初中数学_八年级下册教学设计学情分析教材分析课后反思
初中数学_一元二次方程教学设计学情分析教材分析课后反思

第八章一元二次方程8.1 一元二次方程(1)【学习目标】1、知识与技能:理解一元二次方程的定义,会判断满足一元二次方程的条件。
2、能力培养:能根据具体情景应用知识。
3、情感与态度:体验与他人合作的重要性及数学活动中的探索和创造性。
【学习重点】1、一元二次方程的定义;2、一元二次方程的一般形式。
【学习过程】一、前置准备:1.单项式和多项式统称为整式.2.含有未知数的等式叫做方程.3.计算:(x+2)2=x2+4x+4;(x-3)2=x2-6x+9.4.计算:(5-2x)(8-2x)=4x2-26x+40.二、自学探究:理解一元二次方程的概念,并会把一元二次方程化为一般形式。
自学教材,回答:(1)如果设未铺地毯区域的宽为xm,那么地毯中央长方形图案的长为 m,宽为为 m.根据题意,可得方程(2)试再找出(10、11、12、13、14以外)其他的五个连续整数,使前三个数的平方和等于后两个数的平方和:;如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为、、、,根据题意可得方程:(3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙 m,梯子顶端距地面的垂直距离为 m,根据题意,可得方程:三、合作交流:观察上述三个方程,它们的共同点为:①;②;这样的方程叫做。
其中我们把称为一元二次方程的一般形式,ax2,bx,c分别称为、、,a、b分别称为、。
1、分别把上述三个方程化为ax2+bx+c=0的形式,并说明每个方程的二次项系数、一次项系数和常数项:(1)(2)(3)四、典例分析:1、下列方程哪些是一元二次方程?(1)(1)7x2-6x=0 (2)2x2+-5xy+6y=0(3)13122-+x x =0 (4)22y =0 (5)x 2+2x-3=0五、能力提升:1、从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.2、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。
初中数学_三角形证明的复习教学设计学情分析教材分析课后反思

北师大版初中数学八下第一章《三角形的证明复习课》教学设计北师大版初中数学八年级下册第一章三角形的证明复习课第一课时一、学生学情分析学生在本章学习并证明完成了全部8条基本事实,并学习了三类特殊的三角形------等腰三角形,等边三角形,直角三角形。
通过对这三类三角形性质和判定的探索与证明积累了一定的探索经验,并继续深入学习证明的方法和格式;多数学生已经了解证明的必要性,具备了证明命题是否成立的探索经验的基础.同时已经具备了一定的合作学习的经验,具备了一定的合作与交流的能力.再将文字语言与图形语言,符号语言转换方面也有了很大提升。
八年级学生已有合情推理,慢慢的侧重于演绎推理,在经历了对八条基本事实时的探究,证明过程中,积累了更多的活动经验。
在学习了本章后,无论是对证明的必要性的体会,对证明严谨性以及证明思路的多样性上都有了长足的进步。
具备自己整理知识,进行知识梳理,逐渐将学习内容纳入知识体系的能力。
二、教学任务分析教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.经过一个阶段的学习,有必要对有关知识进行回顾与思考,引导学生回顾总结本章学习的主要内容及其蕴含的数学思想,并思考这些内容获得的过程,帮助学生逐步构建知识体系,养成回顾与反思的学习习惯。
本节课的教学目标是:1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.4.重点与难点重点:1.构建本章知识内容框架,发现其中关联2.通过对典型例题的讲解和课堂练习对所学知识进行复习巩固难点:是本章知识的综合性应用对学生来讲是难点。
初中数学_八年级下册教学设计学情分析教材分析课后反思

八年级·数学·下册·总第( 1 )课时·授课时间: 教学课题:§9.1 成比例线段(1) 课型:新授课 学习目标: 1、知道线段的比的概念。
理解成比例线段的概念 2、会计算两条线段的比。
3、掌握成比例线段的判定方法。
学习重点:理解线段比与成比例线段的概念及其求解。
学习过程: 教 学 流 程二次备课 一、检┉┉┉┉预习检查、启发导入1、三角形中位线定理:三角形的中位线 且 。
2、动手量一量:课本的长为 厘米,宽为 厘米,长与宽的比为 。
课桌的长为 厘米,宽为 厘米,长与宽的比为 。
二、学┉┉┉┉学案引领、自主学习(一)明确学习目标自学教材84页完成下列问题(二)师提出学案中自学导航的问题并板书1、线段的比:如果选用 量得两条线段AB,CD 的长度分别是m ,n ,那么就说这两条线段的比(ratio ) = ,或写成nm CD AB =其中,AB,CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k,那么k CDAB =,或 注意:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.2、成比例线段的概念:(1)一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。
