最先的实验二运算器的实验
实验二_乘法器

2 运算器部件实验:乘法器 (1)2.1、实验目的 (1)2.2、实验原理 (1)2.3、实验步骤 (7)2.4、实验现象 (7)2.5、思考题 (8)2 运算器部件实验:乘法器2.1、实验目的1、掌握乘法器以及booth乘法器的原理2.2、实验原理首先我们看一下十进制数的乘法。
为了方便起见,我们假定十进制数的各位要么为1要么为0,例如1000×1001:被乘数 1 0 0 010乘数× 1 0 0 1101 0 0 00 0 0 00 0 0 01 0 0 0积 1 0 0 1 0 0 010从上面的步骤我们可以看到,1)从右到左用乘数的每一位乘以被乘数,每一次乘得的中间结果比上一次的结果往左移一位。
2)积的位数比被乘数和乘数的位数要多的多。
事实上,如果我们忽略符号位,n位的被乘数和m位的乘数相乘的结果的位数有(n+m)位。
因此,乘法必须象加法那样处理溢出问题,如果两个32位的数相乘,积也只有32位的时候,就会出现溢出。
在上面的例子中,我们把十进制数的各位限制为0或1。
因此,每一步的乘法相当简单:1)如果乘数位是1,则简单的复制被乘数到合适的位置(1×被乘数);2)如果乘数位是0,则在合适的位置置0因为二进制数的各位是0或1,所以与上面情况类似。
既然已经知道了乘法的基本规律,下一步就是设计高度优化的乘法器硬件。
为了让大家更明了乘法器的原理,我们一一列举乘法器的三个版本的改进。
我们先假定被乘数和乘数都是正数。
1、第一代乘法器初始的设计模拟我们刚才提到的乘法流程,硬件结构如图2.1所示。
假定乘数在32位乘数寄存器里,64位的积寄存器初始化为0,显然每一步需要把被乘数左移一位。
左移32次之后,被乘数的32位会被移到左边,因此我们需要64位的被乘数寄存器,初始状态为低32位是被乘数,高32位是0。
这个寄存器每一步左移一位,和中间结果对齐,进行相加,相加的结果存在被乘数寄存器里。
实验二 运算器实验

南京工程学院计算机工程学院计算机组成与结构实验报告书实验学生班级 K网络工程121实验学生姓名王云峰学号 240121525实验地点信息楼A115实验二运算器实验同组同学李翔240121515(合作小组朱赛杰240121533)实验日期 11月27日实验仪器号 TEC-XP+14S022一、实验目的1.加深对Am2901运算器内部组成的了解, 掌握四片Am2901芯片间的连接关系, 以及它与有关外部逻辑电路的连接关系。
2.准确把握该运算器的控制与使用, 即掌握其运算与操作功能, 以及正确地为其提供全部控制信号及有关数据的手段与技术。
3.初步了解运算器在计算机整机中的作用。
二、实验内容1.脱机方式下运算器的控制及运行设计控制信号序列,在脱机方式实现给定程序段的功能。
记录按压START 前后的ALU的运算结果和状态标志。
2.联机方式下运算器的控制及运行在联机方式下,汇编并单步执行给定程序段,查看并记录每条指令执行后的运行结果。
使用指令的单步骤执行方式,观察与运算器相关的控制信号的状态。
三、实验步骤与结果脱机的运算器实验,在教学实验中实现如下7项操作功能:预期功能实现方案R0 ←1234 数据开关拨1234,B地址给0,D+0,结果送B口选的R0R9 ←789F 数据开关拨789F,B地址给9,D+0,结果送B口选的R9 R9 ←R9-R0 B地址9,A地址给0,最低位进位给1,B-A,结果送B 口选的R9R0 ←R0+1 B地址给0,最低位进位给1,B+0,结果送B口选的R0 R10←R0 B地址给A,A地址给0,A+0,结果送B口选的R10逻辑右移在有了预期功能和实现方案之后,要解决的具体问题,就是依据教学计算机的简明操作卡中的有关表格中规定的内容,找出实现每一操作功能要用到的控制码。
请把表2-3中各组控制信号的正确的取值填写在相应位置,然后把运行结果的状态信息填入表2-4。
思考题:执行R0+1时,为什么输出Y15-Y0为1234,而不是1235?左右移位时,是通用寄存器本身移位,还是它与Q寄存器联合移位是怎么区分的?最高、最低位的移位输入信号是怎么给出的?C在移位中有什么作用?联机的运算器实验,改用教学计算机的指令实现上述脱机运算器实验完成的功能。
计算机组成原理--实验二算术逻辑运算实验

