规律性问题(六年级奥数题及答案)
小学数学《规律性问题》练习题(含答案)

小学数学《规律性问题》练习题(含答案)内容概括无论是在奥数的学习中,还是在日常生活中,我们都会发现很多很多规律,它可以帮助我们更好的认识问题.特别是在奥数学习中,一些数列、数阵的排列,图形周长、面积的变化、庞大数字的计算等等都有一定的规律.只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案. 同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多.例题精讲【例1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次是5红、4黄、3绿、2黑、1白……如此继续涂下去,到第1993个小球该涂什么颜色?在前1993个小球中,涂黑色的小球有多少个?【例2】(清华附中培训试题)右图的图案表示一个花圃的设计方案,汉字表示每盆花的颜色,请问第7行第5盆花的颜色?第20行第5盆花的颜色?(从左往右计数)【例3】(迎春杯决赛)如果按-定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,….那么,把各个算式中前后两个加数分别排到第10个就是和;第80个算式就是 .【例4】(小学数学奥林匹克决赛)有-列数1,1989,1988,1,1987,…,从第三个数起,每-个数都是它前面两个数中大数减小数的差.那么第1989个数是 .【例5】(迎春杯决赛)已知-串有规律的数:2513341,,,,,......382155那么,在这串数中,从左往右数,第10个数是 .【例6】(从小爱数学邀请赛)在一串分数:1121123211234321....... 1222333334444444;,,;,,,,;,,,,,,;(1)710是第几个分数?(2)第400个分数是几分之几?【例7】一串数按下面规律排列:1,2,3,2,3,4,3,4,5,4,5,6……,问从左面第一个数起,数(shǔ)100个数,这100个数的和是多少?【例8】(迎春杯初赛试题改编)按规律排列的-串数:2、5、9、14、20、27、…,这串数的第2007个数是多少?【例9】在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字.那么在这串数中,能否出现相邻的四个数是“2000”?135761939237134…【例10】(06武汉明心杯数学竞赛)将l,2,3,…,50,这50个数按右表的形式排列,则数50所在的位置是A、B、C中的哪一处?【例11】有一个正六边形点阵,如右图,它的中心是一个点,算作第一层;第二层每边两个点(相邻两边公用一个点);第三层每边三个点,……,这个六边形点阵共100层。
奥数找规律计算(试题)全国通用六年级上册数学含参考答案

找 规 律1、观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________________。
2、观察下列等式:221.4135−=×;222.5237−=×;223.6339−=×224.74311−=×;…………第5个等式位 .则第n (n 是自然数)个等式为3、自己观察下列算式,寻找规律填数.2+4=2×32+4+6=3×42+4+6+8=4×52+4+6+8+10+…+50= × .4.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )………… ①1=12; ②1+3=22; ③1+3+5=32④ ; ⑤;A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+315、 观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…… .猜想:第n 个等式(n ____________________________.6、观察下列各式:1×3=21+2×1,2×4=22+2×2,3×5=23+2×3,请你将猜想到的规律用自然数n (n ≥1)表示出来: 。
7、 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数是 。
10.观察下列等式:211=2132+=4=1+3 9=3+6 16=6+10…2++=1353……………根据观察可得:13521_________.(n为非0自然数)n++++−=8、观察下列等式9-1=816-4=1225-9=1636-16=20…………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为 .9、观察下列等式:第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n行的等式为____________10、观察下列各式:3211=332+=1233322++=123633332123410+++=……猜想:333312310++++= .11、观察下列几个算式,找出规律:1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25……利用上面规律,请你迅速算出:①1+2+3+…+99+100+99+…+3+2+1= ②据①你会算出1+2+3+…+100是多少吗?③据上你能推导出1+2+3+…+n 的计算公式吗?12、你能很快算出21995吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方,任意一个个位数为5的自然数可写成10•n +5,即求2)510(+n 的值(n 为自然数),你试分析 ,3,2,1===n n n 这些简单情况,从中控索其规律,并归纳,推测出结论(在下面空格内填上你的控索结果)。
