高中物理碰撞习题
高中生碰撞测试题及答案

高中生碰撞测试题及答案一、选择题(每题2分,共20分)1. 根据牛顿第一定律,物体在不受外力作用时将保持()状态。
A. 静止B. 匀速直线运动C. 静止或匀速直线运动D. 变速运动答案:C2. 一个物体的动量是()。
A. 物体的质量与速度的乘积B. 物体的质量与加速度的乘积C. 物体的质量与位移的乘积D. 物体的质量与力的乘积答案:A3. 以下哪项是描述物体运动状态的物理量?()A. 质量B. 速度C. 密度D. 温度答案:B4. 一个物体从静止开始做匀加速直线运动,若初速度为零,加速度为a,则在时间t内,物体的位移s与时间t的关系是()。
A. s = 0.5at^2B. s = at^2C. s = atD. s = 2at答案:A5. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
若作用力增大到原来的两倍,物体的质量不变,则物体的加速度将()。
A. 增大到原来的两倍B. 减小到原来的一半C. 保持不变D. 无法确定答案:A6. 一个物体在水平面上做匀速直线运动,若摩擦力增大,则物体的运动状态将()。
A. 保持不变B. 速度增大C. 速度减小D. 停止运动答案:C7. 根据能量守恒定律,一个物体在没有外力作用的情况下,其机械能()。
A. 会增加B. 会减少C. 保持不变D. 无法确定答案:C8. 一个物体在竖直方向上做自由落体运动,其加速度是()。
A. 向上的B. 向下的C. 为零D. 无法确定答案:B9. 一个物体在水平面上做匀速圆周运动,其向心力的方向是()。
A. 指向圆心B. 指向圆外C. 与速度方向相同D. 与速度方向相反答案:A10. 根据牛顿第三定律,作用力和反作用力的大小()。
A. 相等B. 不相等C. 相等但方向相反D. 无法确定答案:C二、填空题(每题2分,共20分)1. 牛顿第一定律也被称为______定律。
答案:惯性2. 物体的动量等于其质量与______的乘积。
人教版2020高中物理 第一章 碰撞与动量守恒 动量守恒定律的应用(碰撞)习题(提高篇)教科版选修3-5

动量守恒定律的应用(碰撞)一、选择题1.质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列哪个或哪些说法是可能发生的?().A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2C.m0的速度不变,M、m的速度都变为v',且满足Mv=(M+m)v'D.M、m0、m速度均发生变化,M和m0速度都变为v,m速度变为v2,而且满足(M+m)v0=(M+m0)v1+mv22.A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移一时间图象(s-t图象)如图中ADC和BDC所示.由图可知,物体A、B的质量之比为().A.1∶1 B.1∶2 C.1∶3 D.3∶13.三个相同的木块A、B、C从同一高度处自由下落,其中木块A刚开始下落的瞬间被水平飞来的子弹击中,木块B在下落到一定高度时,才被水平飞来的子弹击中.若子弹均留在木块中,则三木块下落的时间t A、t B、t C的关系是().A.t A<t B<t C B.t A>t B>t C C.t A=t C<t B D.t A=t B<t C4.如图所示,木块A和B质量均为2 kg,置于光滑水平面上,B与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当A以4 m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为().A.4 J B.8 J C.16 J D.32 J5.如图所示,有两个质量相同的小球A和B(大小不计),A球用细绳吊起,细绳长度等于悬点距地面的高度,B点静止放于悬点正下方的地面上.现将A球拉到距地面高度为h处由静止释放,摆动到最低点与B球碰撞后粘在起共同上摆,则它们升起的最大高度为().A .h /2B .hC .h /4D .h /26.在光滑水平面上,动能为0E 、动量的大小为0P 的小钢球l 与静止小钢球2发生碰撞.碰撞前后球l 的运动方向相反.将碰撞后球l 的动能和动量的大小分别记为1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有( ). A .1E <0E B .1P <0PC .2E >0ED .2P >2P7.甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是=5kg m/s P ⋅甲、=7kg m/s P ⋅乙,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10kg m/s ⋅。