计算机组成原理--实验⼆算术逻辑运算实验实验⼆算术逻辑运算实验⼀、实验⽬的(1)了解运算器芯⽚(74LS181)的逻辑功能。
(2)掌握运算器数据的载⼊、读取⽅法,掌握运算器⼯作模式的设置。
(3)观察在不同⼯作模式下数据运算的规则。
⼆、实验原理1.运算器芯⽚(74LS181)的逻辑功能74LS181是⼀种数据宽度为4个⼆进制位的多功能运算器芯⽚,封装在壳中,封装形式如图2-3所⽰。
5V A1 B1 A2 B2 A3 B3 Cn4 F3BO A0 S3 S2 S1 S0 Cn M F0 F1 F2 GND图2-374LS181封装图主要引脚有:(1)A0—A3:第⼀组操作数据输⼊端。
(2)B0—B3:第⼆组操作数据输⼊端。
(3)F0—F3:操作结果数据输⼊端。
(4)F0—F3:操作功能控制端。
(5)Cn:低端进位接收端。
(6)(7)M:算数/逻辑功能控制端。
芯⽚的逻辑功能见表2-1.从表中可以看到当控制端S0—S3为1001、M为0、Cn为1时,操作结果数据输出端F0—F3上的数据等于第⼀组操作数据输⼊端A0—A3上的数据加第⼆组操作数据输⼊端B0—B3上的数据。
当S0—S3、M、Cn上控制信号电平不同时,74LS181芯⽚完成不同功能的逻辑运算操作或算数运算操作。
在加法运算操作时,Cn、Cn4进位信号低电平有效;减法运算操作时,Cn、Cn4借位信号⾼电平有效;⽽逻辑运算操作时,Cn、进位信号⽆意义。
2.运算器实验逻辑电路试验台运算器实验逻辑电路中,两⽚74LS181芯⽚构成⼀个长度为8位的运算器,两⽚74LS181分别作为第⼀操作数据寄存器和第⼆操作数据寄存器,⼀⽚74LS254作为操作结果数据输出缓冲器,逻辑结构如图2-4所⽰。
途中算术运算操作时的进位Cy 判别进位指⽰电路;判零Zi和零标志电路指⽰电路,将在实验三中使⽤。
第⼀操作数据由B-DA1(BUS TO DATA1)负脉冲控制信号送⼊名为DA1的第⼀操作数据寄存器,第⼆操作数据由B-DA2(BUS TO DATA2)负脉冲控制信号送⼊名为DA2的第⼆操作数据寄存器。
实验二运算器实验

实验二运算器实验实验二运算器am2901实验该实验操作不需用到电脑,不需实现电脑和实验箱的连接,操作全部在实验箱上完成。
实验过程当中,必须认真展开,避免损毁设备,分析可能将碰到的各种现象,推论结果与否恰当,记录运转结果。
实验目的:1、深入细致介绍am2901运算芯片的功能、结构;2、深入细致介绍4片am2901的级联方式;3、深化运算器部件的组成、设计、控制与使用等知识。
教学计算机的运算器部件主体由4片4位的运算器芯片am2901彼此串联形成,它输入16位的数据运算的结果(用y则表示)和4个结果特征位(用cy,f=0000,over,f15则表示)。
它的输出(用d则表示)就可以源自于内部总线。
确定运算器运算的数据来源、运算功能、结果处置,需要使用控制器提供的i8~i0、b3~b0、a3~a0共17个信号。
运算器的输入轻易相连接至地址寄存器ar的输出插槽,用作提供更多地址总线的信息来源。
运算器的输入还经过两个8位的244器件的掌控(采用dc1译码器的ytoib#信号)被送至内部总线ib,用作把运算器中的数据或者运算结果载入内存储器或者输入输出USB芯片。
运算器产生的4个结果特征位的信息需要保存,为此设置一个4位的标志寄存器flag,用于保存这4个结果特征信息,标志寄存器的输出分别用c、z、v、s表示。
控制标志寄存器何时和如何接收送给它的信息,需要使用控制器提供的sst2~sst0三位信号。
运算器还须要按照指令继续执行的建议,正确地获得最高位的位次输出信号,最高位和最低位的移位输出信号,为此须要布局另一个shift的线路,在控制器提供更多的ssh和sci1~sci0三位信号的掌控下,产生运算器最高位的位次输出信号,最高位和最低位的移位输出信号。
相关器件:4片am2901(alu)两片ar(74ls374)一片flag(gal20v8)一片shift(gal20v8)2片244(alutoib,74ls244)2个12位微动开关(红色)3个手动掌控信号内存芯片(hand,74ls240)am2901芯片的结构和功能:参考教材附录部分芯片具体内容线路表明:1、芯片输出受oe#信号控制,仅当其为低电平时,才有y值正常逻辑信号输出,否则输出为高阻态。