六年级找规律奥数题

六年级找规律奥数题
题目:找出下面每行、每列和每个九宫格中的数字,并将它们组成一个四位数。
一行:357,892
一列:461,983
一个九宫格:289,417,982,357
要求:每个数字必须被4个数字整除,且这些数字不能重复。
解法:
首先观察题目中的数字,可以发现每行、每列和每个九宫格中的数字都是唯一的。
其次,我们可以使用穷举法来寻找符合条件的数字。
从行入手,如果行中的第一个数字是357,则该数字不能被4个数字整除,因此无法继续向下寻找。
同理,从列入手,如果列中的第一个数字是892,则该数字不能被4个数字整除,因此无法继续向下寻找。
因此,我们可以将这个行、列和九宫格中所有数字都排除掉,然后再从下一个行、列和九宫格中开始寻找符合条件的数字。
最后,我们使用计算机程序来解决这个问题,可以大大加快搜索的速度。
具体地,我们可以使用一个数组来表示符合条件的数字,使用一个循环来搜索整个数组。
在搜索过程中,我们需要检查每个数字是否被4个数字整除,如果符合条件,则将其加入数组中。
时间复杂度:O(n^3)
拓展:
这个问题可以推广到更大的数字规模。
例如,如果有n行、m列和n个九宫格,我们需要找到符合条件的n位数。
我们可以使用类似的方法来解决,即使用一个数组来表示符合条件的数字,使用一个循环来搜索整个数组。
在搜索过程中,我们需要检查每个数字是否被4个数字整除,如果符合条件,则将其加入数组中。
如果数字的规模很大,那么搜索的时间复杂度将变得非常高。
因此,我们需要使用更高效的算法来解决这个问题。
六年级数学探索规律试题答案及解析

六年级数学探索规律试题答案及解析1.找规律填数。
(1)5,9,14,20,27,()44;(2)7.897,7.892,7.887,()【答案】35 7.882【解析】(1)观察这几个数可以发现5+4=9,9+5=14,14+6=20,20+7=27,所以,下一个数是27+8=35,然后35+9=44;(2)观察这三个数可以发现依次减0.005,因此,第三个数是7.882。
2.一次大型运动会上,工作人员按照3个红气球、2个黄气球、1个绿气球的顺序把气球穿起来装饰运动场,那么第2014个气球是( )色的。
(填“红”、“黄”或“绿”)【答案】黄【解析】本题是一种有规律的排列,找到其中的规律是解本题的关键。
根据题意描述的“3红2黄1绿”,我们就会发现这样的规律:每(3+2+1)个气球即6个气球为1组,要求第2014个气球的颜色,只要确定它是第几组的第几个即可。
因为2014÷6=335……4,所以第2014个气球是第336组的第4个气球,再根据“3红2黄1绿”的顺序可知,它是黄色的。
3.观察下列等式,按以下各式成立的规律,写出第12个等式是()。
9×0+1=01,9×1+2 = 11,9×2 + 3 = 21,9×3 + 4 = 31,9×4 + 5 = 41【答案】9×11+12=111【解析】本题考查的是算式的规律。
应认真观察算式中的特点,从中发现规律,再按要求完成本题。
此类算式的特点是:第一个算式是9乘以0加1;第二个算式是9乘以1加2;第三个算式是9乘以2加3;……,所以第n个算式应该是9乘以(n-1)加n,即9(n-1)+n。
当n=12时,等式是:9×11+12=111。
4.庆祝“六一”,某幼儿园举行用火柴棒摆“金鱼”的比赛,其中摆的1条、2条、3条“金鱼”如下图所示:按照上面的规律,摆100条“金鱼”需用火柴棒的根数为()。
小学六年级奥数周期循环与数表规律问题专项强化训练题(中难度)

小学六年级奥数周期循环与数表规律问题专项强化训练题(中难度)例题1:某数表如下所示:1, 4, 7, 10, ...若数表继续按照规律进行下去,请写出数表的第20项是多少。
解析:观察数表可知,每一项与前一项的差都是3。
因此,可以得出数表的通项公式为:a(n) = a(n-1) + 3其中,a(n)表示数表的第n项。
根据通项公式,可以得到数表的第20项为:a(20) = a(19) + 3= a(18) + 3 + 3= a(17) + 3 + 3 + 3= ...= a(1) + 3 + 3 + ... + 3 (共19个3)= 1 + 3 * 19= 1 + 57= 58因此,数表的第20项为58。
专项练习题:1:某数表如下所示:2, 5, 8, 11, ...若数表继续按照规律进行下去,请写出数表的第15项是多少。
2:某数表如下所示:10, 13, 16, 19, ...若数表继续按照规律进行下去,请写出数表的第12项是多少。
-1, 4, 9, 14, ...若数表继续按照规律进行下去,请写出数表的第25项是多少。
4:某数表如下所示:3, 8, 13, 18, ...若数表继续按照规律进行下去,请写出数表的第10项是多少。
5:某数表如下所示:-2, 1, 4, 7, ...若数表继续按照规律进行下去,请写出数表的第30项是多少。
6:某数表如下所示:0, 4, 8, 12, ...若数表继续按照规律进行下去,请写出数表的第18项是多少。
7:某数表如下所示:20, 17, 14, 11, ...若数表继续按照规律进行下去,请写出数表的第22项是多少。