高考物理 碰撞与动量守恒 经典题目

碰撞与动量守恒例83:如图所示,位于光滑水平桌面上的小滑块A 和B 都可视作质点,质量相等。
B 与轻质弹簧相连。
设B 静止,A 以某一初速度向B 运动并与弹簧发生碰撞。
在整个碰撞过程中,弹簧具有的最大弹性势能等于( )A. A 的初动能B. A 的初动能的1/2C. A 的初动能的1/3D. A 的初动能的1/4练习83、如图所示,在光滑的水平面上放着质量不相等,大小相同的两个物块,开始物体乙静止,在乙上系有一个轻质弹簧。
物块甲以速度v 向乙运动。
甲与轻质弹簧接触后连在一起,继续在水平面上运动。
在运动过程中( )A .当两者速度相同的瞬间,弹簧一定压缩量最大B .当两者速度相同的瞬间,弹簧可能伸长最大C .当一物块静止的瞬间,另一物块的速度一定为vD .系统的机械能守恒,动量也守恒练习85、如图所示,在光滑的水平面上有一质量为25kg 的小车B ,上面放一个质量为15kg 的物体,物体与车间的滑动摩擦系数为0.2。
另有一辆质量为20kg 的小车A 以3m/s 的速度向前运动。
A 与B 相碰后连在一起,物体一直在B 车上滑动。
求:(1)当车与物体以相同的速度前进时的速度。
(2)物体在B 车上滑动的距离。
例86:如图所示的装置中,质量为1.99kg 的木块B 与水平桌面间的接触是光滑的,质量为10g 的子弹A 以103m/s 的速度沿水平方向射入木块后留在木块内,将弹簧压缩到最短,求弹性势能的最大值。
22.(8分)如图2所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.小木块A 以速度v 0=10 m/s 由滑板B 左端开始沿滑板B 表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m/s 2.求: A B 甲 乙 v 0 A B(1)弹簧被压缩到最短时木块A的速度;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.练习86、如图所示,两个质量都为M的木块A、B用轻质弹簧相连放在光滑的水平地面上,一颗质量为m的子弹以速度v射向A块并嵌在其中,求弹簧被压缩后的最大弹性势能。
碰撞练习题

一、选择题1. 两个物体发生碰撞,下列哪种情况下,碰撞是弹性碰撞?A. 两个物体的速度都变为零B. 两个物体的动能守恒C. 两个物体碰撞后仍保持相对静止D. 两个物体的速度方向发生改变但大小不变2. 下列哪个公式描述了动量守恒定律?A. F = maB. p = mvC. E = mc²D. Δp = FΔt3. 两个质量分别为m1和m2的物体发生完全非弹性碰撞,碰撞后它们的共同速度为v,则碰撞前两物体的速度分别为:A. v1 = m1v, v2 = m2vB. v1 = m2v, v2 = m1vC. v1 = (m1 + m2)v / m1, v2 = (m1 + m2)v / m2D. v1 = (m1 + m2)v / m2, v2 = (m1 + m2)v / m14. 下列哪种情况下,碰撞过程中动能不守恒?A. 弹性碰撞B. 完全非弹性碰撞C. 弹性碰撞和非弹性碰撞D. 碰撞过程中没有外力作用5. 两个质量分别为m1和m2的物体发生碰撞,碰撞前速度分别为v1和v2,碰撞后速度分别为v1'和v2',则动量守恒定律可以表示为:A. m1v1 + m2v2 = m1v1' + m2v2'B. m1v1 m2v2 = m1v1' m2v2'C. m1v1 + m2v2 = m1v1' m2v2'D. m1v1 m2v2 = m1v1' + m2v2'二、填空题1. 碰撞过程中,动量守恒定律的数学表达式为:______。
2. 弹性碰撞中,动能守恒定律的数学表达式为:______。
3. 完全非弹性碰撞中,两个物体的共同速度为______。
4. 碰撞过程中,如果两个物体的质量相等,则它们的速度变化量______。
5. 碰撞过程中,如果两个物体的速度方向相反,则它们的动量大小______。
三、计算题1. 两个质量分别为2kg和3kg的物体发生弹性碰撞,碰撞前速度分别为5m/s和3m/s,求碰撞后两个物体的速度。
5 弹性碰撞和非弹性碰撞 习题 高中物理人教版选择性必修第一册