运算器实验

成绩:计算机原理实验室实验报告课程:计算机组成原理姓名:专业:网络工程学号:日期:2016年11月太原工业学院计算机工程系实验一:运算器实验实验环境PC机+Win 7+proteus仿真器实验日期2016.11.29 一.实验内容1.熟悉proteus仿真系统2.设计并验证4位算数逻辑单元的功能3.实现输入输出锁存4.实现8位算数逻辑单元二.理论分析或算法分析74181ALU功能表:三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等) S3S2S1S0=1011A=11111111,B=11111111 M=1,F=ABA02A123A221A319B01B122B220B318CN 7S06S15S24S33M 8F09F110F211F313A=B 14CN+416G 17P15H474LS181SW1SW-SPDTSW2SW-SPDTSW3SW-SPDTSW4SW-SPDTSW5SW-SPDTSW6SW-SPDTSW7SW-SPDTSW8SW-SPDTSW9SW-SPDTSW10SW-SPDTSW11SW-SPDTSW12SW-SPDTSW13SW-SPDTD1LED-REDD2LED-REDD3LED-REDD4LED-REDSW14SW-SPDTA02A123A221A319B01B122B220B318CN 7S06S15S24S33M 8F09F110F211F313A=B 14CN+416G 17P15U174LS181SW15SW-SPDTSW16SW-SPDTSW17SW-SPDTSW18SW-SPDTSW19SW-SPDTSW20SW-SPDTSW21SW-SPDTSW22SW-SPDTD5LED-REDD6LED-REDD7LED-REDD8LED-REDM=0,CN=1,F=AB-1A02A123A221A319B01B122B220B318CN 7S06S15S24S33M 8F09F110F211F313A=B 14CN+416G 17P15H474LS181SW1SW-SPDTSW2SW-SPDTSW3SW-SPDTSW4SW-SPDTSW5SW-SPDTSW6SW-SPDTSW7SW-SPDTSW8SW-SPDTSW9SW-SPDTSW10SW-SPDTSW11SW-SPDTSW12SW-SPDTSW13SW-SPDTD1LED-REDD2LED-REDD3LED-REDD4LED-REDSW14SW-SPDTA02A123A221A319B01B122B220B318CN 7S06S15S24S33M 8F09F110F211F313A=B 14CN+416G 17P15U174LS181SW15SW-SPDTSW16SW-SPDTSW17SW-SPDTSW18SW-SPDTSW19SW-SPDTSW20SW-SPDTSW21SW-SPDTSW22SW-SPDTD5LED-REDD6LED-REDD7LED-REDD8LED-REDM=0,CN=0,F=ABA02A123A221A319B01B122B220B318CN 7S06S15S24S33M 8F09F110F211F313A=B 14CN+416G 17P15H474LS181SW1SW-SPDTSW2SW-SPDTSW3SW-SPDTSW4SW-SPDTSW5SW-SPDTSW6SW-SPDTSW7SW-SPDTSW8SW-SPDTSW9SW-SPDTSW10SW-SPDTSW11SW-SPDTSW12SW-SPDTSW13SW-SPDTD1LED-REDD2LED-REDD3LED-REDD4LED-REDSW14SW-SPDTA02A123A221A319B01B122B220B318CN 7S06S15S24S33M 8F09F110F211F313A=B 14CN+416G 17P15U174LS181SW15SW-SPDTSW16SW-SPDTSW17SW-SPDTSW18SW-SPDTSW19SW-SPDTSW20SW-SPDTSW21SW-SPDTSW22SW-SPDTD5LED-REDD6LED-REDD7LED-REDD8LED-RED四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等) 验证了基本要求,实现了8位算数逻辑单元功能,是算术与逻辑运算的选择端决定了ALU 进行那类运算,S0, S1,S2,S3是功能选择控制端,决定是做加、减、逻辑与、逻辑或、逻辑异或等运算,表一的实验结果与手工验算完全一致,从而验正了整个ALU 的算术/逻辑运算功能和进位处理功能。
