32六年级奥数题及答案-19道经典试题
六年级能学的奥数题及答案

六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。
六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。
以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。
请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。
由于每次拿球后都放回,第二次拿到红球的概率也是3/5。
两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。
题目2:一个数字钟的时针和分针在12点整重合。
请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。
因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。
每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。
题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。
答案:设原来的长方形宽为x厘米,那么长就是2x厘米。
原来的面积是x * 2x = 2x^2平方厘米。
增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。
根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。
解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。
题目4:一个数字序列如下:2, 4, 7, 11, ...。
这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。
根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。
六年级奥数题100道

六年级奥数题及答案 1、题目:商店进了一批商品,按40%加价出售。
在售出八成后,为了尽快销完,决定五折处理剩余商品,而且商品全部出售后,突然被征收了150元的附加税,这使得商店的实际利润率只是预期利润率的一半,那么这批商品的进价是多少元 (注:附加税算作成本) 答案与解析:理解利润率的含义,是利润在成本上的百分比。
设进价某元,则预期利润率是40% 所以收入为(1+40%)某某0.8+0.5某(1+40%)某某0.2=1.26某实际利润率为40%某0.5=20% 2、我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人解答案与解析:是[10某(22-6)]千米,甲乙两地相距60千米。
由此推知追及时间=[10某(22-6)+60]÷(30-10)=220÷20=11(小时) 答:解放军在11小时后可以追上敌人。
3、分.最后发现各队得分都不相同,第三名得了7分,并且和第一名打平,那么这五支球队的得分从高到低依次是多少答案与解析:每个队各赛4场,共赛5某4÷2=10场.第三名得7分,与第一名打平,那么剩下的3场,得6分,只能是3+3+0,即和第二名的比赛输了,所以只能是 1+0+/+3+3. 那么,第一名为/+3+1+3+3,第二名为0+/+3+3+3,第三名为1+0+/+3+3,第四名为0+0+0+/+3,第五名为0+0+0+0+/. 所以,这五支球队的得分从高到低依次是10、9、7、3、0. 4、学校组织军训,甲、乙、丙三人步行从学校到军训驻地.甲、乙两人早晨7点一起从学校出发,甲每小时走6千米,乙每小时走5千米,丙上午9点才从学校出发,下午5点甲、丙同时到达军训驻地。
问:丙在何时追上乙答案与解析:先看丙和甲的追及问题,追及路程为甲走9-7=2(小时)的路程,为: 6某2=12(千米),追及时间为上午9点到下午5点,共17-9=8(小时),所以丙的速度为:128+6=7.5(千米/时).再看丙和乙的追及问题.丙追及乙的追及路程为乙先走 9-7=2(小时)的路程,为5某2=10(千米),两人的速度差为:7.5-5=2.5(千米/时),追及时间为:102.5=4(小时),此时为下午1点。
小学六年级顶级数学奥数题库220道及答案

小学六年级顶级数学奥数题库220道及答案1. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有0.5x - 1 人。
x + (3x + 1) + (0.5x - 1) = 180 ,解得x = 40 。
所以第一车间40 人,第二车间121 人,第三车间19 人。
2. 有两根铁丝,第一根长28 米,第二根长20 米。
两根铁丝用去同样长的一段后,第一根剩下的长度是第二根剩下的长度的3 倍。
两根铁丝各剩下多少米?答案:设用去的长度为x 米。
28 - x = 3×(20 - x) ,解得x = 16 。
第一根剩下12 米,第二根剩下4 米。
3. 甲、乙、丙三人共有108 元,甲用了自己钱数的3/5,乙用了自己钱数的3/4,丙用了自己钱数的2/3,各买了一支相同的钢笔,问甲、乙、丙剩下的钱共有多少元?答案:设这支钢笔价格为x 元,则甲的钱数为5x/3 ,乙的钱数为4x/3 ,丙的钱数为3x/2 。
5x/3 + 4x/3 + 3x/2 = 108 ,解得x = 24 。
甲剩下16 元,乙剩下8 元,丙剩下12 元,共36 元。
4. 甲、乙两港相距360 千米,一轮船往返两港需35 小时,逆流航行比顺流航行多花了5 小时。
现在有一机帆船,静水中速度是每小时12 千米,这机帆船往返两港要多少小时?答案:轮船顺流时间:(35 - 5)÷2 = 15(小时),逆流时间:20 小时。
顺流速度:360÷15 = 24(千米/小时),逆流速度:360÷20 = 18(千米/小时),水速:(24 - 18)÷2 = 3(千米/小时)。
机帆船顺流时间:360÷(12 + 3) = 24(小时),逆流时间:360÷(12 - 3) = 40(小时),往返共64 小时。
小学六年级奥数题50道及答案