第一章 动量守恒定律5 弹性碰撞和非弹性碰撞1.如图所示,相同A 、B 两球之间系着一根不计质量的弹簧,放在光滑的水平面上,A 球紧靠竖直墙壁.现用半径相同的小球C 与B 相碰后粘在一起压缩弹簧,不计空气阻力,从C 与B 碰撞到弹簧压缩最短的过程中,下列说法正确的是( )A .B 、C 两个小球组成系统的动量不守恒、机械能不守恒B .A 、B 、C 三个小球组成系统的动量守恒、机械能守恒C .A 、B 、C 三个小球组成系统的动量不守恒、机械能守恒D .B 、C 两个小球组成系统的动量守恒、机械能不守恒2.甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示.已知甲的质量为1 kg ,则碰撞过程两物块损失的机械能为( )A .3 JB .4 JC .5 JD .6 J3.质量相等的三个物块在一光滑水平面上排成一直线,且彼此隔开了一定的距离,如图所示.具有动能E 0的第1个物块向右运动,依次与其余两个静止物块发生碰撞,最后这三个物块粘在一起,这个整体的动能为( )A .E 0B .2E 03C .E 03D .E 094.冰壶运动深受观众喜爱,图1为运动员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2.若两冰壶质量相等,则碰后两冰壶最终停止的位置可能是图中的()A B C D5.如图所示,在光滑水平面上,有A、B两个小球沿同一直线向右运动,若取向右为正方向,两球的动量分别是p A=5.0 kg·m/s,p B=7.0 kg·m/s.已知二者发生正碰,则碰后两球动量的增量Δp A和Δp B可能是()A.Δp A=-3.0 kg·m/s;Δp B=3.0 kg·m/sB.Δp A=3.0 kg·m/s;Δp B=3.0 kg·m/sC.Δp A=3.0 kg·m/s;Δp B=-3.0 kg·m/sD.Δp A=-10 kg·m/s;Δp B=10 kg·m/s6.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶107.如图所示,某次比赛中运动员正在准备击球,设在运动员这一杆中,白色球(主球)和花色球碰撞前、后都在同一直线上运动,碰前白色球的动量p A=5 kg·m/s,花色球B静止,白色球A与花色球B发生碰撞后,花色球B的动量变为p B′=4 kg·m/s,则两球质量m A与m B 间的关系可能是()A .mB =m AB .m B =14m AC .m B =16m AD .m B =6m A8.(2024年济南期末)如图所示,质量为m 的薄板与直立轻弹簧的上端连接,弹簧下端固定在水平面上,O 为自然伸长位置.平衡时,弹簧的压缩量为x .一质量为m 的物块P 从距薄板正上方3x 的A 处自由落下,打在薄板上立刻与薄板一起向下运动,它们到达最低点后又向上运动,恰能回到O 点.若把物块P 换成物块Q ,仍从A 处自由落下,碰后二者仍然一起向下运动,且不粘连,又向上运动时物块Q 到达的最高点比O 点高x 2.不计空气阻力,物块Q 的质量为( )A .2mB .2mC .3mD .4m9.(2024年汕尾期末)在一起交通事故中,一辆货车追尾前面轿车致使两车嵌在一起滑行了19.6 m 才停下.事后交警通过调取轿车的行车记录仪发现被追尾前轿车的速度v 1=36 km/h.若两车在地面滑行时与地面间的动摩擦因数均为0.5,碰撞后两车的发动机均停止工作,轿车的质量m 1=1 t ,货车的质量m 2=3 t ,重力加速度g 取10 m/s 2.(1)求两车碰撞后开始滑行时的速度大小;(2)若两车碰撞时间极短,求碰撞前货车的速度v 2大小;(3)若两车碰撞时间持续0.1 s ,轿车驾驶员的质量为70 kg ,求撞击过程中,轿车驾驶员受到的汽车水平方向的平均作用力的大小和方向.答案解析1、【答案】A 【解析】 C 与B 相碰过程中,由于时间极短,位移为零,弹簧没有弹力,所以此C 与B 组成的系统动量守恒,但动能损失最大,所以机械能不守恒;C 与B 一起压缩弹簧过程中,C 与B 组成的系统受弹力作用,动量不守恒,机械能守恒.所以整个过程,C 与B 组成的系统动量不守恒,机械能不守恒,A 、B 、C 三个小球组成系统的动量不守恒、机械能不守恒,所以A 正确.2、【答案】A 【解析】设甲的质量为m ,乙的质量为M ,碰撞前甲、乙的速度大小分别为v 1和v 2,碰撞后甲、乙的速度大小分别为v 3和v 4,碰撞过程中动量守恒,则m v 1+M v 2=m v 3+M v 4,解得M =6 kg ,则碰撞过程两物块损失的机械能ΔE =12m v 21+12M v 22-12m v 23-12M v 24=3 J ,故A 正确,B 、C 、D 错误.3、【答案】C 【解析】由碰撞中动量守恒m v 0=3m v 1,得v 1=v 03,第1个物块具有的动能E 0=12m v 20,则整块的动能为E k ′=12×3m v 21=12×3m (v 03)2=13×(12m v 20)=E 03,故C 正确. 4、【答案】B 【解析】若两球不是对心碰撞,则两球可能在垂直于甲的初速度方向上均发生移位,但垂直于甲初速度方向上应保证动量为零,碰撞后在垂直于甲的初速度方向上两冰壶应向相反方向运动,由A 所示可知,两壶碰撞后向垂直于甲初速度方向的同侧滑动,不符合动量守恒定律,故A 错误;如果两冰壶发生弹性碰撞,碰撞过程动量守恒、机械能守恒,两冰壶质量相等,碰撞后两冰壶交换速度,甲静止,乙的速度等于甲的速度,碰后乙做减速运动,最后停止,由图示可知,B 正确,C 、D 错误.5、【答案】A 【解析】根据碰撞过程动量守恒,如果Δp A =-3 kg·m/s 、Δp B =3 kg·m/s ,则碰后两球的动量分别为p A ′=2 kg·m/s 、p B ′=10 kg·m/s ,根据碰撞过程总动能不增加,是可能发生的,故A 正确.