
v(i+1)=v(i)+(g*sin(th(i))-k./m.*v(i)).*dt;
th(i+1)=th(i)-1./L.*v(i).*dt;
end %使用双坐标系统来作图
[AX,B1,B2]=plotyy(t,v(1:length(t)),t,th(1:length(t)),'plot');
set(B1,'LineStyle','-'); %设置图线型
set(B2,'LineStyle',':');
set(get(AX(1),'Ylabel'),'String','线速度v(t)m/s');%作标注
set(get(AX(2),'Ylabel'),'String','角位移\th(t)/rad');
xlabel('时间t/s');
legend(B1,'线速度v(t)',2);
legend(B2,'角位移\th(t)',1);
增大阻力系数k=50可以得大阻尼时单摆的运动情况
2.1.3 结果分析
小阻尼情况下,单摆运动不再是谐振动,其振幅不断缩小直到趋于平衡位置而停止,但还是周期运动。

大阻尼情况下是非周期运动,很快回到平衡位置。

四.模型分析
本文从理想情况出发,建立了小角度、大角度两种模型,得到简谐运动和类似简谐运动。

再以此为基础讨论了实际情况下受到阻力因素的影响,近似的得到了单摆运动的运动规律的大小阻尼运动。

相关文档
最新文档