(2)四条线段成比例,记作:其中a,d 叫比例外项,b,c 叫比例内项。
(3)四条线段a,b ,c,d 成比例,有顺序关系。
即a,b,c,d 成比例线段,则比例式为:a:b=c:d ;a,b, d,c 成比例线段,则比例式为:a:b=d:c三、讲┉┉┉┉解惑质疑、精讲点拨例1、如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,CD ,EH ,EF 的长度分别是多少?分别计算 值。
初中数学_二次根式的乘除法教学设计学情分析教材分析课后反思

数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时教学设计数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时学情分析一、思想状况分析八年级10班大部分学生的学习目的性明确、学习积极性高,能主动地学习,部分同学有上进心,但主动性不够,需要老师的引导。
八年级10班的学生学习目的不明确,不能积极主动地完成学业,甚至不能完成老师布置的作业。
大部分学生正处在生长发育的高峰期,一方面他们对因青春期生理、心理急剧变化而产生的丰富而深刻的感受和体验,有诸多成长的烦恼;另一方面面对沉重的学习、开放的社会环境带来的各种刺激和诱惑,难免不知所措。
二、学习状况分析八年级是一个产生剧烈变化的时期,更是一个危险的时期,也是一个爬坡的时期,是一个分水岭。
第一类:学习有一定的基础和很浓厚的兴趣.学生成绩稳定.第二类:基础差,但热情高,方法不当第三类:学习有一定的基础,但因各种原因成绩(如懒、上课纪律差易开小差注意力不集中、不想上学的思想作怪等)就是提不上来。
第四类:基础差,没有太大的兴趣,但尽量跟住老师.这些孩子的家长当然也在督促。
第五类:跟不上正常的进度.另外,大部分学生有学习目标,学习态度端正,学习积极性高,有一定的理解能力和分析判断推理能力,但学习自主性不太强,基础较薄弱,通过小学的精心培养,学生们已经养成了良好的学习习惯和行为习惯。
语言文明,思想健康,积极、认真、扎实。
但有的学生对自己的学习没信心,在自动放弃学习。
三、今后措施1、在教学中必须立足基础知识,加强基础知识的教学,要让学生通过历史知识的学习,养成良好的思维习惯,培养学生良好的学习习惯和严谨认真的学习态度,加强规范语言训练,提高答题得分率。
2、运用科学探究的方法,获取相应的知识,培养学生的情感和态度,扎扎实实打好基础,引领学生进入阅读世界、注重文献史料的积累借鉴,引导学生系统、牢固地掌握各课的知识考点,并培养他们运用所学知识分析问题、解决问题的能力。
八年级数学下册教案反思(精品8篇)

八年级数学下册教案反思(精品8篇)八年级数学下册教案反思篇1一、分解因式※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
※2.因式分解与整式乘法是互逆关系。
因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二、提公共因式法※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法。
※2.概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,ab+ac=a(b+c)※3.易错点点评:(1)注意项的.符号与幂指数是否搞错;(2)公因式是否提彻底;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉。
三、运用公式法※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法。
※2.主要公式:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍。
※5.因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)因式分解的最后结果必须是几个整式的乘积;(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
八年级数学下册教案反思篇2一、学习目标:1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点重点:平方差公式的推导和应用;难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习你能用简便方法计算下列各题吗?(1)20_×1999(2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x—1);(2)(m+2)(m—2)(3)(2x+1)(2x—1);(4)(x+5y)(x—5y)。
八年级下册数学教案反思(优秀8篇)