两球碰撞过程,系统的动量守恒,两球动量变化量应大小相等,方向相反,若Δp A =3 kg·m/s ,则Δp B =-3 kg·m/s ,B 选项违反了动量守恒定律,不可能,故B 错误.根据碰撞过程动量守恒定律,如果Δp A =3 kg·m/s 、Δp B =-3 kg·m/s ,所以碰后两球的动量分别为p A ′=8 kg·m/s 、p B ′=4 kg·m/s ,由题可知,碰撞后,两球的动量方向都与原来方向相同,A 的动量不可能沿原方向增大,与实际运动不符,故C 错误.如果Δp A =-10 kg·m/s 、Δp B =10 kg·m/s ,则碰后两球的动量分别为p A ′=-5 kg·m/s 、p B ′=17 kg·m/s ,可以看出,碰撞后A 的动能不变,而B 的动能增大,违反了能量守恒定律,故D 错误.6、【答案】A 【解析】两球碰撞过程,系统不受外力,故碰撞过程系统总动量守恒.同时考虑实际情况,碰撞前,后面的球速度大于前面球的速度.规定向右为正方向,碰撞前A 、B 两球的动量均为6 kg·m/s ,说明A 、B 两球的速度方向向右,两球质量关系为m B =2m A ,所以碰撞前v A >v B ,所以左方是A 球.碰撞后A 球的动量增量为-4 kg·m/s ,所以碰撞后A 球的动量是2 kg·m/s ,碰撞过程系统总动量守恒m A v A +m B v B =-m A v A ′+m B v B ′,所以碰撞后B 球的动量是10 kg·m/s ,根据m B =2m A ,所以碰撞后A 、B 两球速度大小之比为2∶5,A 正确.7、【答案】A 【解析】由动量守恒定律得p A +p B =p A ′+p B ′,解得p A ′=1 kg·m/s ,根据碰撞过程中总动能不增加,则有p 2A 2m A ≥p A ′22m A +p B ′22m B ,代入数据解得m B ≥23m A .碰后两球同向运动,白色球A 的速度不大于花色球B 的速度,则p A ′m A ≤p B ′m B ,解得m B ≤4m A ,综上可得23m A ≤m B ≤4m A ,A 正确.8、【答案】B 【解析】物块由A 点下落过程机械能守恒,由机械能守恒定律可得mg ·3x =12m v 20,解得碰前物块的速度v 0=6gx ,物块与钢板碰撞过程系统动量守恒,以向下为正方向,由动量守恒定律得m v 0=2m v 1,解得v 1=126gx ,碰撞后只有重力、弹力做功,机械能守恒,设弹性势能为E P ,由机械能守恒定律得E p +12·2m v 21=2mgx ,解得E p =12mgx .物块Q 下落过程机械能守恒,由机械能守恒定律得m ′g ·3x =12m ′v 20,解得v 0=6gx ,碰撞过程中动量守恒,以向下为正方向,由动量守恒定律得m ′v 0=(m +m ′)v 2,以后物和钢板一起压缩弹簧又回到O 点过程中机械能守恒,设回到O 点时速度为v 3,由机械能守恒定律得E p +12·(m +m ′)v 22=(m +m ′)gx +12·(m +m ′)v 23,在O 点物块与钢板分离,做竖直上抛运动,上升高度x 2=v 232g,联立解得m ′=2m ,故选B . 9、解:(1)两车碰撞后一起做匀减速直线运动,滑行位移s =19.6 m ,由牛顿第二定律得μ(m 1+m 2)g =(m 1+m 2)a , 由匀变速直线运动规律得s =12at 2,v =at , 解得v =14 m/s.(2)两车碰撞的过程动量守恒,碰前货车的速度为v 2,轿车的速度为v 1,则 m 1v 1+m 2v 2=(m 1+m 2)v ,解得v 2=463m/s ≈15.3 m/s. (3)碰撞过程中,对轿车驾驶员在水平方向上进行分析,根据动量定理,设前进方向为正方向,则有F Δt =m (v -v 1),解得F=2 800 N,方向与前进方向相同.。
高中物理碰撞习题

《弹性碰撞》练习精选班姓名1.卢瑟福(诺贝尔物理奖得主)在一篇文章中写道:可以预言,当α粒子与氢原子相碰时,可使之迅速运动起来。
按正碰撞考虑很容易证明,氢原子速度可达α粒子碰撞前速度的1.6倍,即占入射粒子能量的64%。
试证明此结论(碰撞是完全弹性的,且α粒子质量接近氢原子质量的四倍)。
2.一质量为m钢球静止在质量为M铁箱的光滑底面上,如图示。
CD长L,铁箱与地面间无摩擦。