小学六年级奥数题50道及答案1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。
每袋子里各有几粒?答案:每袋子 3 粒2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?答案:两排3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?答案:还剩 6 元4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?答案:大卫得到 6 个苹果5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?答案:共有 40 个座位6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?答案:共可以容纳 24 人7. 一共有 10 块砖,每堆 3 块,共有几堆?答案:共有 4 堆8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?答案:买了 4 支钢笔9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?答案:大正方形有 4 条边10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?答案:共需要 3 袋11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?答案:需要 3 篮12. 一共有 10 块砖头,每袋装 2 块,需要几袋?答案:需要 5 袋13. 一共有 9 张书,每盒可以装 3 张,需要几盒?答案:需要 3 盒14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?答案:需要 4 盒16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?答案:需要 3 篮17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?答案:还剩 0 元18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?答案:需要 3 盒19. 一共有 24 个正方形,每排 6 个,一共有几排?答案:一共有 4 排20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?答案:共有 4 个人21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?答案:共有 3 个人22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?答案:需要 2 袋23. 一共有 18 个书,每箱可以装 6 个,需要几箱?答案:需要 3 箱答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?答案:需要 3 袋25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?答案:每个孩子可以得到 3 个糖果26. 一共有 8 块砖头,每袋装 2 块,需要几袋?答案:需要 4 袋27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?答案:需要 2 盒28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?答案:需要 3 篮30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?答案:需要 4 筒31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?答案:需要 3 盒32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?答案:需要 5 盒33. 一共有 9 块布,每袋装 3 块,需要几袋?答案:需要 3 袋34. 一共有 16 小球,每份可以分 4 个,共有几份?答案:共有 4 份35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?答案:需要 4 盒37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?答案:需要 3 箱38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?答案:需要 3 袋39. 一共有 9 个正方形,每排 3 个,一共有几排?答案:一共有 3 排40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?答案:共有 3 个人41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?答案:需要 2 箱42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?答案:需要 4 个笼子43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?答案:需要 3 把笼子44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?答案:需要 4 篮45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?答案:需要 2 筒46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?答案:需要 3 盒47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?答案:每个姑娘可以得到 2 个糖果48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?答案:需要 3 袋49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?答案:一共有 3 排50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?答案:每个孩子可以得到 3 块巧克力。
小学六年级奥数题50道题及解答(可直接打印)

小学六年级奥数题50道题及解答(可直接打印)精品文档练习(一)姓名得分1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?做最好的自己5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自动身的车站,到站时已经是下战书2 点。
甲车每小时行40千米,乙车每小时行45 千米,两地相距几何千米?(交换乘客的时间略去不计)6.学校构造两个课外乐趣小组去郊野活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存食粮32.5吨。
甲仓的存粮吨数比乙仓的4倍少5 吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队配合修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?做最好的本人佳构文档9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,恰好是一把椅子代价的(10-1)倍,由此可求得一把椅子的价钱。
六年级奥数题及答案-20道题