8:某数表如下所示:-5, -1, 3, 7, ...若数表继续按照规律进行下去,请写出数表的第16项是多少。
9:某数表如下所示:100, 96, 92, 88, ...若数表继续按照规律进行下去,请写出数表的第24项是多少。
10:某数表如下所示:-12, -8, -4, 0, ...若数表继续按照规律进行下去,请写出数表的第28项是多少。
小学奥数---简单数列中的规律专项练习30题(有答案)

第6讲 简单数列中的规律30题(有答案)1.在数列1×2、2×3、3×4、4×5、…、99×100中,第6个数是( )A . 42B . 56C . 722. 1、3、5、 _________ 、9 (1.2.3)、(2.4.6)、(3.6.9)…第8组的三个数的和是 _________ .3.在下面的横线上填数,使这列数有某种规律.是3、5、7、 _________ 、 _________ 、 _________ ;你所填的数的规律是 _________ .4.根据规律填数或者划出适当的图形.(1)3,20;5,40;7,80; _________ , _________ .(2)4,6,10,16,26, _________ , _________(3)16,25, _________ ,49,64, _________ .(4)□○△→△□○→○△□→ _________ .5.找规律填数:100,81,64,49,36 _________ , _________ ,9.6.按规律在括号里填上适当的数.(1)1、15、3、13、5、11、 _________ 、 _________ .(2)198、297、396、 _________ 、 _________ .(3)21、4、18、5、15、6、 _________ 、 _________ .7.根据规律填数①30,28,26, _________ , _________ , _________ ;②1,3,6, _________ , _________ ;③15,20,25, _________ , _________ , _________ .8.寻找规律:1,4,9,16, _________ , _________ .9.找规律填后面的数:1,4,9,16, _________ ,36, _________ , _________ , _________ . 2,3,5,8, _________ ,21, _________ , _________ .10.(1)1,4,9,16, _________ ,36,49;(2)11.找规律填数:2 5 11 23 47 _________ .5 6 7 774 5 6 5412.按规律填空.(1)1,5,9,_________,17,21,_________,29.(2)2,4,6,10,16,_________,_________.(3)13.找规律填数.(1)5243,2435,4352,_________.(2)987,877,767,_________,_________.(3)2,5,11,23,_________,95.14.下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9 ),(2,8,18),(3,12,27)那么第50个数组内三个数是(_________,_________,_________)15.请认真观察下列数字的排列规律,并填最后一行.11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11_____________________________________________1.16.按规律填数(1)2,8,32,_________,_________(2)1,3,6,10,_________,21,28,36,_________(3)21×9=189321×9=28894321×9=3888954321×9=_________.17.找规律,在括号内填入适当的数.0,1,3,8,21,55,_________,_________.18.按规律填数:1,2,3,6,11,_________,37,68,…19.找规律,在括号内填入适当的数.1,6,7,12,13,18,19,_________,_________.20.找规律填数①2 5 8 11_________17②1 2 4 7 11_________③48 24 12_________ 3④(1,3),(2,6),(3,9),_________,_________.⑤1,2,3,7;2,3,4,14;3,4,5,_________.21.按一定的规律在括号中填上适当的数:(1)1,2,4,8,16,_________,_________,128,256(2)1,9,2,8,3,_________,4,6,5,5(3)1,8,27,64,125,_________,343.22.按规律填数.2、7、17、32、52、_________、107.23.按规律填数.(1)1,4,9,16,_________,36,_________.(2)7,2,5,2,3,2,_________,_________(3)3,8,18,33,53,_________,_________.(4)15,6,13,7,11,8,_________,_________.(5)2,5,11,23,47,_________,_________.24.按规律填数(1)1,4,7,10,_________,_________,19.