铁箱被v时开始做匀速直线运动。
后来箱壁与钢球发生弹性碰撞。
问碰后再经过多长加速至时间钢球与BD壁相碰。
3.在一铅直面内有一光滑的轨道,轨道左边是光滑弧线,右边是足够长的水平直线。
现有质量分别为m A和m B的两个质点,B在水平轨道上静止,A在高h处自静止滑下,与B发生弹性碰撞,碰后A仍可返回到弧线的某一高度上,并再度滑下。
求A,B至少发生两次碰撞的条件。
4.如图所示,半径为R 的光滑圆形轨道固定在竖直平面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 41,碰撞中无机械能损失.重力加速度为g 。
试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。
(06年高考重庆卷第25题,20分)5.某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如题25图所示用完全相同的轻绳将N 个大小相同、质量不等的小球并列悬挂于一水平杆、球间有微小间隔,从左到右,球的编号依次为1、2、3……N ,球的质量依次递减,每球质量与其相邻左球质量之比为k (k <1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损失的正碰.(不计空气阻力,忽略绳的伸长,g取10 m/s 2)。
高中物理专题训练含答案-36--碰撞问题

36 碰撞问题【核心考点提示】一、碰撞过程的分类1.弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失. 弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,12m 1v 21=12m 1v 1′2+12m 2v 2′2. 碰后两个小球的速度分别为:v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1(1)若m 1≫m 2,v 1′≈v 1,v 2′≈2v 1,表示m 1的速度不变,m 2以2v 1的速度被撞出去.(2)若m 1≪m 2,v 1′≈-v 1,v 2′≈0,表示m 1被反向以原速率弹回,而m 2仍静止.(3)若m 1=m 2,则有v 1′=0,v 2′=v 1,即碰撞后两球速度互换.2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失.非弹性碰撞遵守动量守恒,能量关系为:12m 1v 21+12m 2v 22>12m 1v 1′2+12m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为ΔE km =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2 二、碰撞过程的制约通常有如下三种因素制约着碰撞过程.1.动量制约:即碰撞过程必须受到动量守恒定律的制约;2.动能制约:即碰撞过程,碰撞双方的总动能不会增加;3.运动制约:即碰撞过程还将受到运动的合理性要求的制约.比如,某物体匀速运动,被后面物体追上并碰撞后,其运动速度只会增大而不会减小.再比如,碰撞后,后面的物体速度不能超过前面的物体.【训练】(多选)如图1,两个物体1和2在光滑水平面上以相同动能相向运动,它们的质量分别为m 1和m2,且m1< m2.经一段时间两物体相碰撞并粘在一起.碰撞后()A.两物体将向左运动B.两物体将向右运动C.两物体组成的系统损失能量最小D.两物体组成的系统损失能量最大【解析】根据p2=2mE k,结合m1<m2,知p1<p2,故系统总动量向左,根据动量守恒知碰后两物体将向左运动,所以A正确,B错误;由题意知两物体属于完全非弹性碰撞,损失动能最大,所以C错误,D正确.【答案】AD如图所示,A、B两小球在光滑水平面上分别以动量p1=4 kg·m/s和p2=6 kg·m/s(向右为参考正方向)做匀速直线运动,则在A球追上B球并与之碰撞的过程中,两小球的动量变化量Δp1和Δp2可能分别为()A.-2 kg·m/s, 3 kg·m/sB.-8 kg·m/s, 8 kg·m/sC.1 kg·m/s, -1 kg·m/sD.-2 kg·m/s, 2 kg·m/s【解析】由于碰撞过程中,动量守恒,两小球动量变化大小相等,方向相反,因此A错误;因为碰撞的过程中动能不增加.若Δp1和Δp2分别为-8 kg·m/s, 8 kg·m/s,则p1′=-4 kg·m/s,p2′=14 kg·m/s,根据E k=p22m知相撞过程中动能增加,B错误;两球碰撞的过程中,B球的动量增加,Δp2为正值,A球的动量减小,Δp1为负值,故C错误.变化量分别为-2 kg·m/s,2 kg·m/s,符合动量守恒、动能不增加以及实际的规律,故D正确.