计算机组成原理实验exp_2(运算器 ── 进位控制实验)

实验二运算器──进位控制实验一实验目的(1) 验证带进位控制的算术运算功能发生器的功能;(2) 按指定数据完成几种指定的算术运算。
二实验设备TDN-CM++计算机组成原理教学实验系统一台,排线若干。
三实验内容进位控制运算器的实验原理如图3所示,在算术逻辑运算实验的基础上增加进位控制部分,其中74181的进位进入一个7474锁存器,其写入是由T4和AR信号控制,T4是脉冲信号,实验时将T4连至STA TE UNIT的微动开关KK2上。
AR是电平控制信号(低电平有效),可用于实现带进位控制实验,而T4脉冲是将本次运算的进位结果锁存到进位锁存器中。
图 3 进位控制实验原理图线四实验步骤(1) 按图4连接实验线路,仔细查线无误后,接通电源。
(2) 用二进制数码开关向DR1和DR2寄存器置数,具体方法:图 4 进位控制实验接线图线① 关闭ALU 输出三态门(ALU-B=1),开启输入三态门(SW-B=0),设置数据开关; ② 例如向DR 1存入01010101,向DR 2存入10101010。
具体操作步骤如下:(3) 关闭输入三态门(SW-B=1),开启ALU 输出三态门(ALU-B=0)。
(4) 进位标志清零具体操作方法如下:实验板中SWITCH UNIT 单元中的CLR 开关为标志CY ,ZI 的清零开关,它为零时是清零状态,所以依次将开关做1→0→1操作,即可使标志位清零。
注:进位标志指示灯CY 亮时表示进位标志为“0”,无进位:标志指示灯CY 灭时表示进位为“1”,有进位.(5) 验证带进位运算及进位锁存功能,使Cn=1,AR=0来进行带进位算术运算。
数据开关 (01010101) 三态门 寄存器DR 1 (01010101) 数据开关寄存器DR 2 (10101010) LDDR 1=1 LDDR 2=0 T4=ALU-B=1 SW-B=0LDDR 1=0 LDDR 2=1 T4= 关寄存器 LDDR 1=0 LDDR 2=0例如:做加法运算,首先向DR1,DR2置数,然后使ALU-B=0,S3S2S1S0M状态为10010,此时数据总线上显示的数据为DR1加DR2加当前进位标志,这个结果是否产生进位,则要按动微动开关KK2,若进位标志灯亮,表示无进位;反之,有进位。
实验二脱机运算器实验实验解读

实验二脱机运算器实验实验目的深入了解AM2901运算器的功能与具体用法,2片AM2901的级连方式:深化运算器部件的组成、设计、控制与使用等诸项知识.实验说明脱机运算器实验,是指让运算器从教学计算机整机中脱离出来,此时,它的全部控制信号均需通过两个12位的微型开关来提供,这就谈不上执行指令,只能通过开关、按键等控制教学机的运算器完成指定的运算功能,并通过指示订观察运算结果.下面先把前边讲过的、与该实验直接有关的结论性内容汇总如下.12位微型开关的具体控制功能分配如下:A口、B口地址:送给AM2901器件用于选择源与目的操作数的寄存器编号;I0—I8:选择操作数来源、运算操作功能、选操作数处理结果和运算器输出内容的3组3位的控制:SCI,SSH,和SST:用于确定运算器最低位的进位输入、移位信号的入/出和怎样处理AM2901产生的状态标志位的结果.最低位的移位输入信号Cin:状态寄存器的接收与保持最高、最低位的移位输入信号的形成逻辑注:表中的X表示不必处理、不必过问该位的取值;当通用寄存器本身移位时,Q寄存器不受影响;乘除运算要求实现通用寄存器与Q寄存器联合移位、没有Q寄存器单独移位功能.实验内容1.选择运算器要完成的一项运算功能,包括数据来源,运算功能,结果保存等;2.将实验台上两个红色的微型开关左边的短路子的任意一个或两个短接:将三个控制开关置成1XX(即处于单步状态);先同时按下“RESET”和“STEP”按键,松开后再按一下“STEP”按键,进行初始化.3.通过两个12位的红色微型开关向运算器提供控制信号,必要时通过8位数据开关向运算器提供数据.4,每按一次“STEP”键,结束一步操作,通过指示灯观察运算结果及状态标志。