八年级下册数学教案反思(优秀8篇)八年级下册数学教案反思篇1一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.2、会求一组数据的极差.二、重点、难点和难点的突破方法1、重点:会求一组数据的极差.2、难点:本节课内容较容易接受,不存在难点.三、课堂引入:下表显示的是上海2月下旬和同期的每日最高气温,如何对这两段时间的气温进行比较呢?从表中你能得到哪些信息?比较两段时间气温的高低,求平均气温是一种常用的方法.经计算可以看出,对于2月下旬的这段时间而言,和上海地区的平均气温相等,都是12度.这是不是说,两个时段的气温情况没有什么差异呢?根据两段时间的气温情况可绘成的折线图.观察一下,它们有区别吗?说说你观察得到的结果.用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).四、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级下册数学教案反思篇2教学目标:1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:算术平方根的概念。
教学难点:根据算术平方根的概念正确求出非负数的算术平方根。
教学过程一、情境导入请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?这就要用到平方根的概念,也就是*的主要学习内容.这节课我们先学习有关算术平方根的概念.二、导入新课:1、提出问题:(书P68页的问题)你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法) 这个问题相当于在等式扩=25中求出正数x的值.一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式=a(x0)中,规定x=.2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.3、想一想:下列式子表示什么意思?你能求出它们的值吗?建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
初中数学_函数的图象教学设计学情分析教材分析课后反思

《函数的图象》教学设计教学目标1.通过画图象,理解并感知函数图象的定义。
2.会观察、分析函数图象信息,解决实际问题。
3.提高识图能力、分析函数图象信息能力。
教学重点:把实际问题转化为函数图象,再根据函数图象来研究实际问题。
教学难点:通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学过程设计:(一)知识背景导入变化与对应(二)展示学习目标(三)复习巩固1.课件出示问题2.引导学生回顾知识点(四)创设情境,感觉新知(1)函数的图象的定义1.活动一:出示摩天轮,让学生思考如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?2.动画播放:将每对t和h的数据作为点的坐标,在以t为横轴、h为纵轴的直角坐标系中描出各点,并将描出的点用平滑的曲线依次连接起来3.学生思考:其中对于给定的每一个时间 t,高度 h对应有几个值?4.从而总结函数图像定义:归纳总结:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的_________.5.巩固练习达标测试第4题(2)函数图像的意义活动二:下图是下图反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系.你从图象中得到了哪些信息?思路导引:找出函数的图象所要表达的数字信息.【规律总结】读取图象所表达的信息应注意:(1)弄清坐标轴和图象上的点所表示的意义.(2)图象上的最高点和最低点往往有特殊意义.(3)上升(下降)线表示函数值随自变量的增大而增大(减小),水平线表示函数值不随自变量的变化而变化.(在本次活动中教师应重点关注:(1)有些问题中的函数关系很难列式子表示,但是可以用图像直观地来反映。
(2)看图象时应注意的问题。
)活动三:分析图象解决实际问题如图所示,小明家、食堂、图书馆在同一条直线上。
小明从食堂吃早餐,接着去图书馆读报,然后回家。
初中数学_《数据的分析》小结(二)教学设计学情分析教材分析课后反思

《数据的分析》小结(二)教学设计一、教学设计思想通过学生的合作交流总结出本节的知识结构,针对本章的主要内容,设计一组思考题,让学生在独立思考的基础上分组讨论交流,并用自己的语言来表达对问题的理解,以达到梳理知识,理解统计的思想和方法,增强统计意识的目的。
最后通过练习巩固本章的知识点。
二、教学目标知识技能:回顾本章主要内容,说出知识之间的联系;说出各统计量在刻画数据特征方面的优点与局限。
会用计算器计算统计量;发展归纳与概括的能力。
体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程数学思考:经历总结与反思的过程,结合具体问题情境表述各统计量的意义,进一步发展建立数据分析观念。
问题解决:初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
归纳解决实际问题的一般过程积累数学活动的经验。
情感态度:进一步感受知识点之间的联系,感受知识来源于生活又应用于生活。
敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。
三、教学重点和难点重点是分析数据的集中趋势和波动程度,体会样本估计总体的思想。
难点是能灵活运用本章知识点解题。
解决办法:通过阶梯式问题引导学生复习主要知识点,通过练习来巩固这些知识。
四、教学方法讨论法,在总结讨论的基础上,使学生掌握本章的内容。
五、课时安排1课时六、教具学具准备多媒体七、教学过程设计(一)情景导入:教师讲:用《啤酒与尿布》这一成功利用数据分析的经典营销案例,导入新课(教师板书课题)。
学生回顾在《数据的分析》里主要学习了哪些统计量?如何计算?有何异同?(二)问题(教师出示问题并板书;学生细心计算,并说说各统计量的计算方法:)数据2,1,2,4,2,1的平均数是______,中位数是_______,众数是_______,方差是_______.(1)加权平均数:(先让学生举几个生活中的例子,后教师出示案例,学生可分组讨论后交流):《招工启事》因我公司扩大规模,现需招若干名员工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级·数学·下册·总第( 1 )课时·授课时间: 教学课题:§9.1 成比例线段(1) 课型:新授课 学习目标: 1、知道线段的比的概念。
理解成比例线段的概念 2、会计算两条线段的比。
3、掌握成比例线段的判定方法。
学习重点:理解线段比与成比例线段的概念及其求解。
学习过程: 教 学 流 程二次备课 一、检┉┉┉┉预习检查、启发导入1、三角形中位线定理:三角形的中位线 且 。
2、动手量一量:课本的长为 厘米,宽为 厘米,长与宽的比为 。
课桌的长为 厘米,宽为 厘米,长与宽的比为 。
二、学┉┉┉┉学案引领、自主学习(一)明确学习目标自学教材84页完成下列问题(二)师提出学案中自学导航的问题并板书1、线段的比:如果选用 量得两条线段AB,CD 的长度分别是m ,n ,那么就说这两条线段的比(ratio ) = ,或写成nm CD AB =其中,AB,CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k,那么k CDAB =,或 注意:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.2、成比例线段的概念:(1)一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。
(2)四条线段成比例,记作:其中a,d 叫比例外项,b,c 叫比例内项。
(3)四条线段a,b ,c,d 成比例,有顺序关系。
即a,b,c,d 成比例线段,则比例式为:a:b=c:d ;a,b, d,c 成比例线段,则比例式为:a:b=d:c三、讲┉┉┉┉解惑质疑、精讲点拨例1、如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,CD ,EH ,EF 的长度分别是多少?分别计算 值。
你发现了什么?例3、 如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即 ,那么a 的值应当是多少?四、测┉┉┉┉练习巩固、当堂检测(一)练习检测:1、一条线段的长度是另一条线段长度的5倍,则这两条线段之比是______2、一条线段的长度是另一条线段长度的53,则这两条线段之比是______3、已知a 、b 、c 、d 是成比线段,a=4cm,b=6cm,d=9cm,则c=____4、如果y x 52=,那么y x=____5、把pq mn =写成比例式,写错的是( )(二)归纳总结:1、线段的比:线段的比的概念、表示方法;前项、后项及比值k ;两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位;两条线段的比在实际生活中的应用。
2、成比例线段及其性质(三)课后作业A 类:习题:1、2、3B 类:习题:1、2、AB AD AD AE =n p q m A =.q n m p B =.p n m q C =.qp n m D =.EFEH AD AB EF AD EH AB ,,,八年级的学生已初步具有了学习几何的能力,但是还有待于进一步培养自学、分析、总结能力。
另外,一部分学生通过各种渠道了解到《相似形》一章比较难学,故可能有心理上的负担。
同时,根据以往教学的经验,本章内容从全等到相似是一个飞跃,的确有一定的难度,在这一章的学习中部分学生可能会由于不适应而影响学习兴趣和学习热情。
这对我们的几何教学是很不利的。
所以本节并没有因为内容的简单而一代而过,力争将解决学生的思想问题和对学生进行学法指导作为一个重点来处理。
本节新授课教学中,课堂内容的导入是本节课的一个亮点,从众多的线段、各种图形中找出比值相等的组成比例式,从而认识比例、熟悉比例的定义,使本节课有了一个良好的开端。
其次,在讲授比例的基本性质时,让学生运用基本性质进行变形,使学生对该性质有了一个深刻的认识。
最后,习题的设置充分体现了层次性,形式多样,有利于提高学生的学习兴趣,增强了趣味性,取得良好效果。
同时对于基础较差的学生没有给予充分的重视,忽视了他们的发展,致使部分差生在当堂检测中没有达到预期目标。