【答案】D【江西师范大学附属中学2017届高三上学期期中考试】甲、乙两球在光滑的水平面上,沿同一直线同一方向运动,它们的动量分别为p甲=10kg·m/s,p乙=14kg·m/s,已知甲的速度大于乙的速度,当甲追上乙发生碰撞后,乙球的动量变为20kg·m/s,则甲、乙两球的质量m甲:m乙的关系可能是()A.3:10B.1:10C.1:4D.1:6【答案】AC【解析】因为碰撞前,甲球速度大于乙球速度,则有p pm m甲乙乙甲>,得到57m pm p=甲甲乙乙<;根据动量守恒得:p甲+p乙=p甲′+p乙′,代入解得p甲′=4kg•m/s.根据碰撞过程总动能不增加,得到:2'22'22222p pmpm m mp+≥+甲甲乙乙乙乙甲甲代入解得:717mm≤甲乙;碰撞后两球同向运动,则甲的速度不大于乙的速度,应有:p pm m''≤甲乙乙甲代入解得:15mm≥甲乙;综合有:71517mm≤≤甲乙.故AC正确,BD错误.故选AC.如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动【解析】取向右为正方向,根据动量守恒:m·2v0-2mv0=mv A+2mv B,知系统总动量为零,所以碰后总动量也为零,即A、B的运动方向一定相反,所以D正确,A、B、C错误.【答案】D(2013·江苏)水平面上,一白球与一静止的灰球碰撞,两球质量相等.碰撞过程的频闪照片如图所示(注:原题中用直尺测量,碰撞前相邻两位置之间的长度约为1.4 cm,碰撞后相邻两位置之间的长度约为0.8 cm),据此可推断,碰撞过程中系统损失的动能约占碰撞前动能的()A.30%B.50%C.70% D.90%【解析】 用直尺测量,碰撞前相邻两位置之间的长度约为1.4 cm ,碰撞后相邻两位置之间的长度约为0.8 cm ,则碰后与碰前速度比为v ′v =0.8 1.4=47,则碰撞过程中系统损失的动能约占碰撞前动能的12mv 2-122m v ′212mv 2=1-2×(v ′v )2=1-2×(47)2≈30%. 【答案】A如图所示,一个半径R =1.00 m 的粗糙14圆弧轨道,固定在竖直平面内,其下端切线是水平的,距地面高度h =1.25 m .在轨道末端放有质量m B =0.30 kg 的小球B (视为质点),B 左侧装有微型传感器,另一质量m A =0.10 kg 的小球A (也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示示数为2.6 N ,A 与B 发生正碰,碰后B 小球水平飞出,落到地面时的水平位移x =0.80 m ,不计空气阻力,重力加速度取g =10 m/s 2.求:(1)小球A 在碰前克服摩擦力所做的功;(2)A 与B 碰撞过程中,系统损失的机械能.【解析】(1)在最低点,对A 球由牛顿第二定律有F A -m A g =m A v A 2R得v A =4.00 m/s在A 下落过程中,由动能定理有:m A gR -W f =12m A v A 2 A 球在碰前克服摩擦力所做的功W f =0.20 J.(2)碰后B 球做平抛运动,在水平方向有x =v B ′t在竖直方向有h =12gt 2 联立以上两式可得碰后B 的速度v B ′=1.6 m/s对A 、B 碰撞过程,由动量守恒定律有m A v A =m A v A ′+m B v B ′碰后A 球的速度v A ′=-0.80 m/s ,负号表示碰后A 球运动方向向左由能量守恒得,碰撞过程中系统损失的机械能:ΔE 损=12mA v A 2-12m A v A ′2-12m B v B ′2故ΔE 损=0.384 J在A 与B 碰撞的过程中,系统损失的机械能为0.384 J.【答案】(1)0.20 J (2)0.384 J(2014·广东)如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作,已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .【解析】(1)P 1、P 2碰撞过程,动量守恒mv 1=2mv ①解得v =v 12=3 m/s ② 碰撞损失的动能ΔE =12mv 21-12(2m )v 2③ 解得ΔE =9 J ④(2)由于P 与挡板的碰撞为弹性碰撞.故P 在A →B →C →B (B ′)→A (A ′)等效为如图所示的匀减速运动.设P 在A →B →C →B (B ′)→A (A ′)段加速度大小为a ,由运动学规律,得μ(2m )g =2ma a =μg =0.1×10 m/s 2=1 m/s 2⑤P 返回经过B 时:3L =vt -12at 2⑥ 由①⑤⑥式,解得v =3L +12at 2t由于2 s≤t ≤4 s ,代入上式解得v 的取值范围5 m/s≤v ≤7 m/s ⑦所以v 1的取值范围10 m/s≤v 1≤14 m/s ⑧P 向左经过A (即图的A ′)时的速度v 2,则v 22-v 2=-2a ·4L ⑨ 将⑦代入⑨可知,当v =5 m/s 时,P 不能到达A ;当v =7 m/s 时,v 2=17 m/s所以v 2的取值范围v 2≤17 m/s ,所以当v 2=17 m/s 时,P 向左经过A 点时有最大动能E =12(2m )v 22=17 J 【答案】(1)3 m/s 9 J (2)10 m/s≤v 1≤14 m/s 17 J。