观察ALU的运算结果应在按STEP键之前,观察标志寄存器结果在按STEP键之后。
5。
接下来,按下表所列的操作在八位机上进行运算器脱机实验,其中Dl取值为01H,D2取值为10H,将结果填入表中:实验要求1.实验之前认真预习,写出预习报告,包括操作步骤,实验过程所用数据和运行结果等,否则实验效率会很低,所学到的内容也会大受影响;2.实验过程当中,要仔细进行,防止损坏设备,分析可能遇到的各种现象,判断结果是否正确,记录运行结果;3.实验之后,认真写出实验作业报告,包括对遇到的各种现象的分折,实验步骤和实验结果,自己在这次实验的心得体会与收获等.参考答案。
实验2 运算器 实验报告

实验2 运算器实验报告一、实验目的本次实验的主要目的是深入了解运算器的工作原理和功能,通过实际操作和观察,掌握运算器在计算机系统中的重要作用,提高对计算机硬件结构的理解和认识。
二、实验设备本次实验使用了以下设备:1、计算机一台,配置为_____处理器、_____内存、_____硬盘。
2、实验软件:_____。
三、实验原理运算器是计算机中执行算术和逻辑运算的部件。
它主要由算术逻辑单元(ALU)、寄存器、数据通路和控制电路等组成。
算术逻辑单元(ALU)能够进行加、减、乘、除等算术运算,以及与、或、非、异或等逻辑运算。
寄存器用于暂存操作数和运算结果,数据通路负责在各个部件之间传输数据,控制电路则根据指令控制运算器的操作。
在运算过程中,数据从寄存器或内存中读取,经过 ALU 处理后,结果再存回寄存器或内存中。
四、实验内容与步骤(一)加法运算实验1、打开实验软件,进入运算器实验界面。
2、在操作数输入框中分别输入两个整数,例如 5 和 10。
3、点击“加法”按钮,观察运算结果显示框中的数值。
4、重复上述步骤,输入不同的操作数,验证加法运算的正确性。
(二)减法运算实验1、在实验界面中,输入被减数和减数,例如 15 和 8。
2、点击“减法”按钮,查看结果是否正确。
3、尝试输入负数作为操作数,观察减法运算的处理方式。
(三)乘法运算实验1、输入两个整数作为乘数和被乘数,例如 3 和 7。
2、启动乘法运算功能,检查结果的准确性。
3、对较大的数值进行乘法运算,观察运算时间和结果。
(四)除法运算实验1、给定被除数和除数,如 20 和 4。
2、执行除法运算,查看商和余数的显示。
3、尝试除数为 0 的情况,观察系统的处理方式。
(五)逻辑运算实验1、分别进行与、或、非、异或等逻辑运算,输入相应的操作数。
2、观察逻辑运算的结果,理解不同逻辑运算的特点和用途。
五、实验结果与分析(一)加法运算结果通过多次输入不同的操作数进行加法运算,结果均准确无误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二运算器的实验
一、实验目的
了解模型机中算术、逻辑运算单元的控制方法。
二、实验要求
利用COP2000实验仪的K16..K23开关做为DBUS数据,其它开关做为控制信号,将数据写累加器A和工作寄存器W,并用开关控制ALU的运算方式,实现运算器的功能。
三、实验说明
COP2000中的运算器由一片可编程芯片EPLD实现。
有8种运算, 通过S2,S1,S0来选择。
运算数据由寄存器A及寄存器W给出, 运算结果输出到哪里?(在哪里显示的)。
根据不同的S2 S1 S0 实现8种运算
加减或与带进位加带进位减A取反输出A
注意:是否需要时钟?
四、实验过程
(1
(2)实验数据
将55H写入A寄存器
按住CLOCK脉冲键,CLOCK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A 寄存器。
放开CLOCK键,CLOCK由低变高,产生一个上升沿,数据55H被写入A寄存器。
将33H写入W寄存器
按住CLOCK脉冲键,CLOCK由高变低,这时寄存器W的黄色选择指示灯亮,表明选择W 寄存器。
放开CLOCK键,CLOCK由低变高,产生一个上升沿,数据33H被写入W寄存器。
五、实验感想。