(2)1,2,2,4,3,8,_________,_________.(3)0,1,4,9,_________,25,_________.(4)0,1,1,2,3,5,8,_________.(5)2,6,18,54,_________,_________.25.找规律:57、69、84、96、_________、114.26.1,1,2,3,5,8,_________,21,_________,….27.观察规律填空.86、70、62、_________、_________、5519、109、1009、_________、_________、_________.28.29._________、_________、72199、73199、_________、_________.30.按规律填数5,11,23,47,_________,…参考答案:1.由题意得:第6个算式是:6×7=42.故选:A.2.(1)5+2=7;要求的数是7;(2)6×8=48;第8组数的和是48.故答案为:7,48.3.由分析得出:3、5、7、9、11、13;所填的数的规律是:按照顺序写奇数.故答案为:9、11、13;按照顺序写奇数.4.(1)7+2=9,80×2=160;(2)16+26=42,26+42=68;(3)25+11=36,64+17=81;(4)□○△故答案为:9,160,42,68,36,81,□○△5.52=5×5=25;42=4×4=16;所以后两个数是25,16.故答案为:25,16.6.(1)5+2=7,11﹣2=9;(2)396+99=495,495+99=594;(3)15﹣3=12,6+1=7.故答案为:7,9;495,594;12,7.7.根据分析,这几个数列分别是:①30,28,26,24,22,20;②1,3,6,10,15;③15,20,25,30,35,40.故答案为:①24,22,20,②10,15,③30,35,408.寻找规律:1,4,9,16,25,36.9.找规律填后面的数:1,4,9,16,25,36,49,64,81.2,3,5,8,13,21,34,55.10.(1)1,4,9,16,25,36,49;(2)第三组是:前三个数是:6,7,8;第四个数是:(6+7)×8=104;第四组是:前三个数是:7,8,9;第四个数是:(7+8)×9=135;故答案为:25;6,7,8,104;7,8,9,13511.47+24×2=47+48=95;故答案为:9512.(1)1,5,9,13,17,21,25,29.(2)2,4,6,10,16,26,42.(3)4×1÷2=2;即:13.(1)把4352最高位上的数字移到最后,就是:3524;这个数是3524;(2)767﹣110=657;657﹣110=547;这两个数是547.(3)23+12×2=23+24=47;故答案为:3524,657,547,47.14.下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9 ),(2,8,18),(3,12,27)那么第50个数组内三个数是(50,200,450)15.1+5=6,5+10=15,10+10=20,10+5=15,5+1=6,故答案为:6,15,20,15,616.按规律填数(1)2,8,32,128,512(2)1,3,6,10,15,21,28,36,45(3)21×9=189321×9=28894321×9=3888954321×9=488889.17.找规律,在括号内填入适当的数.0,1,3,8,21,55,144,377.18.按规律填数:1,2,3,6,11,20,37,68,…19.找规律,在括号内填入适当的数.1,6,7,12,13,18,19,24,25.20.找规律填数①2 5 8 111417②1 2 4 7 1116③48 24 126 3④(1,3),(2,6),(3,9),(4,12),(5,15).⑤1,2,3,7;2,3,4,14;3,4,5,28.21.按一定的规律在括号中填上适当的数:(1)1,2,4,8,16,32,64,128,256(2)1,9,2,8,3,7,4,6,5,5(3)1,8,27,64,125,216,343.22.按规律填数.2、7、17、32、52、77、107.23.按规律填数.(1)1,4,9,16,25,36,49.(2)7,2,5,2,3,2,1,2(3)3,8,18,33,53,78,108.(4)15,6,13,7,11,8,9,9.(5)2,5,11,23,47,95,191.24.按规律填数(1)1,4,7,10,13,16,19.(2)1,2,2,4,3,8,4,16.(3)0,1,4,9,16,25,36.(4)0,1,1,2,3,5,8,13.(5)2,6,18,54,162,486.25.找规律:57、69、84、96、102、114.26.1,1,2,3,5,8,13,21,34,….27.观察规律填空.86、70、62、58、56、5519、109、1009、10009、100009、1000009.28.11+7=18;32+7=39;39+7=46;53+7=60;数轴如下:29.70199、71199、72199、73199、74199、75199.30.24×2=48;48+47=95;要填的数是95.故答案为:95。
小学数学《规律性问题》练习题(含答案)