高中物理(新人教版)选择性必修一课后习题:弹性碰撞和非弹性碰撞(课后习题)【含答案及解析】

弹性碰撞和非弹性碰撞课后篇巩固提升必备知识基础练1.现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞。
已知碰撞后,甲滑块静止不动,那么这次碰撞是( )A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法确定,由动量守恒定律得3m ·v-mv=0+mv',所以v'=2v 。
碰前总动能E k =12×3m ·v 2+12mv 2=2mv 2,碰后总动能E k '=12mv'2=2mv 2,E k =E k ',所以A 项正确。
2.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图像如图所示。
由图可知,物体A 、B 的质量之比为( ) A.1∶1 B.1∶2 C.1∶3 D.3∶1v A =4 m/s,v B =0,碰后v A '=v B '=1 m/s,由动量守恒可知m A v A +0=m A v A '+m B v B ',解得m B =3m A 。
故选项C 正确。
3.(2020甘肃武威第六中学期末)如图所示,在光滑的水平面上有一质量为1 kg 的小球以1 m/s 的速度向前运动,与质量为3 kg 的静止木块发生碰撞,假设碰撞后木块的速度是v 木=1 m/s,则( )A.v 木=1 m/s 这一假设是合理的,碰撞后球的速度为v 球=-2 m/sB.v 木=1 m/s 这一假设是合理的,碰撞后小球被弹回来C.v 木=1 m/s 这一假设是不合理的,因而这种情况不可能发生D.v 木=1 m/s 这一假设是可能发生的,但由于题给条件不足,v 球的大小不能确定v 木=1 m/s,则由动量守恒定律可知m 1v 0=m 1v 球+m 2v 木,解得v 球=-2 m/s,碰前动能E 1=12m 1v 02=0.5 J,碰后动能E 2=12m 1v 球2+12m 2v 木2=3.5 J >E 1,则假设不合理,这种情况不可能发生,故选项C 正确,A 、B 、D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《弹性碰撞》练习精选
班姓名
1.卢瑟福(诺贝尔物理奖得主)在一篇文章中写道:可以预言,当α粒子与氢原子相碰时,可使之迅速运动起来。
按正碰撞考虑很容易证明,氢原子速度可达α粒子碰撞前速度的1.6倍,即占入射粒子能量的64%。
试证明此结论(碰撞是完全弹性的,且α粒子质量接近氢原子质量的四倍)。
2.一质量为m钢球静止在质量为M铁箱的光滑底面上,如图示。
CD长L,铁箱与地面间无摩擦。
铁箱被v时开始做匀速直线运动。
后来箱壁与钢球发生弹性碰撞。
问碰后再经过多长
加速至
时间钢球与BD壁相碰。
3.在一铅直面内有一光滑的轨道,轨道左边是光滑弧线,右边是足够长的水平直线。
现有质量分别为m A和m B的两个质点,B在水平轨道上静止,A在高h处自静止滑下,与B发生弹性碰撞,碰后A仍可返回到弧线的某一高度上,并再度滑下。
求A,B至少发生两次碰撞的条件。
4.如图所示,半径为R 的光滑圆形轨道固定在竖直平面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为
R 4
1
,碰撞中无机械能损失.重力加速度为g 。
试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。
(06年高考重庆卷第25题,20分)
5.某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如题25图所示用完全相同的轻绳将N 个大小相同、质量不等的小球并列悬挂于一水平杆、球间有微小间隔,从左到右,球的编号依次为1、2、3……N ,球的质量依次递减,每球质量与其相邻左球质量之比为k (k <1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损失的正碰.(不计空气阻力,忽略绳的伸长,g
取10 m/s 2
)。
(1)设与n +1号球碰撞前,n 号球的速度为v n ,求n +1号球碰撞后的速度。