六年级奥数题及答案-20道题【题-001】抽屉原理有5个小朋友;每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明;这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
【题-002】牛吃草:(中等难度)一只船发现漏水时;已经进了一些水;水匀速进入船内.如果10人淘水;3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完;要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子;全部口朝上;每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”;都不能使9只杯子全部口朝下。
【题-004】整除问题:(中等难度)用一个自然数去除另一个整数;商40;余数是16.被除数、除数、商数与余数的和是933;求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字;使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时;恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时;灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时;比第一周多用了15分钟.第四周他三个管同时打开;灌满一池水用了2小时20分;第五周他只打开甲管;那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克;现在又分别倒入100克和400克的A、B两种酒精溶液;瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍;那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水;另一个钢桶里盛着牛奶;由于牛奶乳脂含量过高;必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶;使其中液体的体积翻了一番;然后我又把B桶里的液体倒进A桶;使A桶内的液体体积翻番.最后;我又将A桶中的液体倒进B桶中;使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体;而在B桶中;水比牛奶多出1升.现在要问你们;开始时有多少水和牛奶;而在结束时;每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时;某年级的学生站成一个实心方阵时(正方形队列)时;还多10人;如果站成一个每边多1人的实心方阵;则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数;如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数;那么这个自然数是11的倍数;例如1001;因为1+0=0+1;所以它是11的倍数;又如1234;因为4+2-(3+1)=2不是11的倍数;所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数;其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分;得分最低的是30分;得同样分的学生不超过3人;每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除;求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班;以均匀速度行驶.他观察来往的公共汽车;发现每隔12分钟有一辆汽车从后面超过他;每隔4分钟迎面开来一辆;如果所有汽车都以相同的匀速行驶;发车间隔时间也相同;那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步;马跑4步的距离狗跑7步;现在狗已跑出30米;马开始追它。
【经典】小学六年级奥数30及答案

【经典】小学六年级奥数30及答案一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.3.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.4.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a 相乘)5.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.6.如图所示的“鱼”形图案中共有个三角形.7.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.8.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?9.根据图中的信息可知,这本故事书有页页.10.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.11.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.12.若(n是大于0的自然数),则满足题意的n的值最小是.13.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.14.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?15.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.3.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.4.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.5.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.6.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.7.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.8.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.9.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.10.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.11.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.12.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:313.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.14.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.15.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.。
小学六年级奥数题及答案【5篇】