小学数学《规律性问题》练习题(含答案)内容概括无论是在奥数的学习中,还是在日常生活中,我们都会发现很多很多规律,它可以帮助我们更好的认识问题.特别是在奥数学习中,一些数列、数阵的排列,图形周长、面积的变化、庞大数字的计算等等都有一定的规律.只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案. 同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多.例题精讲【例1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次是5红、4黄、3绿、2黑、1白……如此继续涂下去,到第1993个小球该涂什么颜色?在前1993个小球中,涂黑色的小球有多少个?【例2】(清华附中培训试题)右图的图案表示一个花圃的设计方案,汉字表示每盆花的颜色,请问第7行第5盆花的颜色?第20行第5盆花的颜色?(从左往右计数)【例3】(迎春杯决赛)如果按-定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,….那么,把各个算式中前后两个加数分别排到第10个就是和;第80个算式就是 .【例4】(小学数学奥林匹克决赛)有-列数1,1989,1988,1,1987,…,从第三个数起,每-个数都是它前面两个数中大数减小数的差.那么第1989个数是 .【例5】(迎春杯决赛)已知-串有规律的数:2513341,,,,,......382155那么,在这串数中,从左往右数,第10个数是 .【例6】(从小爱数学邀请赛)在一串分数:1121123211234321....... 1222333334444444;,,;,,,,;,,,,,,;(1)710是第几个分数?(2)第400个分数是几分之几?【例7】一串数按下面规律排列:1,2,3,2,3,4,3,4,5,4,5,6……,问从左面第一个数起,数(shǔ)100个数,这100个数的和是多少?【例8】(迎春杯初赛试题改编)按规律排列的-串数:2、5、9、14、20、27、…,这串数的第2007个数是多少?【例9】在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字.那么在这串数中,能否出现相邻的四个数是“2000”?135761939237134…【例10】(06武汉明心杯数学竞赛)将l,2,3,…,50,这50个数按右表的形式排列,则数50所在的位置是A、B、C中的哪一处?【例11】有一个正六边形点阵,如右图,它的中心是一个点,算作第一层;第二层每边两个点(相邻两边公用一个点);第三层每边三个点,……,这个六边形点阵共100层。
最新六年级奥数专题:找规律

六年级奥数专题:找规律同学们从三年级开始,就陆续接触过许多“找规律”的题目,例如发现图形、数字或数表的变化规律,发现数列的变化规律,发现周期变化规律等等。
这一讲的内容是通过发现某一问题的规律,推导出该问题的计算公式。
例1 求99边形的内角和。
分析与解:三角形的内角和等于180°,可是99边形的内角和怎样求呢?我们把问题简化一下,先求四边形、五边形、六边形……的内角和,找一找其中的规律。
如上图所示,将四边形ABCD分成两个三角形,每个三角形的内角和等于180°,所以四边形的内角和等于180°×2= 360°;同理,将五边形ABCDE分成三个三角形,得到五边形的内角和等于180°×3=540°;将六边形ABCDEF分成四个三角形,得到六边形的内角和等于180°×4=720°。
通过上面的图形及分析可以发现,多边形被分成的三角形数,等于边数减2。
由此得到多边形的内角和公式:n边形的内角和=180°×(n-2)(n≥3)。
有了这个公式,再求99边形的内角和就太容易了。
99边形的内角和=180°×(99-2)=17460°。
例2 四边形内有10个点,以四边形的4个顶点和这10个点为三角形的顶点,最多能剪出多少个小三角形?分析与解:在10个点中任取一点A,连结A与四边形的四个顶点,构成4个三角形。
再在剩下的9个点中任取一点B。
如果B在某个三角形中,那么连结B与B所在的三角形的三个顶点,此时三角形总数增加2个(见左下图)。
如果B在某两个三角形的公共边上,那么连结B与B所在边相对的顶点,此时三角形总数也是增加2个(见右下图)。
类似地,每增加一个点增加2个三角形。
所以,共可剪出三角形 4+2× 9= 22(个)。
如果将例2的“10个点”改为n个点,其它条件不变,那么由以上的分析可知,最多能剪出三角形4+2×(n-1)=2n+2=2×(n+1)(个)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律性问题(六年级奥数题及答案)
规律性问题
在平面上画20个圆,问这20个圆最多可能将平面分为多少个部分?
解:分析直接画出20个圆去数当然是行不通的.先考虑一些简单的情况:
一个圆最多分平面为2部分;
二个圆最多分平面为4部分;
三个圆最多分平面为8部分;
当第二个圆在第一个圆的基础上加上去时,第二个圆应与第
一个圆有2个交点,这两个交点将新加的圆分为2段,其中每一段弧都将所在平面部分一分为二,所以所分平面部分数在原有2部分的基础上又增添2部分.同样道理,三个圆最多分平面的部分数是在2个圆分平面为4部分的基础上又增加4部分.
继续前面的分析过程,画第20个圆时,与前19个圆最多有19×2=38个交点,第20个圆的圆弧被分成为38段,也就是增加了38个区域,所以20个圆最多分平面的部分数为:
2+1×2+2×2+…+19×2
=2+2(1+2+3+ (19)。