(2)若N =5,在1号球向左拉高h 的情况下,要使5号球碰撞后升高16h (16 h 小于绳长)问k 值为多少?(3) 第(2)问的条件下,悬挂哪个球的绳最容易断,为什么?(07年高考重庆卷第25题,20分)
A
B O
R
《<弹性碰撞>试题精选》讲评
主讲:杨得发 校对:高双
1.讲解:设α粒子的质量为m 4,氢原子的质量为m ;
α
粒子的初速度为0v ,氢原子的初速度为零。
正碰后,α粒
子的速度为1v ,氢原子的速度为2v 。
由动量守恒和动能守恒可得:
21044mv mv mv +=-----------------------○
1 22
21202
1421421mv mv mv +=----------------○2 解得:0
0261442v .v m
m m v =+⋅=-------------○
3 入射α粒子的能量:20
42
1v )m (
氢原子碰后的能量:20
612
1)v .(m
则:64042
16121
202
0.v )m ()v .(m =-----------------○
4 原命题得证。
点评:请务必牢记弹性碰撞的双守恒方程(动量守恒和动能守恒)和双结论(0
2
1211v m m m m v +-=,02
11
22v m m m v +=)。
2.讲解:箱壁AC 与钢球发生弹性碰撞,动量守恒、动能守恒:
210mv Mv Mv +=-------------------○
1 22
21202
12121mv Mv Mv +=----------------○2 解得:0
1v m
M m M v +-=-------------------------○3 02
2v m
M M v +=------------------------○
4 设箱向前运动s 米后,钢球再次与箱壁BD 相碰,则有:
t v s 1=----------------------------------○5 t v L s 2=+------------------------------○6 解得:0
v L t =-----------------------------○
7 点评:若m M <,你会求解吗?
3.解:A 下滑的过程只有重力做功,机械能守恒:
gh m v m A
A =201---------------------------○
1 解得:gh v 20=
------------------------○
2 A 与B 发生完全弹性碰撞,研究对象为A 和B 组成的系统,动量守恒、动能守恒:
B B A A A v m v m v m +=0---------------○
3 22202
12121B
B A A A v m v m v m +=----------○4 解得:0
v m m m m v B
A B A A +-=--------------○
5 02v m m m v B
A A
B
+=
--------------○
6 A 返回某高度又滑下,仍满足机械能守恒,返回后的速度仍为
'v A ,且其大小0
v m m m m v 'v
B
A A
B A A
+-=
-=--------○7
只要B A v 'v >就能再碰,即:0
02v m m m v m m m m B A A B A A B +>+----○
8 解得:A B
m m 3>。
点评:机械能守恒的条件是:只有重力、弹簧的弹力作功。
动量守恒的条件是:系统不受外力或所受外力之和为零。
4.(06年高考重庆卷第25题,20分)
讲解:(1)由于碰撞中无机械能损失,根据机械能守恒有:
mgR mgR mgR β4
141+=
-----------○
1 解得:β=3。
(2)由于碰撞后A 、B 球能达到的最大高度均为R 4
1,且
碰撞中无机械能损失,所以第一次碰撞刚结束时小球A 一定反向运动.
设碰前小球A 的速度大小为v ,以水平向右为正方向,第一次碰撞刚结束时小球A 、B 的速度大小分别为1v 、2v .
碰前:22
1mv mgR =-----------------○
2 碰后:21
2
14mv R mg =----------------○
3 222
14mv R mg
ββ=-------------------○4 碰撞作用瞬间系统动量守恒:
21)(mv v m mv β+-=----------------○
5
222211201'2
1'2121v m v m v m +=。
○3由这两式解出的结论:02
1211'v m m m m v +-=
,021122'v m m m v +=。
○4
机械能守恒定律:在只有重力(弹簧的弹力)做功的条件下,动能和势能相互转化,但机械能的总量保持不变,即12
E E =。
○
5圆周运动的牛顿第二定律:r
mv F 2
=
向心力。
同学们学习时应达到本题的难题要求。