小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。
第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。
问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。
如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
3.妈妈每四天去一次杂货店,每五天去一次百货商店。
妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。
2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
2.从五年级的六个班级中选出一个学习、体育、健康先进集体。
有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。
他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。
所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。
有50道测试题。
评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 人教版六年级奥数题及答案
1 甲乙在银行存款共 9600 元,如果两人分别取出自己存款的 40%,再从甲存款 中提 120 元给乙。
这时两人钱相等,求 乙的存款
9600×(1-40%)=5760(元)5760÷2+120=3000(元)3000÷(1-40%) =5000(元)
2 小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少 1/4!”小亮说: “你要是能给我你的 1/6,我就比你多 2 个了。
”小明原有玻璃球多少个? 4*1/6=2/
3 4-2/3=3 又 1/3(份) 3+2/3=3 又 2/3(份)3*2=6(个) 4*6=24(个)
3 搬运一个仓库的货物,甲需要 10 小时,乙需要 12 小时,丙需要 15 小时.有同 样的仓库 A 和 B ,甲在 A 仓库、乙在 B 仓库同时开始搬运货物,丙开始帮助甲搬 运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多 少时间?
60 × 2÷(6+ 5+ 4)= 8(小时)(60- 6× 8)÷ 4= 3(小时)(60- 5× 8) ÷4= 5(小时)
4 一件工作,若由甲单独做 72 天完成,现在甲做 1 天后,乙加入一起工作,合作 2 天后,丙也一起工作,三人再一起工作 4 天,完成全部工作的 1/3,又过了 8 天,完 成了全部工作的 5/6,若余下的工作由丙单独完成,还需要几天?
5/6-1/3=1/2 1/2÷8=1/16, 1/16×4=1/4 1/3-1/4=1/12 [1/12-1/72×
3]/2=1/48 1/16-1/72-1/48=1/36 [1-5/6]÷1/36=6 天
答:还需要 6 天
5 股票交易中,每买进或卖出一种股票都必须按成交易额的 1%和 2%分别交纳 印花税和佣金(通常所说的手续费)。
老王 10 月 8 日以股票 10.65 元的价格买 进一种科技股票 3000 股, 月 2
6 日以每月 13.86 元的价格将这些股票全部卖出, 老王卖出这种股票一共赚了多少钱?
10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元)
0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元)
0.1386+0.2772=0.4158
13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)
答:老王卖出这种股票一共赚了 3.3063 元.
6 一件工程原计划 40 人做,15 天完成.如果要提前 3 天完成,需要增加多少人?
解: 设需要增加 x 人
(40+x)(15-3)=40*15
x=10
5
答:所以需要增加 10 了
7 仓库有一批货物,运走的货物与剩下的货物的质量比为 2:7.如果又运走 64 吨,那么剩下的货物只有仓库原有货物的五分之三。
仓库原有货物多少吨? 解:第 1 次运走:2/(2+7)=2/9.
64/(1-2/9-3/5)=360 吨。
答:原仓库有 360 吨货物。
8 育才小学原来体育达标人数与未达标人数比是 3: ,后来又有 60 名同学达标, 这时达标人数是未达标人数的 9/11,育才小学共有学生多少人?
3÷(3+5)=3/8
9/11÷(1+9/11)=9/20
60÷(9/20-3/8)=800 人
9 甲乙二人共同完成 242 个机器零件。
甲做一个零件要 6 分钟,乙做一个零件要 5 分钟。
完成这批零件时,两人各做了多少个零件?
设甲做了 X 个,则乙做了(242-X )个
6X=5(242-X )
X=110
242-110=132(个)
答:甲做了 110 个,乙做了 132 个
10 甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是 8:7:5
原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协
商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱 1350 元,结果,
甲村共派出 60 人,乙村共派出 40 人,问甲乙两村各应分得工钱多少元?
8+7+5=20 份(60+40)÷20=5 人 8×5=40 人 60-40=20 人 7×5=35 人 40-35=5 人 5×5=25 人 20+5=25 人 1350÷25=54 元 54×20=1080 元 54×5=270 元 11 哈利.波特参加数学竞赛,他一共得了 68 分。
评分的标准是:每做对一道得 20 分,每做错一道倒扣 6 分。
已知他做对题的数量是做错题的两倍,并且所有 的题他都做了,请问这套试卷共有多少道题?
解:设哈利波特答对 2X 题,答错 X 题
20×2X-6X=68
40X-6X=68
34X=68
X=2
答对:2×2=4 题共有:4+2=6 题
12 建筑工地有两堆沙子,一堆比 2 堆多 85 吨,两堆沙子各用去 30 吨后,一堆剩的 是 2 堆的 2 倍,两堆沙子原来各有多少吨?
设 2 堆为 X 吨,则一堆为 X+85 吨
X+85-30=2(X-30)
x=115(2 堆)
x+85=115+85=200(1 堆)
13一少先队中队去野营,炊事员问多少人,中队长答:一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?
设有x个人
x+x/2+x/3=55
x=30
14学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。
三个年级段各分得多少本图书?
设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本
x+2x+3x-120=840
6x-120=840
6x=840+120
6x=960
x=960/6
x=160
高年级段为:160*2=320(本)中年级段为:160*3-120=360(本)
答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.
15小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?
解:设小华的有x本书
4(x+2)=6x+2
4x+8=6x+2
x=3
6x=18
16甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?
解:设甲校有x人参加,则乙校有(22-x)人参加。
0.2x=(22-x)×0.25-1
0.2x=5.5-0.25x-1
0.45x=4.5
x=10
22-10=12(人)
答:甲校有10人参加,乙校有12人参加。
17某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。
x*0.12+(30-x)*0.14=4
4.2-0.02x=4
0.02x=0.2
x=10(万元)
18学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。
已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。
问:他们一共行了多少路
7:00-1:00=6(小时)6-2.5=3.5(小时)3.5-2.5=1(小时)(6-3)×1÷(3÷6)=6(千米)6÷6=1(小时)(2.5-1)×4=6(千米)6+6=12(千米)12×2=24(千米)
答:他们共走24千米。
甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数.解:设乙数为x,则甲数为2x+17.
10x=3(2x+17)+45
10x=6x+51+45
4x=96
x=24
2x+17=2×24+17=65.
答:甲数是65,乙数是24
19一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?
20×5=100(台)6×15=90(台)(100-90)÷(20-15)=2(台)100-20×2=60(台)60÷6+2= 12(台)
答:若6天抽完,共需12台抽水机。