研究教材无止境、研究教法无止境,在今后的教学工作中还要不断学习,提高自己运用新教材的能力。
图形的相似与全等紧密相关。
全等是相似的特例,相似是全等知识的拓广和发展。
在今后将要学习《解直角三角形》和《圆》两部分知识,另外,在工程、绘图、测量等许多方面的工作中,相似的知识都有着重要的实用价值。
本节是鲁教版八年级下册第九章的第一节,是引学生入门的一节,又是概念课,在教法、学法及培养学生的学习兴趣方面,都有着至关重要的意义,本节教学的成功直接影响着本章的教学。
重点:成比例线段,比例的性质难点:比例性质的推导和应用突破难点的关键:鼓励学生参与知识的探究、讨论和总结,让学生经历知识从感性到理性的发展过程。
鼓励、引导学生发现问题,研究问题,解决问题。
【课堂练习】:1、判断下列线段是否是成比例线段:(1)a=2cm,b=4cm,c=3m,d=6m;(2)a=0.8,b=3,c=1,d=2.4.2、下列线段能成比例线段的是()(A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm (C)2cm,5cm,3cm,1cm (D)2cm,5cm,3cm,4cm3、线段a=1cm ,b=4cm ,c=9cm , 那么a 、b 、c 的第四比例项d=____【知识点】合比性质:【例题】1、已知32=b a ,则b b a +的值为( ) (A)23 (B)34 (C)35 (D)53 【课堂练习】:1、已知5x-8y=0,则x+y x =2、若互不相等的四条线段的长a,b,c,d 满足a b =c d,m 为任意实数,则下列各式中,相等关系一定成立的是( )(A ) a +m b +m =c +m d +m (B )a +b b =c +d c (C )a c =d b (D )a -b a +b =c -d c +d3、如果x y =73 ,那么x -y y = ,x +y y = , x +y x +y= 【知识点】:等比性质:【例题】1、若43===f e d c b a , 则______=++++f d b e c a . 2、若b a c a c b c b a k 222-=-=-=,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)21 (C)1 (D)- 12 3、已知有三条线段长为2cm 、3cm 、1cm ,请你再添加一条线段,使这四条线段为成比例线a c abcd b d b d ±±==如果,那么(0)a c m b d n b d na c m ab d n b ==⋅⋅⋅=++⋅⋅⋅+≠++⋅⋅⋅+=++⋅⋅⋅+如果,那么。
段,求所添加线段的长4、已知0753≠==z y x ,求下列各式的值:(1)y z y x +- (2)z y x z y x +-++35432. 【课堂练习】1、已知a b =c d =e f =35,b +d +f =50,那么a +c +e = 2、已知x 5 =y 3 =z 4 ,则2x+y-z x+3y+z = 3、已知有三条线段长为1cm 、4cm 、9cm ,请你再添加一条线段,使这四条线段为成比例线段,求所添加线段的长4. 已知0≠-=-=-z a c y c b x b a ,求x+y+z 的值.1.课后练习:1.如果053=-y x ,且y ≠0,那么y x = . 2.若9810z y x ==, 则 ______=+++z y z y x . 3.若322=-y y x , 则_____=yx . 4.如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )(A)8 (B)16 (C)24 (D)325.若ac =bd ,则下列比例式中不正确的是………………………………………………( ) (A)c bd a = (B)d a c b = (C)d b c a = (D)d c a b =6、已知32==d c b a ,若0≠+d b ,则=++db c a . 《成比例线段》教学反思本节课的教学有以下几个方面取得了十分好的效果:首先,课堂内容的导入是本节课的一个亮点,从众多的线段、各种图形中找出比值相等的组成比例式,从而认识比例、熟悉比例的定义,使本节课有了一个良好的开端。
其次,在讲授比例的基本性质时,让学生运用基本性质进行变形,使学生对该性质有了一个深刻的认识。
最后,习题的设置充分体现了层次性,形式多样,有利于提高学生的学习兴趣,增强了趣味性。
这些成功之处是与教师的正确引导、深入研究教材变化、分析学生分不开的,这也是我今后努力的方向。
这节课的不足之处是对于基础较差的学生没有给予充分的重视,忽视了他们的发展,这是以后应该注意的地方,研究教法、精选习题,注重因材施教,让学生全面发展,全面提高我班学生的数学素质。
同时,对本节课的内容还应该与其他学科的知识联系一下。
研究教材无止境、研究教法无止境,在今后的教学工作中还要不断学习,提高自己运用新教材的能力。
1、知识与技能:掌握平行线分线段成比例的基本定理及推论,并能用其解题;2、过程与方法:掌握基本定理的推导过程并能以之解题;3、情感态度和价值观:培养认识事物从一般到特殊的认知过程,培养欣赏数学表达式的对称美。